• EN

# Advanced Computer Graphics

## What you Need to Pass

• Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
• Project and exercise (mandatory, 10+50 points).
• Solve all homework problems (mandatory each one >=30%, 10 points)
• Pass final term (mandatory, 20 points) You will need to solve several problems discussed during lessons.
• Pass oral/written exam: (mandatory, +20 points)
• Summary
• Attendance = 0 or -100 (Fx)
• Exercise = +50..0
• Bonus = +10..0 (optional)
• Homework = +10..4 or +4..0 (Fx)
• Final term = +20..0
• Oral/written exam = +20..0
• Grades
```   A = 92-100
B = 84-91
C = 76-83
D = 68-75
E = 60-67
Fx = 0-59
```
• VIEW RESULTS
• Final Term by Comenius University Moodle Electronic test 17.5 8:00 )
• Before the test exam you can try to solve many tests from the graphics page, is you can pass the example test then you have big chance to pass the test exam.
• Schedule
• Mon (12:20) - Online MS Teams (lecture)
• Str (9:50) - (excercises)

### Lecture00 "Introduction to Computer Graphics"

• Computer Graphics Applications

### Lecture01 "Graphics Pipeline"

• What is The Graphics Pipeline
• Vertex Shader
• Primitive Assembly
• Tessellation Shaders
• Geometry Shader
• Geometry Postprocessing and Rasterization
• Fragment Shader
• Frame Buffer Operations
• http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/
• Lecture notes: lesson00.pdf [1]
• Štátnicová téma: Zobrazovací kanál. Grafická pipeline moderného hardvéru, framebuffer, buffer objekty, používané súradnicové priestory, druhy shader programov, druhy optimalizačných techník (view frustum, occlusion, backface culling), príklad shader programov.

### Lecture04 "Ray Tracing 3."

• Ray Tracing Acceleration
• Data structure: grids, BVH, Kd-tree, Directional Partitioning
• Dynamic Scenes
• Beam and Cone Tracing
• Packet Tracing
• Lecture notes: lesson02.pdf
• Poznámky v Slovenčine k téme Dátové Štruktúry a Kd-tree.
• Štátnicová téma: Kanál metódy sledovania lúča a porovnanie s Radiosity metódou. (definícia lúča, definícia tieňového lúča, popis metódy sledovania lúča, generovanie lúča, pochod po lúči (ray traversal), prienik lúča s trojuholníkom, stromová štruktúra lúčov (ray tree) a jej použitie na výpočet lokálnej farby, problém presnosti priesečníkov). Metóda sledovania lúča na GPU, urýchľovacie techniky.

### Lecture05 "Shading."

• OPENGL Light sources
• Shading Phong model
• First time meeting with Rendering Equation
• Book chapter Shading: shading.pdf

### Lecture06 "Light Trasport."

• Physics behind ray tracing
• Physical light quantities
• Visual perception of light
• Light sources
• Light transport simulation: Rendering Equation
• Lecture notes: lesson05.pdf
• Štátnicová téma: Fyzikálny osvetlovací model a výpočet farieb renderovacou rovnicou. (definícia radiancie, definícia BRDF a jej vlastnosti, fyzikálne BRDF Cook-Tarrance, definícia priestorového uhlu, napíšte renderovaciu rovnicu a vysvetlite jej členy).

### Lecture07 "Radiosity."

• Diffuse reflectance function
• Radiative equilibrium between emission and absorption, escape
• System of linear equations
• Iterative solution Neuman series
• Lecture notes: lesson05.pdf
• Book chapter Shading: shading.pdf

### Lecture08 "BRDF."

• Bidirectional Reflectance Distribution Function (BRDF)
• Reflection models
• Projection onto spherical basis functions
• Shading Phong model, Blin-Phong model
• Lecture notes: lesson07.pdf
• Homework:
• 1. Prove that the mirror BRDF from slides less07 fulfills the BRDF properties: reciprocity, energy conservation, definit space, value space of BRDF
• 2. Derive the equation for refracted direction Omega_r from shading document in section 6.3.3.
• Physical BRDF
• Ward Reflection Model
• Cook-Torrance model
• Lecture notes: lesson07Phys.pdf

### Lecture09, Lecture10 "Shadows."

• Lecture notes: lesson08.pdf
• Štátnicová téma: Tiene, typy tieňov (mäkké, tvrdé, statické, dynamické), typy a popis algoritmov (projekčné, tieňové objemy, tieňové mapy (shadow mapping)), spôsoby implementácie jednotlivých algoritmov, artefakty a ich odstraňovanie, príklad shader programov pre tieňové mapy. Artefakty spôsobené diskretizáciou. Tiene vo Phongovom modeli.

### Lecture11, Lecture12 "Texturing 1, 2."

• Texture parameterization
• Procedural methods
• Procedural textures
• Fractal landscapes
• Lecture notes: lesson09.pdf
• Book chapter (Surface reality techniques): lessonBoook09.pdf
• Štátnicová téma: Lokálne osvetľovacie modely. (tieňovanie, Phongov a Blinn-Phongov osvetlovací model, zložky (ambientna, difúzna, zrkadlová), textúrovanie a druhy textúr, mapovanie a filtrácia textúr, popísať princípy environment, bump, normal mapovania, textúrovací a tangenciálny priestor, príklad shader programov na GPU.

### Lecture13 "Image Based Rendering 1."

• Plenopticfunction
• Panoramas
• Concentric Mosaics
• Light Field Rendering
• The Lumigraph
• Lecture notes: lesson10.pdf
• Homework: Blinn-Phong enumeration.

### Lecture14 "Image Based Rendering 2."

• Layered Depth Images
• View-dependent Texture Mapping
• Surface Light Fields
• View Morphing
• Lecture notes: lesson10.pdf

### Lecture15 "Ask me anything."

• Test problem introduction

# Seminars on Advanced Computer Graphics

On wednesdays at 9:50 On Teams

Guide: Adam Riečický

Contact: adam.riecicky@fmph.uniba.sk

## Info

Each week a short guided presentation will be given.

An assignment for every week will be finishing a template C# project. The deadline for every project is right before the next successive seminar - Wednesday at 9:50. The extended deadline is a week after with 0.5x penalization. Solutions to bonus assignment can be submitted anytime during the 2 weeks without the penalization.

### Grading

• Total points from exercises make half of your final grade!
• Minimum of 50% from exercises required to finish the class successfully
• Late submission is for 0, no discussion

### Project Evaluation Criteria

• 10 pt => Correct submission, everything works as supposed.
• 6 pt => Partially correct submission, most of the things work as supposed.
• 3 pt => Partially correct submission, at least one core functionality correct.
• 0 pt => Incorrect submission or unsubmitted.
• Penalization 0.5x when submitting in extended deadline (not for bonus).

### Project Submittion

• Your code should be well formatted and commented. Titles of functions, classes, variables should be representative of their purpose.
• Submission email must have the subject in the form of 'ACG ExNN' where NN is the exercise id, eg. ACG Ex05.
• Solution source codes have to be archived and named properly 'ExNN_YourName'
• Do not archive send executable files.
• Send by email to adam.riecicky@fmph.uniba.sk.

## Exercises

### Exercise00 "Vectors and Matrices"

Deadline (no extended deadline): 3.3.2021 at 23:59

Asignment: Create a simple application for vector(4x1) and matrix operations(4x4). Use struct properties, functions and/or operators. Create a calculator, check your equations and results. Add implementation to theese files in folder ./Mathematics/ : Vector4.cs, MathEx.cs, and "Matrix44.cs

You can ignore vector operations "/" (vector projection) and "^" (modulation product).

For a help, see this reminder on linear algebra

### Exercise01 "Ray Casting"

Deadline (no extended deadline): 10.3.2021 at 23:59

Asignment: Implement basic ray casting and the intersection of ray and plane. Define the camera class and implement a simple ray-tracing procedure.

Bonus [2 bonus %]: Create a camera that will rotate around defined point P (target) among a sphere with r = 1. You can use ideas from the Blender camera system and/or two-angle camera in OpenGL. The camera should use some sort of interactivity (2 angles) and targeted point P should be movable. Bonus camera can be created in a separate solution or you can change the structure in the template to implement two different cameras.

### Exercise02 "Primitives"

Deadline: 10.3.2021 at 9:50 Extended deadline: 17.3.2021 at 9:50

Asignment: Improve your tracer by adding new primitive object types: box, sphere, and ring.

Bonus [3 bonus % (1 for each)]: Create also a triangle, cylinder, and cone primitives and add them to the tracer. Also, create a new scene where you present the primitive(s).

### Exercise03 "Shaders, Shading and Shadows"

Deadline: 17.3.2021 at 9:50 Extended deadline: 24.3.2021 at 9:50

Asignment: Improve your tracer by implementing Phong and checker shaders, directional light, and hard shadows. Compute normals of each primitive at the point of intersection. As usual, you should use a similar functionality as in the sample application.

### Exercise04 "Light Types"

Deadline: 24.3.2021 at 9:50 Extended deadline: 31.3.2021 at 9:50

Asignment: Improve your tracer by adding a point, spot and an area light types. In the case of point and spotlight, define the light as a point with hard shadows and linear/quadratic light attenuation [2]. Area light could be defined by Lights x Lights point lights. Area light should also be able to produce "soft" shadows.

[2 bonus %]: Write an equation for illumination computed by sample code from seminar slides

### Exercise05 "Shaders"

Deadline: 31.3.2021 at 9:50 Extended deadline: 7.4.2021 at 9:50

Asignment: Improve your tracer by adding a few more shaders: Toon, Gradient, Cook-Torrance, and Oren-Nayar.

[2 bonus %]: Implement Ward Shader [ Example ].

• Generate tangent space for each point on the sphere
• Remember to keep the same orientation of tangent space at each point

### Exercise06 "Reflections"

Deadline: 7.4.2021 at 9:50 Extended deadline: 14.4.2021 at 9:50

Asignment: Improve your tracer by adding reflections for rendering mirror-like materials.

### Exercise07 "Transparency"

Deadline: 14.4.2021 at 9:50 Extended deadline: 21.4.2021 at 9:50

Asignment: Improve your tracer by adding reflections and refractions for rendering glass materials.

[2 bonus %]: Implement fresnel effect.

### Exercise08 "Postprocessing"

Deadline: 5.5.2021 at 9:50 Extended deadline: 12.5.2021 at 9:50

Finalize your raytracer by adding supersampling antialiasing [3]. Implement blur. Users can scale the intensity of blur [4].

[2 bonus %]: Implement DOF. You can use the definition from blur to create a fake DOF. A user can define a point of sharpness and the intensity of the effect.