## Plan of lectures

## 1. Objects in Three-Dimensional Space

- Points, curves, surfaces and solids
- Parametric and implicit geometric objects
- Quadrics and superquadrics
- Blobby objects
- Volumetric objects
- Isosurfaces

Three-Dimensional Modeling

## 2. Three-Dimensional Transformations

. Affine transformations (translation, rotation, scaling)

- Deformations (twisting, bending, tapering)
- Set-theoretic operations
- Offsetting and blending
- Metamorphosis
- Collision detection

3. Representations of Solids

- Boundary representation
- Constructive Solid Geometry (CSG)
- Octrees
- Sweeps
- Function representation


## 1. Objects in

## Three-Dimensional Space

- Points, curves, surfaces and solids
- Parametric and i plicit objects
- Quadrics and superquadrics
- Blobby objects
- Volumetric objects
- Isosurfaces


## Dimension of objects

We use the term "geometric object" or simply "object" to denote a point set in n-dimensional Euclidean space.

An object is $\mathbf{k}$-dimensional if there is a continuous one-to-one mapping of the $\mathbf{k}$-dimensional square on this object.

| Dimension of an object <br> $\mathbf{n}=3, \mathbf{k} \leq \mathbf{n}$ | Object |
| :---: | :---: |
| 0 | Point |
| 1 | Curve |
| 2 | Surface |
| 3 | Solid |

## Parametric geometric objects

Curve

$$
\begin{aligned}
& X=X(t) \\
& Y=Y(t) \\
& Z=Z(t)
\end{aligned}
$$



Surface


Solid

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}(\mathbf{u}, \mathbf{V}, \mathbf{w}) \\
& \mathbf{y}=\mathbf{y}(\mathbf{u}, \mathbf{v}, \mathbf{w}) \\
& \mathbf{z}=\mathbf{z}(\mathbf{u}, \mathbf{v}, \mathbf{w})
\end{aligned}
$$



## Implicit geometric objects

Let $\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ be a continuous real function of n variables. Implicit objects are defined in n-dimensional space as follows:

Solid ( $k=\mathbf{n}$ )

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \geq 0
$$

Others ( $k<n$ )

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

Two-dimensional example

$$
f(x, y)=R^{2}-x^{2}-y^{2}
$$

Disk (k=2) $\quad f(x, y) \geq 0$
Circle (k=1) $\quad f(x, y)=0$


## Planes and planar halfspaces

$$
f(x, y, z)=A x+B y+C z+D
$$

Plane ( $k=2$ ) $\quad f(x, y, z)=0$
Planar halfspace ( $k=3$ ) $f(x, y, z) \geq 0$
The normal vector N orthogonal to the plane:

$$
\mathbf{N}=(\mathrm{A}, \mathrm{~B}, \mathrm{C})
$$

## Plane equation for a triangle



Triangle $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$ with $\mathrm{P}_{2}=\left(\mathrm{x}_{1}, y_{1}^{\prime}, z_{1}\right)$

1) Vectors $P_{1} \mathbf{P}_{2}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$

$$
\text { and } \mathrm{P}_{1} \mathrm{P}_{3}=\left(\mathrm{x}_{3}-\mathrm{x}_{1}, \mathrm{y}_{3}-\mathrm{y}_{1}, \mathrm{z}_{3}-\mathrm{z}_{1}\right)
$$

2) $\mathrm{N}=\mathbf{P}_{1} \mathbf{P}_{2} \times \mathbf{P}_{1} \mathrm{P}_{3}{ }^{3}$ is the vector cross product
3) With obtained $A, B, C$ get the equation for $D$ :

$$
\mathrm{Ax}_{1}+\mathrm{B} \mathrm{y}_{1}+\mathrm{Cz} \mathrm{z}_{1}+\mathrm{D}=\mathrm{O}
$$

## Quadrics

## General equation

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F z x+G x+H y+P z+R=0
$$

## Types

| (1) | Real ellipsoid | $x^{2} / u^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ |
| :---: | :---: | :---: |
| (2) | Imaginary ellipsoid | $x^{2} / z^{2}+y^{2} / z^{2}+z^{2} / c^{2}=-1$ |
| (3) | Hyperboloid of one sheet | $x^{2} / a^{2}+y^{2} / z^{2}-z^{2} / c^{2}=1$ |
| (4) | Hyperboioid of two sheets | $x^{2} / z^{2}+y^{3} / b^{2}-z^{2} / c^{2}=-1$ |
| (5) | Real quadric cone | $x^{2} / a^{2}+y^{2} / b^{3}-z^{2} k^{2}=0$ |
| (6) | Imaginary quadric cone | $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} c^{2}=0$ |
| (7) | Eliptic paraboloid | $x^{3} / a^{2}+y^{2} / z^{2}+2 z=0$ |
| (6) | Hyperbolic paraboloid | $x^{2} / a^{2}-y^{2} / b^{2}+2 z=0$ |
| (9) | Real elliptic cylinder | $x^{2} / a^{2}+y^{2} / z^{2}=1$ |
| (10) | Imagnary eliptic cylinder | $x^{2} / a^{2}+y^{2} b^{2}=-1$ |
| (11) | Hyperbolic cylinder | $x^{2} / x^{2}-y^{2} / b^{2}=1$ |
| (12) | Real intersecting piones | $x^{2} / a^{2}-y^{2} / b^{2}=0$ |
| (13) | Imaginary intersecting planes | $x^{2} / a^{2}+y^{2} \beta^{2}=0$ |
| (14) | Parabolic cylinder | $x^{2}+2 y=0$ |
| (15) | Real paralle plines | $x^{2}=1$ |
| (16) | Inaginary parallel planes | $x^{2}=-1$ |
| (17) | Coincident planes | $\mathrm{x}^{2}=0$ |

## Quadrics

## Ellipsoid

Implicit form:

$$
f(x, y, z)=1-\left(\frac{x}{r_{x}}\right)^{2}-\left(\frac{y}{r_{y}}\right)^{2}-\left(\frac{z}{r_{z}}\right)^{2}
$$

Parametric form:

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{r}_{x} \cos \phi \cos \theta, & -\pi / 2 \leq \phi \leq \pi / 2 \\
\mathbf{y}=\mathbf{r}_{\mathbf{y}} \cos \phi \sin \theta, & -\pi \leq \theta \leq \pi \\
\mathbf{z}=\mathbf{r}_{\mathbf{x}} \sin \phi &
\end{array}
$$

Sphere $r_{x}=r_{y}=r_{z}$


# Quadrics 



Lett: hyperboloid of one sheet (3). Pight: hyperboloid of two sheets (4).


Left: elliptic paraboloid a), Right: hyperbolic paraboloid isi.

## Superquadrics

## Superellipsoid

## Implicit form:

$$
f(x, y, z)=1-\left[\left(\frac{x}{r_{x}}\right)^{2 / s_{2}}+\left(\frac{y}{r_{y}}\right)^{2 / s_{2}}\right]^{\frac{5 / s_{1}}{s / s_{1}}}\left(\frac{z}{r_{z}}\right)^{2 / s_{1}}
$$

Parametric form:

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{r}_{x} \cos ^{s_{1}} \phi \cos ^{s_{2}} \theta, & -\pi / 2 \leq \phi \leq \pi / 2 \\
\mathbf{y}=\mathbf{r}_{y} \cos ^{s_{1}} \phi \sin ^{s_{2}} \theta, & -\pi \leq \theta \leq \pi \\
z=r_{x} \sin ^{s_{1}} \phi &
\end{array}
$$


$S_{2}$

## Torus

## Implicit form:

$$
f(x, y, z)=r^{2}-x^{2}-y^{2}-z^{2}-\mathbf{R}^{2}+2 \mathbf{R} \sqrt{x^{2}+y^{2}}
$$

Parametric form:

$$
\begin{array}{ll}
x=(\mathbf{R}+r \cos \phi) \cos \theta, & -\pi \leq \phi \leq \pi \\
y=(\mathbf{R}+r \cos \phi) \sin \theta, & -\pi \leq \theta \leq \pi \\
z=r \sin \phi &
\end{array}
$$



## Blobby objects

- Implicit form only
- Natural shape blending
- Used to represent molecular shapes, liquid and melting objects, human body

General formulation:

$$
\begin{gathered}
f(x, y, z)=\sum_{k} f\left(r_{k}\right)-T \\
r_{k}=\sqrt{\left(\mathbf{x}-x_{k}\right)^{2}+\left(y-y_{k}\right)^{2}+\left(z-z_{k}\right)^{2}}
\end{gathered}
$$

Original "blobby model" (Blinn 1982):

$$
f\left(r_{k}\right)=b_{k} e^{-a_{k} r_{k}^{2}} \text { or } f\left(r_{k}\right)=b_{k} e^{-a_{k} r_{k}}
$$



## Blobby objects

## Density functions

Original "blobby model" (Blinn 1982):

"Metaballs" (Nishimura et al. 1985):

$$
\mathbf{f}(\mathbf{r})=\begin{array}{ll}
\mathrm{b}\left(1-3 \mathbf{r}^{2} / \mathrm{d}^{2}\right), & 0<\mathbf{r} \leq \mathrm{d} / 3 \\
1.5 \mathrm{~b}(1-\mathrm{r} / \mathrm{d}), & \mathbf{d} / \mathbf{3}<\mathbf{r} \leq \mathrm{d} \\
0, & \mathbf{r}>\mathrm{d}
\end{array}
$$

"Soft objects" (Wyvill et al. 1.986):

$$
f(r)=\begin{array}{ll}
1-\frac{22 r^{2}}{9 d^{2}}+\frac{17 r^{4}}{9 d^{4}}-\frac{4 r^{6}}{9 d^{6}} & 0<r \leq d \\
0, & r>d
\end{array}
$$

## Volumetric objects

|  | $\mathrm{x}_{\mathrm{i}}$ | $y_{i}$ | $z_{i}$ | Density |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | 0.00 | 0.00 | 243 |
|  | 0.00 | 0.00 | 0.12 | 175 |
|  | 0.00 | 0.00 | 100 | - |
|  | 0.00 | 0.00 | 1.00 | 186 |
|  | 0.00 | 0.12 | 0.00 | 187 |
|  | - | . | - | - |
| $F_{i j k}=F\left(X_{i}, Y_{j}, Z_{k}\right)$ |  |  |  |  |
| $\mathrm{i}=1, \ldots, \mathrm{~N} \quad \mathrm{j}=1, \ldots, \mathrm{~N} \quad \mathrm{k}=1, \ldots, \mathrm{~N}$ |  |  |  |  |
| Medical Scanners, MRI, PET, ect. |  |  |  |  |

Numerical value is defined in the nodes of 3D grid: density, temperature, pressure, and so on. Object is defined by $\mathrm{F}>\mathrm{O}$.

Source of data:

- Computer tomography

Numerical simulation
Manual sculpting (like 3D drawing with a brush) Voxelized geometric primitives:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{ijk}}=1 \text {, if } \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{j}} z_{\mathrm{k}}\right) \geq 0 \\
& \mathrm{~F}_{\mathrm{ij}}=0 \text {, if } \mathrm{f}\left(\mathrm{x}_{\mathrm{i},}, \mathrm{y}_{\mathrm{j}} \mathrm{z}_{\mathrm{z}} \mathrm{k}\right)<0
\end{aligned}
$$

## Isosurfaces

A surface defined as

$$
F(x, y, z)=C
$$

is called the "isosurface" of the function of three variables. The case $\mathrm{C}=0$ - implicit surfaces.
Extraction of isosurfaces from volume data and conversion them to polygon meshes is called "isosurface polygonization".
Well-known polygonization algorithm:

## 'Marching Cubes

Linear on Edges


Volume Visualization

The main problem: intersection of an isosurface with four edges of a cell face - ambiguous solutions.

