Aliasing

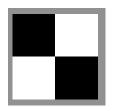
OUTLINE:

What is aliasing?

What causes it?

frequency domain explanation using Fourier Transforms

What is Aliasing?



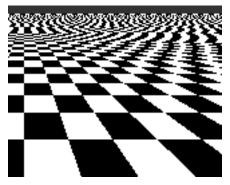
Aliasing comes in several forms:

checkerboard

SPATIAL ALIASING, IN PICTURES **moire** patterns arise in image warping & texture mapping

jaggies arise in rendering

TEMPORAL ALIASING, IN AUDIO

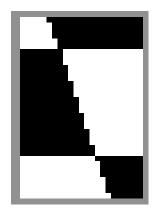


Warped checkerboard. Note moire near horizon, jaggies in foreground.

when resampling an audio signal at a lower sampling frequency, e.g. 50KHz (50,000 samples per second) to 10KHz

TEMPORAL ALIASING, IN FILM/VIDEO

strobing and the "wagon wheel effect"



jaggies

When Does Spatial Aliasing Occur?

During image synthesis:

when sampling a continuous (geometric) model to create a raster image, e.g. scan converting a line or polygon.

Sampling: converting a continuous signal to a discrete signal.

During image processing and image synthesis:when resampling a picture, as in image warping or texture mapping.Resampling: sampling a discrete signal at a different sampling rate.

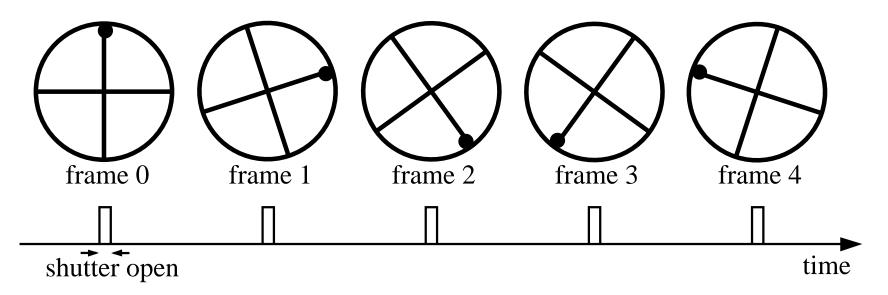
Example: "zooming" a picture from n_x by n_y pixels to sn_x by sn_y pixels s>1: called **upsampling** or **interpolation** can lead to blocky appearance if point sampling is used s<1: called **downsampling** or**decimation** can lead to moire patterns and jaggies

Wagon Wheel Effect

an example of temporal aliasing

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):



Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing is Bad!

Jaggies, moire patterns, temporal aliasing, and other symptoms of aliasing are **undesirable artifacts**.

- In a still picture, these artifacts look poor, unrealistic.
- In audio, they sound bizarre.
- In animation, they are very distracting, particularly in training simulations, such as flight simulators.

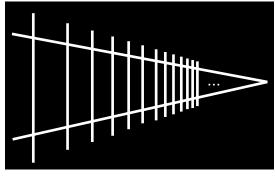
So we want to eliminate aliasing. But how?

First, let's figure out what causes aliasing...

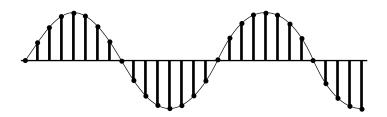
Aliasing – Related to High Frequencies?

Suppose we wanted to make a picture of a long, white picket fence against a dark background, receding into the distance.

It will alias in the distance.



Along a horizontal scanline of this picture, the intensity rises and falls. We can approximate the rising & falling with a sinusoid:



low frequency sinusoid: no aliasing

high frequency sinusoid: aliasing occurs (high freq. looks like low freq.)

Frequency Domain

We can visualize & analyze a signal or a filter in either the spatial domain or the frequency domain.

Spatial domain: *x*, distance (usually in pixels).

Frequency domain: can be measured with either:

 ω , angular frequency in radians per unit distance, or

f, **rotational frequency** in cycles per unit distance. $\omega = 2\pi f$. We'll use ω mostly.

The **period** of a signal, $T = 1/f = 2\pi/\omega$.

Examples:

The signal $[0\ 1\ 0\ 1\ 0\ 1\ ...]$ has frequency f=.5 (.5 cycles per sample). The signal $[0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ ...]$ has frequency f=.25.

Fourier Transform

The **Fourier transform** is used to transform between the spatial domain and the frequency domain. A **transform pair** is symbolized with " \leftrightarrow ", e.g. $f \leftrightarrow F$.

SPATIAL DOMAIN \leftrightarrow FREQUENCY DOMAINsignal f(x) \leftrightarrow spectrum $F(\omega)$

Fourier Transform :
$$F(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$$

Inverse Fourier Transform : $f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{i\omega x} d\omega$

where $i = \sqrt{-1}$. Note that *F* will be complex, in general.

Some Fourier Transform Pairs

SPATIAL DOMAIN

FREQUENCY DOMAIN

impulse train, period T \leftrightarrow impulse train, period $2\pi/T$

discrete with sample spacing $T \leftrightarrow$ periodic with period $2\pi/T$

convolution of signals: $f(x) \otimes g(x) \leftrightarrow$ multiplication of spectra: $F(\omega)G(\omega)$

multiplication of signals: $f(x)g(x) \leftrightarrow$ convolution of spectra: $F(\omega)\otimes G(\omega)/2\pi$

 $(\omega_c/\pi)\operatorname{sinc}((\omega_c/\pi)x)$ where $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$ $\leftrightarrow \quad box(\omega/2\omega_c)$ where $box(x) = \{1 \text{ if } |x| < 1/2, 0 \text{ otherwise}$ and ω_c is cutoff frequency

Aliasing is Caused by Poor Sampling

A **bandlimited** signal is one with a highest frequency.

The highest frequency is called the **bandwidth** ω_b .

If sample spacing is *T*, then sampling frequency is $\omega_s = 2\pi/T$.

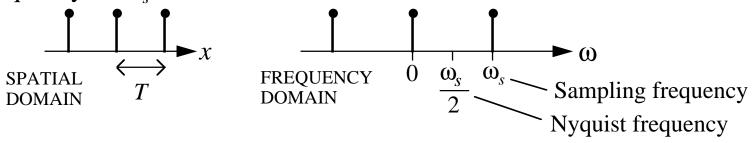
 \square_{ω_b}

 $(\mathbf{0})$

 $F(\omega)$

(If samples are one pixel apart, then *T*=1).

The highest frequency that can be represented by a discrete signal with this sampling frequency is the **Nyquist frequency**, which is half the sampling frequency: $\omega_s/2=\pi/T$.



Sampling Theorem: A bandlimited signal can be reconstructed exactly from its samples if the bandwidth is less than Nyquist frequency: $\omega_b < \omega_s/2$.

Otherwise, aliasing occurs: high frequencies **alias**, appearing to be a lower frequency. (*Q: what frequency does frequency ω appear to be?*)

Further Reading

see figures 14.27 & 14.28 in
Foley-van Dam-Feiner-Hughes, *Computer Graphics - Principles & Practice*, 2nd ed.
for illustrations of aliasing in the frequency domain

see also

Blinn, "Return of the Jaggy" IEEE Computer Graphics & Applications, March 1989 for a nice explanation of aliasing & antialiasing