• EN

# Modelling and Rendering Techniques (Course Materials)

Lecture Monday 12:20 M-IX

No make-up exams will be given for missed tests. All the assignments should be turn in by the designated due date. To pass this course all the course requirements must be SATISFACTORILY completed > 30% of each problem set.

## What you Need to Pass

• Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
• Project and exercise (mandatory, 50 points).
• Solve all homework problems (mandatory each one >=30%, 20 points)
• Pass final term (mandatory, 10 points) You will need to solve several problems discussed during lessons.
• Pass oral/written exam: (optional, +20 points) If you feel you are better, convince me !
• Summary
• Attendance = 0 or -100 (Fx)
• Homework = +20..7 or +6..0 (Fx)
• Project = +50..0
• Mid term = +10..0
• Final term = +20..0
• Oral/written exam = +20..0
• A = 92-100
• B = 84-91
• C = 76-83
• D = 68-75
• E = 60-67
• Fx = 0-59

### Oral Examination

To the oral examination all the above requirements must be SATISFACTORILY completed.

• Michael Henle, "A Combinatorial Introduction to Topology"
• J. O'Rourke, "Computational Geometry in C"
• IA. T. Fomenko and T. L. Kunii, "Topological Modeling for Visualization"

### Lesson01 "Human visual system, Illusions"

Lecture notes: pdf, Color theory: pdf

Reading(prepare 3 questions and the core idea of article): R. Ďurikovič and K. Kolchin. Physically-based model of photographic effects for night and day scenes, Journal of Three Dimensional Images, 3D Forum Society, vol. 15, No.4, pages 119-124, 2001. [pdf]

### Lesson02 "Photographic Effects, HDR and Tone Mapping"

Lecture notes: pdf

### Lesson03 "Three dimensional modeling"

Lecture notes: pdf

Demo animation: R. Ďurikovič, K. Kaneda, and H. Yamashita. Dynamic contour: a texture approach and contour operations. The Visual Computer, 11(6), pages 277-289, May 1995. [pdf]

### Lesson04 "Three dimensional transformations"

Lecture notes: pdf

Demo animation: R. Ďurikovič, K. Kaneda, and H. Yamashita. Imaging and modelling from serial microscopic sections for the study of anatomy. Medical & Biological Engineering & Computing, 36(5), pages 276-284, 1998. [pdf]

### Lesson05 "Representation of solids"

Lecture notes: pdf

Midterm 1 + questions from the following articles.

Demo animation: Roman Ďurikovič, Silvester Czanner, Julius Parulek and Miloš Šrámek. Heterogeneous modeling of biological organs and organ growth. In book: Alexander Pasko, Valery Adzhiev, and Peter Comninos. LNCS 4889: Heterogeneous Objects Modeling and Applications. Springer Press, Berlin, 2008. [pdf]

### Lesson06 "Functional representation"

Lecture notes: pdf

R. Ďurikovič. Growth simulation of digestive system using function representation and skeleton dynamics, International Journal on Shape Modeling, vol. 10, No.1, pages 31-49, World Scientific Publishing Company, Singapore, 2004.[pdf]

### Lesson07 "Test (midterm) 2"

Demo animation: Roman Ďurikovič and Zuzana Kúkelová. Sketch-based modelling system with convolution and variational implicit surfaces, Journal of the Applied Mathematics, Statistics and Informatics, University of Saint Cyril and Metod Press, Trnava, Slovakia, vol. 4, No.1, pages 101-108, 2008. [pdf]

### Lesson08 "Computational topology of polygonal surfaces"

Lecture notes: pdf

Demo animation: Y. Wakabayashi and R. Ďurikovič. Modeling bonsai tree using positional information, Joint Convention Record of Tohoku Chapter of the Electrical and Information Engineers, No. 2I19, Yonezawa, Japan, pages 341, 2002.[pdf]

### Lesson09 "Applied computational topology"

Lecture notes: pdf

Solving problems 7P 1~7

### Lesson10 "Surface classification via topological surgery"

Lecture notes: pdf

### Lesson11 "Surface classification via topological surgery II"

Lecture notes: pdf

Solving problems 8P 1~4

### Lesson12 "Aliasing, Antialiasing"

Lecture notes: pdf

Final exam!

# Exercises

guide: Daniel Kyselica

Thursday at 10:40 in F1-248

## Project

The project is focused on practicing techniques of modelling and rendering learned on exercises. It is split into two stages evaluated separately throughout the semester.

Note: Accomplishing bonus tasks grant you an additional points, but cannot get you over the maximum of 100p from exercises.

### Stage 1

Deadline on Sunday 15.11.2020 at 23:59

Goal of this project stage is to create models for interior "room" scene.

Assignment
Find reference images for objects and model them using learned techniques.
Create 2 objects from each modelling category:
Simple Polygonal: apple, lamp, book, chair, etc.
Curve: light bulb, vine glass, candle holder, corkscrew, etc.
Create 1 object from each modelling category:
CSG: mug, ashtray, bowl, etc.
Blobby: candle, toy (teddy bear, dino, ...), etc.
Evaluation
Use correct modelling techniques for each model category (20p)
Simple Polygonal: extrusion, inset, loop cutting...
Curve: curves, screw modifier...
CSG: boolean modifier, parenting, object hiding...
Blobby: metaballs, negative influence...
Complexity of selected reference and modelled detail (15p)
Editing friendliness - not applied modifiers, low polygon count (10p)
Aesthetic of created models - proportions, realism, etc. (5p)
Submission
Before modelling create folder named "mrt_p1_[your name]" and place all files inside that folder.
Each model should be located in a separate collection
Folder should contain ONLY ONE blend file and object reference images
Pack folder to archive (zip/7z/rar) and send to adam.riecicky@fmph.uniba.sk with subject "MRT Project 1"

### Stage 2

Deadline on Sunday 5.1.2020 at 23:59

Assignment
Make a believable interior scene of a room by your imagination. You should use models created for the previous project stage, and create some new ones, or use any publicly available models. All materials should be designed by yourself using the node editor.
Evaluation
Create custom UV mapping for 3 complex models. (12p)
Correctly set up materials for the entire scene (10p)
HDR environment map (5p)
Textures used to control at least 4 material parameters (5p)
Used at least 2 procedural textures (5p)
Used displacement map (5p)
Scene logically separated into collections (3p)
Aesthetics and believability of final renders (5p)
Bonus: Use 2 textures edited/created by yourself. (2p)
Bonus: Use compositing node editor to create final touches to renders: bloom, color and contrast adjustments, etc. (3p)
Submission
Before modeling create a folder named "mrt_p2_[your name]" and place all files inside that folder.
Folder should contain ONLY ONE blend file and all required resources as well as final renders.
Create a text file in a folder and write down notes - which models are yours, which UV coordinates you created, which textures you edited/created, etc, to distinguish what was downloaded and what was made by yourself.
Pack folder to archive (zip/7z/rar) and send to adam.riecicky@fmph.uniba.sk with subject "MRT Project 2"