Three-Dimensional Transformations

-« Types of transformations

» Affine transformations
(translation, rotation, scaling)
* Deformations (twisting, bending, tapering)

Computer Graphics Course

Three-Dimensional Modeling | - Composite transformations
|  Lecture 12 - * Set-theoretic operations
"Three-Dimensional Transformations” * Offsetting and blending

* Metamorphosis
* Collision detection



Types of transformations

» Change of parameters ‘
Example: radius of a sphere, positions of
control points of a parametric surface;

* Mapping (coordinate transformation)
Sets one-to-one correspondance between
space points (%, y, z) -> (x, ¥, Z)
Example: affine transformations, deformations;

* Set-theoretic operations
Example: union;

* Change of a function
Example: offsetting, blending, metamorphosis;



Affine transformations

Translation
y axis | | x'=x+t,
Y=Yt

o (X' y' 2) ' =
(x'y,z,%_r/:“:twtz) 2=z +

§ . . ’
In a three-dimensional homogeneous

: x axis coordinate representation
Z axis )
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Affine transformations

Coordinate-axes rotations

Zz-axis rotation

y

y-axis rotation
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Affine transformations
Scaling

X =x-5s,, : ‘

Yy =Y Sy | . ‘

Z2=z'5s, . \
] [s. 0 0 0] [=x \
vy 1 O s, 0 0| ]|v¥ '
z 0 0 s, O z ‘
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Scaling with respect to a selected fixed posmon (x5 ¥p z,) can be represented
with the followmg transformatxon sequence: ‘

1. Translate the fixed point to the origin
2. Scale the object relative to the coordinate origin
(3. Translate the fixed point back to its original position

\
s, 0 0 (- s,)x,
0 Sy 0 Q- sy)yf
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Deformations
Author: Alan Barr

(x,y,2) - original point
(X,Y,Z) - point of a deformed object

Forward mapping

For polygonal and parametric forms

o: (x,5,2) -> (X,Y,Z) or
X,Y, Z) = (¢1(X9y Z), ¢2(X9Y9Z)9 ¢3(X9y »Z))

Inverse mapping
- For implicit form
ot XY,Z) > (x,y,2) or
(X7y ,Z) = (¢-11(X9Y9 Z)’ ¢-12(X7Y9 Z) 2 ¢-13(X9Y9 Z))



Deformations: taperihg

Forward mapping
r=Ff (z),

X =rz,
Y =ry,
Z =2z

Inverse mapping

r(Z) = f(Z):
z=X/f,

y=7Y]/r,

z2=2
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Transformation TAPERS the region

Transformation TAPERS the region |




Deformations: tWistihg

Forward mapping

8 = f(2) X=i0'a-—y50,
Cp = cos(f) Y =zSs+yCh,

Sy = ain(ﬁ) == 2, ' | - “

Inverse mapping |
-
8 = §(2), = resTs e
z=XCyp+YS8,,
y=-—XSp+YCy,

z2=12
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Deformations: bendmg
Forward mapping

‘The following equations represent an 1sotrop1c
bend along a centerline parallel to the y-axis

bending angle 4 is given by: . D
= k(y - yo')’ | -S‘(z - f) + Yo, UYmin vaﬁym,
. Cy = cos(8), Y =(—Ss(z—£)+ %0+ Co(y—tymin)y ¥ < Ymin
. S = #in(9), —Se(z— i') + 90+ Co(¥ — Ymaz)y ¥ > Vm.
; | . oz — i ' L y<
Ymin) I Y<Ymin Co(z— 1) + £, Ymin <Y< Umas
§= {yr if Yrmin < Y < Ymas 2 = {00(3— )+ 1+ So(y — Umin)y ¥ < Ymin
Umes; I ¥>Vmaa

Co(z— 1)+t + 56(y — Vmes)s ¥ > Umas

Inverse magging

z=X
Omin = Eymin —yo) | y=gTw
Vmaz = HYmas — ¥a)
— {ﬁ: Ymin < y < Ymas
= _tm-l(g_‘_ﬂiq) V=¥ —w)Co + i‘)Sv +§, § = Umin O Ymas
-1 _
Y - {i-+ (=90 +(Z = £F)%, Ymin < § < Ymas
0 = fuu'm < a".'" —(¥ - ¥0)Se + (- i’)Ce +9 ¥ = Ymin O Ymas
=14, if Omin <0< Omas



Deformations: bendinyg
Examples

Trans{ormat.on BENDS the cegion

" Transformation BENDS the region

Transformalon

Transformetion

a Beat, Twisted, Tapered Primitive



Composite transformations
Example: tapering and translation of an ellipsoid

In "functional” terms:
Translation ( Tapering ( Ellipsoid ) )

For the implicit form inverse transformations are applied
"from left to right". Let (X, Y, Z) be the given point.

1) Translation: the center is translated from (0, 0, 0) to (a, b, )

X=X-a
Y=Y-b
Z'=7Z-c¢c

2) Tapering: scaling coefficient
r=1]1forz =Z.. andr=0.5 forz =z

s=(z__-2)/(z_-Z)
r=050+s)
x=X'/r
y=Y/r
z=7

3) Transformed ellipsoid

2 2 2
f(x,y,z) = 1 (_:’5.) - (L) - ("_)
| ! ,rx ry L
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Set-theoretic (Boolean) operations

" Intersection AN B Difference A"\ B

- A Venn diagram shdwing the operators of set-theory

" AUB AN B A\B B\ A

12



R-functions and set-theoretic operations

- Geometric object inE*:
| f(x, X5 ey X )20
| Binary operation on geometric .objects:
< F({X), X))=0 .
Resuitant object:
- f,=f|f for union;

f,=f &£, forintersection;
£, =f,\f for subtraction.

R-functions:
g = —— 6+ +V ETTE 20
, 1+a A
-1
&£ = (‘:'1'*'fz'\/fzz'*'fz2 -2aff)
“ l+a

| flh\ fz = _f1 & (-5

1< alf, £) <1, a(f, £) = a(f, 1) = a(- £, £) = a(f,, £



Types of R-functions

For a=1:

£ | £, =max (£, )
f, &f; =min (£, £,) C! discontinuity where f=£f.

_For a=0:
Bl f=f+5+VE+E N
f &f =f+f -VEF+ 2 C! discontinuity where £,=0 and £,=0.

C® continuity: |
f ] =@ +5 +VET+ED) (£7+£1)
L&t =@+ f, - VERED (54 £



Offsetting

Offset objects are expanded or contracted versions of an original
object. To offset an object S by a distance d one adds to the
object all the points that lie within a distance d of the boudary

of S.

2D

‘ A simple L-shaped object (a), a
positive offset (b), and.a negative offset

() (b) () P

3D

(@ ~ (b) (©
(a) Initial constructive solid (b) internal offset solid (c) external offset solid




Blending operations |

The operation: joining several surfaces
1n a complex object with a smooth surface
is called blending. The main difficulties

~ and requirements to blending: .
@ Tangency of a blend surface with the base

. surfaces re .

e Easy intuitive control of the blendmg surface

- shape;

oN ecess1ty to perform for blended obJects all

| the computations possible for unblended obJects
including set-theoretic operations; ,

~ @ Blend interference or ability to blend on

blends and as the particular case complex

~ vertices (or corners) blending;

ye



' , Blending operations, page 2
¢ Atleast C" continuous blending function in the

entire domain of definition; .
* Blending definition of basic set-theoretic

o operations: intersection, union and subtraction;

¢ Single edge blending or localizing the blend to
a region about intersection curve of two faces; .

e Added and subtracted \ - _ -
~ material blends; -\ A4 |

“e The ability to produce constant-radius

- blending;

e No restriction of circular cross sections or the
requirement of vanable-radm_s blends;

~ ® Exact representation for blends instead of any
approximation; -

e Automatic clipping of unwanted parts of the
blending surface; -

e Blending of two non-intersecting surfaces

e Functional constraints;

o Aesthetlc blends constramed by appearance.

E



Union:

Lprpprp
'G.G'lﬂ

LSS I NITY

YUY

pelotity

Ricei [1973]: |
A solid is defined as f{P) <I. -

Intersection:

| I(fj’fz,‘ ,f;;) ='mp +f2P +-"-+fn’p) lip |

Ulfis for oofi) = (P + 7+ ot 7071
pisa poSitive real number. . o

i I(fs, fy o fo) = min (Fs fo e o).

p—ee

lim U(fl:fZ, ,f;:) = max (f1. fos ’f") .

p—es

&



" Blending set-theoretic operations
F(f,£) = R(E,£) + d(f,£,)

‘Risa corrcéponding R-function,

d is a displacement function, d(0,0) = max d(f.f), d->0

| 3
d(f,f) =
1+ (f/a)%+ (£/a,)?
A
3 / \
3270 \
i / \
gﬂ-: *-/
& o ‘-;.a T g, ==

The shape of the sections f =0 and £,=0 for the displacement function.

Blending intersection:
afl

1+ (fl/al)5+ (f,/a:).z |

F(f,f)=f +f -VII+i? +

c discontinuify where f,=0 and £,=0.

Blending union
aL

1+(f/a )+ (f/a)?

F(f,f)=f+L,+VET+1? +



Parameters of the displacement fanction for shape control

LY I (Y 3 i .0 p
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a>1, 4=, <

Influence of the displacement function parameters on the shape of blend. The basic |

set-theoretic operation is intersection of the 2D halfspaces £ (x,y)=x and £,(x,y)=y.
* The absolute value of a, defines the total displacement of the blending

surface from the two initial surfaces.
-+ a,=0 means pure set-theoretic operation.

* A negative a,.value gives subtracted material blend, and a positive a, value yields
added material blend.

* The values of a,> 0 and a, > 0 are proportional to the distance between
the blending surface and the original surfaces defined by £, and £,

respectively.

20



@

(2) initial CSG object () CSG object with several blcndcd cdges and
cyhndnml hole ,

A

@  w

(2) the body and the bottom of a wine glass to be connectcd with aesthcnc blend
defined by the stroke;
(b) the result of blending parameters estimation

1



Metamorphosis
Metamorphosis (morphing, warping, shape transformation) changes
a geometric object from one given shape to another.
Applications: animation, design of objects that combine features of
initial objects, 3D reconstruction from cross-sections.

Polygonal objects

Two steps: 1) search for correspondence between points;
2) interpolation between two surfaces.

Problems: * different number of points in two objects;
* constant topology (for example, how to
transform a sphere in three intersecting tori?);
* possible self-intersections.

- Implicit form

Metamorphosis is defined as a transformation between two functions.
The simplest form is -

X=X 1) +£X) t,

where 0 <t < 1.



Metamorphosis

* Initial objects G, and G, are defined in E**

* The resultant object G, is defined in E*
*G,isa section of G, by the hyperplane x =x °
*G,isa section of G, by the hyperplane x =x z

£(X,%,; wo X) = (X%, = X)) ° (-g&)) +
A - HEEEy e X)) " 8(R)

where g(x) is a  positive continuous  function
g(x)=0and gx')=1. |
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