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 What is The Graphics Pipeline

 Vertex Shader

 Primitive Assembly

 Tessellation Shaders

 Geometry Shader

 Geometry Postprocessing and Rasterization

 Fragment Shader

 Frame Buffer Operations
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The OpenGL Graphics Pipeline
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:: Vertex Shader

 Specification (Programmable)
 Operates on vertices, one vertex at a time.
 Has no knowledge of primitive or its type of the 

vertex
 Input: Single vertex
 Output: Single transformed vertex

 Main Purpose
 Model-View-Projection transformations
 Per-vertex Lighting
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:: Vertex Shader

 Input per-vertex variables defined in GLSL

 Output per-vertex variables defined in GLSL

Vertices
Transform
feedback

Transformed
vertices

Vertex
Shader



  

:: Vertex Shader
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:: Primitive Assembly

 Specification (Fixed)
 Constructs list of primitives based on transformed 

vertices and respective connectivity informations
 Input: Transformed vertices + connectivity info
 Output: Ready primitives (lines, triangles...) or 

patches

 Main Purpose
 Prepare complete primitive data for next stages 

(tessellation or geometry shader)
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:: Primitive Assembly Primitive
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Tessellation Stages

 Quad subdivision with and without smoothing



  

Tessellation Stages

 Specification
 Three sub-stages (control, tessellator, evaluator)
 Based on patch data creates new primitives
 Input: Patches from primitive assembly (or geom)
 Output: New subdivided primitives based on 

tessellation scheme

 Main Purpose
 Dynamic subdivision of geometry
 Local displacements
 Level of detail



  

:: Tessellation Control

 Specification
 Set up tessellation levels along edges and faces
 Input: Patch geometry (vertices + connectivity)
 Output: Inner and Outer tessellation levels

 Main Purpose
 Defines subdivision topology
 Control how much are faces (inner) and edges 

(outer) subdivided during tessellation
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:: Tessellation Control Tessellation
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:: Tessellator

 Specification (Fixed)
 Given patch is subdivided on edges and faces 

based on tessellation levels
 New sub-patches are created with resp. uv coords
 Input: Patch vertices and tessellation levels
 Output: New subdivision vertices and uv coords

 Main Purpose
 Provides core tessellation functionality
 Subdivision is fixed 
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:: Tessellator Tessellator
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:: Tessellation Evaluation

 Specification (Programmable)
 Based on uv coords (barycentric coords) 

evaluates positions of tessellated vertices
 Input: Patch vertices and uv coordinates
 Output: New primitives

 Main Purpose
 Construct new primitives usable for next stages
 Finalize the tessellation stage
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:: Geometry Shader

 Specification (Programmable, opt.)
 Given a primitive Geometry Shader creates zero or 

more primitives
 Input: primitives (points, lines, triangles)
 Output: primitives (points, line-strip, triangle-strip)

 Main Purposes
 Create new primitives (general tessellation)
 Layered rendering
 Transform feedback
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:: Geometry Shader

 Input Primitives
 Points (1 vertex)
 Lines (2 vertices), lines_adjacency (4 vertices)
 Triangles (3 vertices), triangles_adjacency (6 ver.)

 Output Primitives
 Points
 Line_strip
 Triangle_strip
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:: Geometry Shader

 Layered Rendering
 Rendering the same geometry into different layers 

(frame buffers)
 Eg. rendering into cubemap – 6 different layers

 Transform Feedback
 We can run the vertex or geometry shader without 

rasterization and store modified vertices 
(primitives) into user defined buffers

 Use user defined (transform feedback) buffers as 
geometry input for other vertex/geometry 
shaders
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:: Geometry Shader Geometry
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:: Geometry Postprocessing

 Specification (Fixed)
 View Frustum Clipping
 Perspective Division (homogenous to viewport)
 Viewport to Window Mapping (coords to pixels)

 Main Purposes
 Final vertex processing  before rasterization
 Clipping → Perspective → Window
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:: Geometry Postprocessing

 View Frustum Clipping
 Reject all geometry outside view frustum (volume)
 Clip primitives which intersect clipping planes (view 

volume)
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:: Geometry Postprocessing

 Perspective Division (homogenous to viewport)
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:: Rasterization

 Specification (Fixed)
 Rasterization: Determine set of fragments (pixels) 

representing projected geometry primitives
 Parameter Interpolation: Compute the attributes 

for each pixel based on the vertex attributes and 
the pixel’s distance to each vertex screen position 
(barycentric coordinates)

 Main Purposes
 Generate image (raster) representation of the 

given geometry – NOT the final pixel colors !
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:: Rasterization

 Rasterization
 DDA, Bresenham
 Scanline Algorithm
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:: Fragment Shader

 Specification (Programmable)
 Final pixel color calculation based on textures and 

uv coordinates, z-buffer, …
 Input: Fragments (frame buffer element) + 

interpolated data (barycentric coords)
 Output: Pixels with final color
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:: Fragment Shader

 Input parameters
 gl_FragCoord: contains the fragments coordinate 

(x
f
, y

f
, z

f
, w

f
), where (x

f
, y

f
) is the pixels position on 

the window, zf is the depth, and w
f
 is 1/w

c
, where w

c
 

is clip space position
 gl_FrontFacing: tells the orientation of respective 

primitive. if culling is on all pixels have same value
 gl_PrimitiveID: Index of primitive to which this 

fragment belongs to
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:: Fragment Shader

 Simple Pixel Shader 
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Rendering Pipeline Variants
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