
  

Juraj O
nderik | onderik@sccg.sk

The Graphics Pipeline

Lesson

05



  

Outline of Lesson 05

 What is The Graphics Pipeline

 Vertex Shader

 Primitive Assembly

 Tessellation Shaders

 Geometry Shader

 Geometry Postprocessing and Rasterization

 Fragment Shader

 Frame Buffer Operations



  

The
Graphics

Pipeline



  

Fixed Pipeline Overview



  

The OpenGL Graphics Pipeline

Vertex
Shader

Tessellation
Control 

Tessellation
Evaluation

Tessellator

Geometry
Shader

Fragment
Shader

Frame Buffer
Operations

Geometry
Postprocessing,

Rasterization

Primitive
Assembly

Vertices

Input

Connectivity

Primitives

Patches

Patch Vertices and
Tessellation params

Vertices and
uv coordinates

Primitives

Buffers

Transform
feedback

Transform
feedback

Screen

Pixels

Shaded
fragments

Fragments

Transformed
vertices Primitives

Input/Output data
Fixed stage

Optional stage
Programmable stage



  

:: Vertex Shader

 Specification (Programmable)
 Operates on vertices, one vertex at a time.
 Has no knowledge of primitive or its type of the 

vertex
 Input: Single vertex
 Output: Single transformed vertex

 Main Purpose
 Model-View-Projection transformations
 Per-vertex Lighting

Vertices
Transform
feedback

Transformed
vertices

Vertex
Shader



  

:: Vertex Shader

 Input per-vertex variables defined in GLSL

 Output per-vertex variables defined in GLSL

Vertices
Transform
feedback

Transformed
vertices

Vertex
Shader



  

:: Vertex Shader
Vertices

Transform
feedback

Transformed
vertices

Vertex
Shader



  

:: Primitive Assembly

 Specification (Fixed)
 Constructs list of primitives based on transformed 

vertices and respective connectivity informations
 Input: Transformed vertices + connectivity info
 Output: Ready primitives (lines, triangles...) or 

patches

 Main Purpose
 Prepare complete primitive data for next stages 

(tessellation or geometry shader)

Primitive
AssemblyConnectivity

Primitives

Patches

Transformed
vertices



  

:: Primitive Assembly Primitive
AssemblyConnectivity

Primitives

Patches

Transformed
vertices



  

:: Primitive Assembly Primitive
AssemblyConnectivity

Primitives

Patches

Transformed
vertices



  

Tessellation Stages

 Quad subdivision with and without smoothing



  

Tessellation Stages

 Specification
 Three sub-stages (control, tessellator, evaluator)
 Based on patch data creates new primitives
 Input: Patches from primitive assembly (or geom)
 Output: New subdivided primitives based on 

tessellation scheme

 Main Purpose
 Dynamic subdivision of geometry
 Local displacements
 Level of detail



  

:: Tessellation Control

 Specification
 Set up tessellation levels along edges and faces
 Input: Patch geometry (vertices + connectivity)
 Output: Inner and Outer tessellation levels

 Main Purpose
 Defines subdivision topology
 Control how much are faces (inner) and edges 

(outer) subdivided during tessellation

Tessellation
Control 

Patches

Patch Vertices  and
Tessellation params



  

:: Tessellation Control Tessellation
Control 

Patches

Patch Vertices  and
Tessellation params



  

:: Tessellator

 Specification (Fixed)
 Given patch is subdivided on edges and faces 

based on tessellation levels
 New sub-patches are created with resp. uv coords
 Input: Patch vertices and tessellation levels
 Output: New subdivision vertices and uv coords

 Main Purpose
 Provides core tessellation functionality
 Subdivision is fixed 

Tessellator

Patch Vertices and
Tessellation params

Vertices and
uv coordinates



  

:: Tessellator Tessellator

Patch Vertices and
Tessellation params

Vertices and
uv coordinates



  

:: Tessellation Evaluation

 Specification (Programmable)
 Based on uv coords (barycentric coords) 

evaluates positions of tessellated vertices
 Input: Patch vertices and uv coordinates
 Output: New primitives

 Main Purpose
 Construct new primitives usable for next stages
 Finalize the tessellation stage

Tessellation
Evaluation

Vertices and
uv coordinates

Primitives



  

:: Tessellation Evaluation Tessellation
Evaluation

Vertices and
uv coordinates

Primitives



  

:: Geometry Shader

 Specification (Programmable, opt.)
 Given a primitive Geometry Shader creates zero or 

more primitives
 Input: primitives (points, lines, triangles)
 Output: primitives (points, line-strip, triangle-strip)

 Main Purposes
 Create new primitives (general tessellation)
 Layered rendering
 Transform feedback

Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives



  

:: Geometry Shader

 Input Primitives
 Points (1 vertex)
 Lines (2 vertices), lines_adjacency (4 vertices)
 Triangles (3 vertices), triangles_adjacency (6 ver.)

 Output Primitives
 Points
 Line_strip
 Triangle_strip

Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives

lines_adjacency triangles_adjacency



  

:: Geometry Shader

 Layered Rendering
 Rendering the same geometry into different layers 

(frame buffers)
 Eg. rendering into cubemap – 6 different layers

 Transform Feedback
 We can run the vertex or geometry shader without 

rasterization and store modified vertices 
(primitives) into user defined buffers

 Use user defined (transform feedback) buffers as 
geometry input for other vertex/geometry 
shaders

Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives



  

:: Geometry Shader Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives



  

:: Geometry Shader Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives



  

:: Geometry Shader Geometry
Shader

Primitives

Primitives

Transform
feedback

Primitives



  

:: Geometry Postprocessing

 Specification (Fixed)
 View Frustum Clipping
 Perspective Division (homogenous to viewport)
 Viewport to Window Mapping (coords to pixels)

 Main Purposes
 Final vertex processing  before rasterization
 Clipping → Perspective → Window

Geometry
Postprocessing,

Rasterization

Fragments

Primitives



  

:: Geometry Postprocessing

 View Frustum Clipping
 Reject all geometry outside view frustum (volume)
 Clip primitives which intersect clipping planes (view 

volume)

 Vertex (x
c
, y

c
, z

c
, w

c
)

 Is inside if

 -w
c
 <= x

c
 <= +w

c

 -w
c
 <= y

c
 <= +w

c

 -w
c
 <= z

c
 <= +w

c

Geometry
Postprocessing,

Rasterization

Fragments

Primitives



  

:: Geometry Postprocessing

 Perspective Division (homogenous to viewport)

 (x
d
, y

d
, z

d
) → (x

c
/w

c
, y

c
/w

c
, z

c
/w

c
)

 Test if vertex is in clip volume reduces to

 -1 <= x
c
 <= +1

 -1 <= y
c
 <= +1

 -1 <= z
c
 <= +1

 Viewport to Window Mapping (coords to pixels)

 (x
w
, y

w
, z

w
) = (x

d 
* w/2 + o

x
, y

d 
* h/2 + o

y
, (z

d 
+ 1)/2)

Geometry
Postprocessing,

Rasterization

Fragments

Primitives

(o
x
, o

y
)

w

h
Window (screen)Viewport

(-1,-1)

(+1,+1)



  

:: Rasterization

 Specification (Fixed)
 Rasterization: Determine set of fragments (pixels) 

representing projected geometry primitives
 Parameter Interpolation: Compute the attributes 

for each pixel based on the vertex attributes and 
the pixel’s distance to each vertex screen position 
(barycentric coordinates)

 Main Purposes
 Generate image (raster) representation of the 

given geometry – NOT the final pixel colors !

Geometry
Postprocessing,

Rasterization

Fragments

Primitives



  

:: Rasterization

 Rasterization
 DDA, Bresenham
 Scanline Algorithm

Geometry
Postprocessing,

Rasterization

Fragments

Primitives

 Parameter Interpolation

 p = a*p
a 
+ b*p

b 
+ c*p

c

 a+b+c = 1   |  0 <= a,b,c <= 1



  

:: Fragment Shader

 Specification (Programmable)
 Final pixel color calculation based on textures and 

uv coordinates, z-buffer, …
 Input: Fragments (frame buffer element) + 

interpolated data (barycentric coords)
 Output: Pixels with final color

Fragment
Shader

Shaded
fragments

Fragments



  

:: Fragment Shader

 Input parameters
 gl_FragCoord: contains the fragments coordinate 

(x
f
, y

f
, z

f
, w

f
), where (x

f
, y

f
) is the pixels position on 

the window, zf is the depth, and w
f
 is 1/w

c
, where w

c
 

is clip space position
 gl_FrontFacing: tells the orientation of respective 

primitive. if culling is on all pixels have same value
 gl_PrimitiveID: Index of primitive to which this 

fragment belongs to

Fragment
Shader

Shaded
fragments

Fragments



  

:: Fragment Shader

 Simple Pixel Shader 

Fragment
Shader

Shaded
fragments

Fragments



  

Rendering Pipeline Variants



  

The
End


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 37

