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The angle defect of a polyhedron

A 3D solid which consists of a collection of polygons joined at their
edges is called apolyhedron.

Theangle defect at a vertex of a polyhedron is defined to be�� minus
the sum of the angles at the corners of the faces at that vertex. For
example, at any vertex of a cube there are three angles of���, so the
angle defect is���. One can visualize the angle defect by cutting along
an edge at that vertex, and then flattening out a neighborhood of the
vertex into the plane. A little gap will form where the slit is; the angle
by which it opens up is the angle defect.

The total angle defect of the polyhedron is computed by adding up
the angles defects at all the vertices of the polyhedron. For a cube, the
total angle defect is�� ��� � ��.

Theorem 1 (Descartes’s formula) Denote the total angle defect of a
polyhedron byT . Then

T � ���V �E � F ��

PROOF. We will try to cancel out the terms as much as possible, by
grouping within polygons.

For each edge, there is��� to allocate. An edge has a polygon on
each side: put�� on one side, and�� on the other.

For each vertex, there is��� to allocate: we will do it according to
the angles of the polygons at that vertex. If the angle of a polygon at the
vertex is�, allocate� of the�� to that polygon. This leaves something
at the vertex: the angle defect.

In each polygon, we now have a total of the sum of its angles minus
n� (wheren is the number of sides) plus�� (contribution of the faces).
Since the sum of the angles of any polygon is�n� ���, this is�. �

WHAT IS TOPOLOGY ABOUT

Topology is a branch of geometry. Imagine a geometric figure, such as
a circular disk, cut from a sheet of rubber and subjected to all sorts of
twisting, pulling, and stretching. Any deformation of this sort is permit-
ted, but tearing and gluing are forbidden. Mathematically these allowed
distortions are calledcontinuous transformations. Topology studies
properties of figures that endure when the figures are subjected to con-
tinuous transformations. So topology has earned the nicknamerubber
sheet geometry.

Basic definitions

� Two shapes are calledtopologically equivalent if any one can be
continuously transformed to any other.

� Let us call any figure topologically equivalent to a disk acell.

� A cell is called atopological polygon when a finite number of
points on the boundary of the cell are chosen as vertices.

� The sections of boundary in between the vertices are callededges.

� A complex is a geometric figure that can be constructed from poly-
gons (cells) by gluing and pasting them together along their edges
such that vertices are sewn to vertices and whole edges are sewn to
whole edges.
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Euler’s formula

Theorem 2 (Euler’s formula) Given a complex topologically equiva-
lent to a sphere, letF stand for the number of cells (called faces),E the
number of edges, andV the number of vertices. Euler’s formula states
that

V �E � F � ��

PROOF. Let us remove one of the faces of the complex. The remainder
is topologically equivalent to a cell and so can be flattened into a plane.
The result is a cell in the plane divided into polygons. It remains to prove
that for a complex equivalent to a cell we have

V �E � F � ��

Let us triangulate the complex: divide each polygon into triangles by
drawing diagonals. Each diagonal adds one edge and one face to the
complex so the quantityV �E�F is unchanged by this process. Finally
let us remove triangles of the complex one by one starting with those on
the boundary. There are two types of removal, depending on whether the
triangle being removed has one or two edges on the boundary. Both the
removals don’t change the quantityV � E � F . Eventually it remains
just one triangle for whichV �E � F � �. �

Regular polyhedra

A regular polygon is one with equal sides and equal angles: equilateral
triangle, square, regular pentagon, regular hexagon, and so on. Clearly,
there are infinitely many regular polygons, one for eachn.

A regular polyhedron is one in which all faces have the same number
of edges, and the same number of faces meet at each vertex. The regular
polyhedra are called thePlatonic solids.

Theorem 3 There are only five regular polyhedra in 3D: tetrahedron,
cube, octahedron, dodecahedron, icosahedron.

PROOF. Since each edge belongs to two faces,aF � �E. Similarly,
since each edge has two vertices,bV � �E. Euler’s formula now gives
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wherea, b, andE must be positive integers. Actually botha andb must
be greater then two, they must also be less than six because the left-hand
side of (1) is positive. Botha andb are positive integers and the solutions
can be found by trial and error. The five Platonic solids are

(1) thetetrahedron (a � 	, b � 	): each face has three sides, three
faces meet at each vertex;

(2) thecube (a � �, b � 	): each face has four sides, three faces meet
at each vertex;

(3) theoctahedron (a � 	, b � �): each face has three sides, four
faces meet at each vertex;

(4) the icosahedron (a � 	, b � 
): each face has three sides, five
faces meet at each vertex;

(5) thedodecahedron (a � 
, b � 	): each face has five sides, three
faces meet at each vertex.

The Euler characteristic

Let K be a complex withV vertices,E edges, andF faces. The Euler
characteristic ofK is

��K� � V �E � F

Surfaces

A surface is a complex in which every point has a neighborhood that is
topologically equivalent to either an open disk or a half of an open disk.
The points whose neighborhoods topologically equivalent to a half of an
open disk form the surfaceboundary.

A sphere and a torus are the simplest examples of the surfaces without
boundaries. A simple surface with boundary is the cylinder obtained
from a rectangle by gluing together a pair of opposing edges.

Let a surface be represented by a complexK. The number��K� is
called the Euler characteristic of the surface. Of course two different
complexes may represent the same surface.



Theorem 4 The Euler characteristic of a surface does not depend on
representation of the surface as a complex.

sphere torus handle

Theorem 5 The Euler characteristics of a sphere, torus, and handle are
given by

��sphere� � �� ��torus� � �� ��handle� � ��
Theorem 6 Let S� andS� be two surfaces with boundaries and each
surface has a boundary component equivalent to a circle. Gluing to-
getherS� andS� along that circles gives a surface whose Euler char-
acteristic is equal to��S��+��S��.
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Theorem 7 The Euler characteristic of a sphere withp handles andq
holes is given by

� � �� �p� q

Triangulated surfaces

Let a triangulation of a surface consists ofF triangles (faces),E edges,
andV vertices. Suppose that the surface is topologically equivalent to a
sphere with some number of handles and holes and has the Euler char-
acteristic�. Euler’s formula gives

V �E � F � �

Let the surface haveq holes withB�,B�, . . . ,Bq vertices on the bound-
aries of the holes,B � B� � � � ��Bq be the total number of boundary
vertices. Thekth hole can be triangulated by adding�Bk � 	� edges
and�Bk � �� faces (triangles). Thus, if we add

P
�Bk � 	� � B � 	q

edges and
P

�Bk � �� � B � �q triangles, we obtain a closed surface
for which

	�F �B � �q� � ��E �B � 	q� or �E � 	F �B

Combining it with Euler’s formula we get

F � �V �B � ��

Usually for a triangulated model consisting of a large number of
points, the number of vertices is much greater than the number of bound-
ary vertices. Thus

F � �V

Figure 1: Left: a triangulated polygon withV � ��, B � ��, E � 	�,
F � ��, � � �. Right: the Stanford bunny model consisting of 35947
vertices and 69451 triangles.

Orientation.

Let us consider a complex consisting of polygons. A polygon is said to
be oriented if it is equipped with a circuit oriented either clockwise or
counterclockwise. Two oriented adjacent polygonsA andB are said to
agree if the common edgee between the two polygons is oriented one
way in the boundary ofA and the other way in the boundary ofB.
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The complexK is oriented if K is is directed in such a way that
directions of adjacent polygons always agree. A surfaceS is orientable
if every complex equivalent toS is orientable.

The Möbius strip and Klein bottle are not orientable.
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The Classification Theorem.

Theorem 8 Every bounded, closed, connected surface with boundary
is equivalent either to a sphere a sphere withh handles or a sphere with
� holes glued by M¨obius strips, in any case with some number of disks
removed.

The number of handlesh of an orientable surface is called thegenus
of the orientable surface. The number of M¨obius strips� of a nonori-
entable surface is called thegenus of the nonorientable surface.

Surface Recognition Algorithms

An algorithm for recognition of a surface. Find the links of all
vertices. If all of them turn out to be closed or unclosed polygonal lines,
the complex is a triangulation of a surface.
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Recognition of connectedness. Mark an arbitrary vertex. Then
mark all the vertices joined by edges with the vertex. Continue the pro-
cess until it ends. If all the vertices turn out to be marked, the complex
is connected, otherwise it is not.

Recognition of orientability of a connected surface. Choose
an arbitrary triangle of of the triangulation and orient it, i.e. indicate
a circuit around its sides. Orient all the adjacent triangles with respect
to the orientation, i.e. any two adjacent triangles induce opposite ori-
entations on their common edge. Continue the process until either all
triangles are oriented or a contradiction arises. If the process ends with-
out contradiction, the surface is orientable.

Surface genus recognition. Calculate the Euler characteristic�.
Count the number of boundary componentsq. The number of handles,
p, can be easily found from the formula� � �� �p� q.

Problems

1. Consider a triangulation of a compact connected closed surfaceS.
Show that

	F � �E� �E � V �V � ��� V � � �
p
��� ���

�
�

If S is a sphere, thenV � �, E � 
, F � �.

2. Consider a regular triangulation of a torus: the same number of
triangles, saya, meet at each vertex. Determinea.

3. There are 20 points inside a square. They are connected by non-
intersecting segments with each other and with the vertices of the
square, in such a way that the square is dissected into triangles.
How many triangles are there?

4. Consider a triangulation of a sphere such that exactly five edges
meet at each vertex. Find the total number of faces (triangles).

5. Consider a triangulation of a sphere. Suppose the triangulation
has only two types of vertices: where
 edges meet and where

edges meet. LetV� be the number of vertices of the first type (at
which exactly
 edges meet) andV� be the number of vertices of
the second type (at which exactly
 edges meet). DetermineV�.

6. Consider a polyhedron topologically equivalent to a sphere. Sup-
pose that the polyhedron has no triangles or 4-gones. Show that
the polyhedron must have at least twelve 5-gones.

7. Show that for any triangulation of a torus
V � �, E � ��, F � ��.




