Three-Dimensional Transformations

Computer Graphics Course

Three-Dimensional Modeling
Lecture 12

"Three-Dimensional Transformations"

- Types of transformations
- Affine transformations
(translation, rotation, scaling)
- Deformations (twisting, bending, tapering)
- Composite transformations
- Set-theoretic operations
- Offsetting and blending
- Metamorphosis
- Collision detection

Types of transformations

- Change of parameters

Example: radius of a sphere, positions of control points of a parametric surface;

- Mapping (coordinate transformation)

Sets one-to-one correspondance between
space points (x, y, z) -> ($x^{\prime}, y^{\prime}, z^{\prime}$)
Example: affine transformations, deformations;

- Set-theoretic operations

Example: union;

- Change of a function

Example: offsetting, blending, metamorphosis;

Affine transformations Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y} \\
& z^{\prime}=z+t_{z}
\end{aligned}
$$

Iñ a three-dimensional homogeneous coordinate representation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Affine transformations Coordinate-axes rotations

$$
\begin{array}{ll}
z \text {-axis rotation } & x^{\prime}=x \cos \theta-y \sin \theta \\
y^{\prime}=x \sin \theta+y \cos \theta \\
z^{\prime}=z
\end{array}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

x-axis rotation

$$
\begin{aligned}
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta \\
& x^{\prime}=x
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Affine transformations Scaling

$$
\begin{gathered}
x^{\prime}=x \cdot s_{x} \\
y^{\prime}=y \cdot s_{y} \\
z=z \cdot s_{z} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{gathered}
$$

Scaling with respect to a selected fixed position (x_{f}, y_{f}, z_{f}) can be represented with the following transformation sequence:

Deformations

Author: Alan Barr
($\mathrm{x}, \mathrm{y}, \mathrm{z}$) - original point
(X,Y,Z) - point of a deformed object

Forward mapping

For polygonal and parametric forms

$$
\begin{gathered}
\Phi:(\mathbf{x}, \mathbf{y}, \mathbf{Z})->(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \text { or } \\
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\phi_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \phi_{2}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \phi_{3}(\mathbf{x}, \mathbf{y}, \mathbf{z})\right)
\end{gathered}
$$

Inverse mapping

For implicit form

$$
\begin{gathered}
\Phi^{-1}:(\mathbf{X}, \mathbf{Y}, \mathbf{Z})->(\mathbf{X}, \mathbf{y}, \mathbf{z}) \text { or } \\
\left.(\mathbf{x}, \mathbf{y}, \mathbf{Z})=\left(\phi_{1}^{-1}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}), \phi_{2}^{-1}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}), \phi_{3}^{-1} \mathbf{X}, \mathbf{Y}, \mathbf{Z}\right)\right)
\end{gathered}
$$

Deformations: tapering

Forward mapping

$$
\begin{aligned}
r & =f(z), \\
X & =r x, \\
Y & =r y, \\
Z & =z
\end{aligned}
$$

Inverse mapping

$$
\begin{aligned}
r(Z) & =f(Z), \\
x & =X / r, \\
y & =Y / r, \\
z & =Z
\end{aligned}
$$

Deformations: twisting

Forward mapping

$$
\begin{array}{rlrl}
\theta & =f(z) & X=x C_{\theta}-y S_{\theta}, \\
C_{\theta} & =\cos (\theta) & & Y=x S_{\theta}+y C_{\theta}, \\
S_{\theta} & =\sin (\theta) & & Z=z .
\end{array}
$$

Inverse mapping

$$
\begin{aligned}
& \theta=f(Z), \\
& x=X C_{\theta}+Y S_{\theta}, \\
& y=-X S_{\theta}+Y C_{\theta}, \\
& z=Z
\end{aligned}
$$

Deformations: bending

Forward mapping

The following equations represent an isotropic bend along a centerline parallel to the y-axis. bending angle θ is given by:

$$
\bar{X}=x
$$

$$
\begin{aligned}
& \theta=k\left(\hat{y}-y_{0}\right), \\
& C_{0}=\cos (\theta) ; \\
& S_{0}=\sin (\theta),
\end{aligned} \quad Y= \begin{cases}-S_{0}\left(z-\frac{1}{k}\right)+y_{0}, & y_{\min } \leq y \leq y_{\max }, \\
-S_{\theta}\left(z-\frac{1}{k}\right)+y_{0}+C_{0}\left(y-y_{\min }\right), & y<y_{\min } \\
-S_{\theta}\left(z-\frac{1}{k}\right)+y_{0}+C_{\theta}\left(y-y_{\max }\right), & y>y_{\max }\end{cases}
$$

$\hat{y}=\left\{\begin{array}{ll}y_{\min }, & \text { if } y \leq y_{\min } \\ y_{2} & \text { if } y_{\min }<y<y_{\max } \\ y_{\text {max }}, & \text { if } y \geq y_{\max }\end{array} \quad Z= \begin{cases}C_{\theta}\left(z-\frac{1}{h}\right)+\frac{1}{h}, & y_{\min } \leq y \leq y_{\text {max }} \\ C_{\theta}\left(x-\frac{1}{h}\right)+\frac{1}{k}+S_{\theta}\left(y-y_{\operatorname{man}}\right) ; & y<y_{\text {min }} \\ C_{\theta}\left(z-\frac{1}{h}\right)+\frac{1}{k}+S_{\theta}\left(y-y_{\text {max }}\right), & y>y_{\text {max }}\end{cases}\right.$

Inverse mapping

$$
\begin{aligned}
& z=x \\
& \theta_{\text {min }}=k\left(y_{\text {min }}-y_{0}\right) \\
& \theta_{\text {max }}=k\left(y_{\text {mas }}-y_{0}\right) \\
& \hat{\theta}=-\tan ^{-1}\left(\frac{Y-y_{0}}{Z-\frac{1}{k}}\right) \quad y=\left\{\begin{array}{l}
\hat{y}_{y} \\
\left.\left(Y-y_{0}\right) C_{0}+\left(z-\frac{1}{k}\right) S_{0}+\hat{y}, \quad \begin{array}{l}
y_{\text {min }}<\hat{y}=y_{\text {min }}<y_{\text {mas }} \\
\text { or }
\end{array}\right) .
\end{array}\right. \\
& \theta= \begin{cases}\theta_{\text {min }}, & \text { if } \theta<\hat{\theta}_{\text {min }} \\
\hat{\theta}_{\text {in }} & \text { if } \theta_{\text {min }} \leq \hat{\theta}^{\prime} \leq \theta_{\text {max }} \\
\theta_{\text {mas }}, & \text { if } \hat{\theta}^{>}>\theta_{\text {max }}\end{cases} \\
& z=\left\{\begin{array}{l}
\frac{1}{k}+\left(\left(Y-y_{0}\right)^{2}+\left(Z-\frac{1}{k}\right)^{2}\right)^{1 / 2}, \quad y_{\min }<\hat{y}<y_{\text {max }} \\
-\left(Y-y_{0}\right) S_{\theta}+\left(z-\frac{1}{k}\right) C_{\theta}+\hat{y}, \quad \hat{y}=y_{\text {min }} \text { or } y_{\text {max }}
\end{array}\right.
\end{aligned}
$$

Deformations: bending Examples

Pronstormation BENDS the cegion
 Transtormation BENDS the reqion

a Bent, Iwisted, Tapered Primitive

Composite transformations

Example: tapering and translation of an ellipsoid
In "functional" terms:

Translation (Tapering (Ellipsoid))

For the implicit form inverse transformations are applied "from left to right". Let ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) be the given point.

1) Translation: the center is translated from $(0,0,0)$ to (a, b, c)

$$
\begin{aligned}
X & =X-a \\
Y^{\prime} & =Y-b \\
Z^{\prime} & =Z-c
\end{aligned}
$$

2) Tapering: scaling coefficient

$$
\begin{gathered}
\mathrm{r}=1 \text { for } \mathrm{z}=\mathrm{z}_{\min } \text { and } \mathrm{r}=0.5 \text { for } \mathrm{z}=\mathrm{z}_{\max } \\
\mathrm{s}=\left(\mathrm{z}_{\max }-Z^{\prime}\right) /\left(z_{\max }-z_{\min }\right) \\
\mathrm{r}=0.5(1+\mathrm{s}) \\
\mathrm{x}=\mathrm{X}^{\prime} / \mathrm{r} \\
\mathrm{y}=\mathrm{Y}^{\prime} / \mathrm{r} \\
\mathrm{z}=\mathrm{Z}^{\prime}
\end{gathered}
$$

3) Transformed ellipsoid

$$
f(x, y, z)=1-\left(\frac{x}{r_{x}}\right)^{2}-\left(\frac{y}{r_{y}}\right)^{2}-\left(\frac{z}{r_{z}}\right)^{2}
$$

Set-theoretic (Boolean) operations

Union $A \cup B$

Intersection $A \cap B$

Difference $A^{\prime} \backslash B$

A Venn diagram showing the operators of set-theory

$A \cup B$

$\cdot A \cap B$

$A \backslash B$

$B \backslash A$

R-functions and set-theoretic operations

Geometric object in E^{a} :

$$
f\left(x_{1}, x_{2}, \ldots, x_{0}\right) \geq 0
$$

Binary operation on geometric objects:

$$
F\left(f_{1}(X), f_{2}(X)\right) \geq 0
$$

Resultant object:

$$
\begin{array}{ll}
f_{3}=f_{1} \mid f_{2} & \text { for union; } \\
f_{3}=f_{3} \& f_{2} & \text { for intersection; } \\
f_{3}=f_{1} \backslash f_{2} & \text { for subtraction. }
\end{array}
$$

R-functions:

$$
\begin{gathered}
f_{1} \left\lvert\, f_{2}=\frac{1}{1+a}\left(f_{1}+f_{2}+\sqrt{f_{2}^{2}+f_{2}^{2}-2 a f_{1} f_{2}}\right)\right. \\
f_{1} \& f_{2}=\frac{1}{1+a}\left(f_{1}+f_{2}-\sqrt{f_{1}^{2}+f_{2}^{2}-2 a f_{1} f_{2}}\right) \\
f_{1} \backslash f_{2}=f_{1} \&\left(-f_{2}\right) \\
-1<a\left(f_{1}, f_{2}\right) \leq 1, a\left(f_{1}, f_{2}\right)=a\left(f_{2}, f_{1}\right)=a\left(-f_{1}, f_{2}\right)=a\left(f_{1},-f_{2}\right) .
\end{gathered}
$$

Types of R-functions

For $a=1$:

$$
\begin{aligned}
& f_{1} \mid f_{2}=\max \left(f_{1}, f_{2}\right) \\
& f_{1} \& f_{2}=\min \left(f_{1}, f_{2}\right) \quad C^{1} \text { discontinuity where } f_{2}=f_{2} .
\end{aligned}
$$

For $a=0$:

$$
\begin{aligned}
& f_{1} \mid f_{2}=f_{1}+f_{2}+\sqrt{f_{1}^{2}+f_{2}^{2}} \\
& f_{1} \& f_{2}=f_{1}+f_{2}-\sqrt{f_{1}^{2}+f_{2}^{2}} \quad C^{1} \text { discontinuity where } f_{1}=0 \text { and } f_{2}=0 .
\end{aligned}
$$

$C^{\prime \prime}$ continuity:

$$
\begin{aligned}
& f_{1} \mid f_{2}=\left(f_{1}+f_{2}+\sqrt{f_{1}^{2}+f_{2}^{2}}\right)\left(f_{1}^{2}+f_{2}^{2}\right)^{m / 2} \\
& f_{1} \& f_{2}=\left(f_{1}+f_{2}-\sqrt{f_{1}^{2}+f_{2}^{2}}\right)\left(f_{1}^{2}+f_{2}^{2}\right)^{m / 2}
\end{aligned}
$$

Offsetting

Offset objects are expanded or contracted versions of an original object. To offset an object S by a distance d one adds to the object all the points that lie within a distance d of the bondary of S .

2D

3D

(a)

(b)

(c)
(a) Initial constructive solid (b) internal offset solid (c) external offset solid

Blending operations

The operation joining several surfaces in a complex object with a smooth surface is called blending. The main difficulties and requirements to blending:

- Tangency of a blend surface with the base surfaces;

- Easy intuitive control of the blending surface shape;
- Necessity to perform for blended objects all the computations possible for unblended objects including set-theoretic operations;
- Blend interference or ability to blend on blends and as the particular case complex vertices (or corners) blending;

Blending operations, page 2

- At least C^{1} continuous blending function in the entire domain of definition;
- Blending definition of basic set-theoretic operations: intersection, union and subtraction;
- Single edge blending or localizing the blend to
a region about intersection curve of two faces;
- Added and subtracted material blends;

- The ability to produce constant-radius blending;
- No restriction of circular cross sections or the requirement of variable-radius blends;
- Exact representation for blends instead of any approximation;
- Automatic clipping of unwanted parts of the blending surface;
- Blending of two non-intersecting surfaces;
- Functional constraints;
- Aesthetic blends constrained by appearance.

Ricci [1973]:
A solid is defined as $f(P) \leq 1$.
Intersection:

$$
I\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left(f_{1}^{p}+f_{2}^{p}+\ldots+f_{n}^{p}\right)^{1 / p}
$$

Union:

$$
U\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left(f_{1}^{-p}+f_{2}^{-p}+\ldots+f_{n}^{-p}\right)^{-1 / p}
$$

p is a positive real number.

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} I\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\min \left(f_{1}, f_{2}, \ldots, f_{n}\right) \\
& \lim _{p \rightarrow \infty} U\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\max \left(f_{1}, f_{2}, \ldots, f_{n}\right)
\end{aligned}
$$

Blending set-theoretic operations

$$
F\left(f_{y}, f_{2}\right)=R\left(f_{1}, f_{2}\right)+d\left(f_{y}, f_{2}\right)
$$

R is a corresponding R-function,
d is a displacement function, $d(0,0)=\max d\left(f_{1}, f_{2}\right), d \rightarrow 0$

$$
d\left(f_{1}, f_{2}\right)=\frac{a_{0}}{1+\left(f_{1} / a_{1}\right)^{2}+\left(f_{2} / a_{2}\right)^{2}}
$$

The shape of the sections $f_{1}=0$ and $f_{2}=0$ for the displacement function.

Blending intersection:

$$
F\left(f_{1}, f_{2}\right)=f_{1}+f_{2}-\sqrt{f_{1}^{2}+f_{2}^{2}}+\frac{a_{2}}{1+\left(f_{1} / a_{1}\right)^{2}+\left(f_{2} / a_{2}\right)^{2}}
$$

C^{1} discontinuity where $f_{2}=0$ and $f_{2}=0$.

Blending union

$$
F\left(f_{1}, f_{2}\right)=f_{1}+f_{2}+\sqrt{f_{1}^{2}+f_{2}^{2}}+\frac{a_{0}}{1+\left(f_{1} / a_{1}\right)^{2}+\left(f_{2} / a_{2}\right)^{2}}
$$

Parameters of the displacement function for shape control

Influence of the displacement function parameters on the shape of blend. The basic set-theoretic operation is intersection of the $2 D$ halfspaces $f_{1}(x, y)=x$ and $f_{2}(x, y)=y$.

- The absolute value of a defines the total displacement of the blending surface from the two initial surfaces.
- $a_{0}=0$ means pure set-theoretic operation.
- A negative a_{0}, value gives subtracted material blend, and a positive a_{0} value yields added material blend.
- The values of $a_{1}>0$ and $a_{2}>0$ are proportional to the distance between the blending surface and the original surfaces defined by f_{2} and f_{2}. respectively.

(a) initial CSG object $\begin{aligned} & \text { (b) CSG object with several blended edges and } \\ & \text { cylindrical hole }\end{aligned}$

(a)

(b)
(a) the body and the bottom of a wine glass to be connected with aesthetic blend defined by the stroke;
(b) the result of blending parameters estimation

Metamorphosis

Metamorphosis (morphing, warping, shape transformation) changes a geometric object from one given shape to another. Applications: animation, design of objects that combine features of initial objects, 3D reconstruction from cross-sections.

Polygonal objects

Two steps: 1) search for correspondence between points;
2) interpolation between two surfaces.

Problems: • different number of points in two objects;

- constant topology (for example, how to transform a sphere in three intersecting tori?); - possible self-intersections.

Implicit form

Metamorphosis is defined as a transformation between two functions. The simplest form is

$$
f_{3}(\mathbf{X})=f_{1}(\mathbf{X})(1-t)+f_{2}(\mathbf{X}) t
$$

where $0 \leq \mathrm{t} \leq 1$.

Metamorphosis

- Initial objects G_{1} and G_{2} are defined in $\mathrm{E}^{\mathrm{p}-1}$
- The resultant object G_{3} is defined in E^{n}
- G_{1} is a section of G_{3} by the hyperplane $X_{a}=x_{a}^{0}$
- G_{2} is a section of G_{3} by the hyperplane $x_{a}=x_{a}{ }^{1}$

$$
\begin{aligned}
& \mathbf{f}_{3}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\mathbf{f}_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{ni-1}}\right) \quad \cdot\left(1-g\left(\mathbf{x}_{\mathrm{n}}\right)\right)+\right. \\
& +f_{2}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \cdot g\left(x_{n}\right)
\end{aligned}
$$

where $g\left(x_{\mathrm{a}}\right)$ is a positive continuous function $g\left(x_{a}{ }^{0}\right)=0$ and $g\left(x_{a}{ }^{1}\right)=1$.

