
Computer Graphics WS05/06 – Ray Tracing II

Computer Graphics
- Ray-Tracing II -

Philipp Slusallek

Computer Graphics WS05/06 – Ray Tracing II

Overview
• Last lecture

– Ray tracing I
• Basic ray tracing
• What is possible?
• Recursive ray tracing algorithm
• Intersection computations

• Today
– History of intersection algorithms
– Advanced acceleration structures

• Theoretical Background
• Hierarchical Grids, kd-Trees, Octrees
• Bounding Volume Hierarchies

– Dynamic changes to scenes
– Ray bundles

• Next lecture
– Realtime ray tracing

Computer Graphics WS05/06 – Ray Tracing II

Theoretical Background
• Unstructured data results in (at least) linear complexity

– Every primitive could be the first one intersected
– Must test each one separately
– Coherence does not help

• Reduced complexity only through pre-sorted data
– Spatial sorting of primitives (indexing like for data base)

• Allows for efficient search strategies
– Hierarchy leads to O(log n) search complexity

• But building the hierarchy is still O(n log n)
– Trade-off between run-time and building-time

• In particular for dynamic scenes
– Worst case scene is still linear !!

• It is a general problem in graphics
– Spatial indices for ray tracing
– Spatial indices for occlusion- and frustum-culling
– Sorting for transparency

Worst case RT scene:
Ray barely misses
every primitive

Computer Graphics WS05/06 – Ray Tracing II

Ray Tracing Acceleration
• Intersect ray with all objects

– Way too expensive
• Faster intersection algorithms

– Little effect (but efficient algorithms are still necessary)
• Less intersection computations

– Space partitioning (often hierarchical)
• Grid, hierarchies of grids
• Octree
• Binary space partition (BSP) or kd-tree
• Bounding volume hierarchy (BVH)

– Directional partitioning (not very useful)
– 5D partitioning (space and direction, once a big hype)

• Close to pre-compute visibility for all points and all directions
• Tracing of continuous bundles of rays

– Exploits coherence of neighboring rays, amortize cost among them
• Cone tracing, beam tracing, ...

Computer Graphics WS05/06 – Ray Tracing II

Grid
• Grid

– Partitioning with equal, fixed sized „voxels“
• Building a grid structure

– Partition the bounding box (bb)
– Resolution: often 3√n
– Inserting objects

• Trivial: insert into all voxels
overlapping objects bounding box

• Easily optimized
• Traversal

– Iterate through all voxels in order
as pierced by the ray

– Compute intersection with
objects in each voxel

– Stop if intersection found in
current voxel

Computer Graphics WS05/06 – Ray Tracing II

Grid
• Grid

– Partitioning with equal, fixed sized „voxels“
• Building a grid structure

– Partition the bounding box (bb)
– Resolution: often 3√n
– Inserting objects

• Trivial: insert into all voxels
overlapping objects bounding box

• Easily optimized
• Traversal

– Iterate through all voxels in order
as pierced by the ray

– Compute intersection with
objects in each voxel

– Stop if intersection found in
current voxel

Computer Graphics WS05/06 – Ray Tracing II

Grid: Issues
• Grid traversal

– Requires enumeration of voxel along ray
 3D-DDA, modified Bresenham (later)

– Simple and hardware-friendly
• Grid resolution

– Strongly scene dependent
– Cannot adapt to local density of objects

• Problem: „Teapot in a stadium“
– Possible solution: grids within grids hierarchical grids

• Objects spanning multiple voxels
– Store only references to objects
– Use mailboxing to avoid multiple intersection computations

• Store object in small per-ray cache (e.g. with hashing)
• Do not intersect again if found in cache

– Original mailbox stores ray-id with each triangle
• Simple, but likely to destroy CPU caches

Computer Graphics WS05/06 – Ray Tracing II

Hierarchical Grids
• Simple building algorithm

– Coarse grid for entire scene
– Recursively create grids in high-density voxels
– Problem: What is the right resolution for each level?

• Advanced algorithm
– Place cluster of objects in separate grids
– Insert these grids into parent grid
– Problem: What are good clusters?

Computer Graphics WS05/06 – Ray Tracing II

Octree
• Hierarchical space partitioning

– Start with bounding box of entire scene
– Recursively subdivide voxels into 8 equal sub-voxels
– Subdivision criteria:

• Number of remaining primitives and maximum depth
– Result in adaptive subdivision

• Allows for large traversal
steps in empty regions

• Problems
– Pretty complex

traversal algorithms
– Slow to refine complex

regions
• Traversal algorithms

– HERO, SMART, ...
– Or use kd-tree algorithm …

Computer Graphics WS05/06 – Ray Tracing II

Bounding Volumes (BV)
• Observation

– Bound geometry with BV
– Only compute intersection if ray hits BV

• Sphere
– Very fast intersection computation
– Often inefficient because too large

• Axis-aligned box
– Very simple intersection computation (min-max)
– Sometimes too large

• Non-axis-aligned box
– A.k.a. „oriented bounding box (OBB)“
– Often better fit
– Fairly complex computation

• Slabs
– Pairs of half spaces
– Fixed number of orientations

• Addition of coordinates w/ negation
– Fairly fast computation

Computer Graphics WS05/06 – Ray Tracing II

Bounding Volume Hierarchies
• Idea:

– Organize bounding volumes hierarchically into new BVs
• Advantages:

– Very good adaptivity
– Efficient traversal O(log N)
– Often used in ray tracing systems

• Problems
– How to arrange BVs?

Computer Graphics WS05/06 – Ray Tracing II

Bounding Volume Hierarchy
• Possible building strategy

– Manual
– Given by input structure (e.g. CAD system)
– Incremental insertion (top-down)

• Incremental recursive insertion
– Algorithm from Goldsmith/Salmon´87
– Cost function:

• Surface of object / BVs
• Cost for intersection with children
• Local decisions only (otherwise NP-hard)

– Evaluate cost function for three cases
• Insert as child in current BV
• Propagate to some child and recurse
• Create new BV as child and merge

new object with other old children

Computer Graphics WS05/06 – Ray Tracing II

Bounding Volume Hierarchy

Case 1

Case 2

Case 3

Computer Graphics WS05/06 – Ray Tracing II

BSP- and Kd-Trees
• Recursive space partitioning with half-spaces
• Binary Space Partition (BSP):

– Recursively split space into halves
– Splitting with half-spaces in arbitrary position

• Often defined by existing polygons
– Often used for visibility in games (Doom)

• Traverse binary tree from front to back

• Kd-Tree
– Special case of BSP

• Splitting with axis-aligned half-spaces
– Defined recursively through nodes with

• Axis-flag
• Split location (1D)
• Child pointer(s)

– See separate slides for details

1

1.1

1.1.1

1.2

1.1.2 1.1.2.1

1.1.1.1

Computer Graphics WS05/06 – Ray Tracing II

Directional Partitioning
• Applications

– Useful only for rays that start from a single point
• Camera
• Point light sources

– Preprocessing of visibility
– Requires scan conversion of geometry

• For each object locate where it is visible
• Expensive and linear in # of objects

• Generally not used for primary rays

• Variation: Light buffer
– Lazy and conservative evaluation
– Store occluder that was found in

directional structure
– Test entry first for next shadow test

Computer Graphics WS05/06 – Ray Tracing II

Ray Classification
• Partitioning of space and direction [Arvo & Kirk´87]

– Roughly pre-computes visibility for the entire scene
• What is visible from each point in each direction?

– Very costly preprocessing, cheap traversal
• Improper trade-off between preprocessing and run-time

– Memory hungry, even with lazy evaluation
– Seldom used in practice

Computer Graphics WS05/06 – Ray Tracing II

Dynamic Scenes
• Changes to spatial indices

– In interactive context

• Very little research despite general usefulness
– Efficient dynamic data structures

• From computational geometry (i.e. kinetic data structures)
• Not realtime

– Animation with predefined motion [Glassner’88, Gröller’91, …]
– Exclude dynamic primitives [Parker’99]
– Constant time rebuild [Reinhard’00]
– Divide and conquer [Lext’00]

• Different Types of Motion
– Hierarchical: Affine transformations for groups of primitives
– Unstructured: Arbitrary movements of primitives

Computer Graphics WS05/06 – Ray Tracing II

Divide & Conquer Approach
• Observation

– 80/20 rule: Very often a simple approach is sufficient
– Building hierarchical index structures requires O(n logn)

• Divide and conquer reduces complexity

• Categorize primitives into independent groups/objects
– Static parts of a scene (often large parts of a scene)
– Structured motion (affine transformations)
– Anything else

• Select suitable approach for each group
– Do nothing
– Transform rays instead of primitives
– Only update index structure for relevant groups

Computer Graphics WS05/06 – Ray Tracing II

Divide & Conquer Approach
• Two-level index structure

– Find relevant objects
– Transform ray (efficient SSE code)
– Find primitives in object
– Same kd-tree traversal algorithms in both cases

• Results in some run-time overhead

Computer Graphics WS05/06 – Ray Tracing II

Implementation
• KD-tree building algorithms

– Static & structured motion
• Build once with sophisticated and slow algorithm [Havran’01]
• Optimize for traversal (as low as 1.5 intersection per ray)

– Unstructured Motion
• Will be used for single or few frames
• Balance construction and traversal time

– Allow more primitives in deeper nodes
– Top-Level:

• Significantly more efficient than for primitives
• Possible splitting planes for kd-tree are already given

Computer Graphics WS05/06 – Ray Tracing II

Implementation
• Index Structure Updates

– Static: Done
– Structured Motion

• Update transformation
• Schedule update of top-level index

– Unstructured Motion
• Rebuild local index and bounding box
• Schedule top-level update, iff bounding box changed
• Could be optimized with top-level hierarchy

– Not yet necessary

Computer Graphics WS05/06 – Ray Tracing II

Results
• BART Kitchen

– 110,000 triangles in 5 objects, 6 lights with shadows
– Little structured motion
– 3.8 Mrays/frame resulting in 0.9 Mrays per second and CPU
– Performance (fps)

7.553.771.880.940.47Ray Tracing
> 2625.612.86.43.2OpenGL-like

3216842Shading \ CPUs

Computer Graphics WS05/06 – Ray Tracing II

Results
• Outdoor Terrain

– 661 objects, total of 10 Mtris
– Single point light source
– Accurate shadows between leaves
– Interactive translation of all trees
– Performance

• Update for top-level kd-tree: 4ms

Computer Graphics WS05/06 – Ray Tracing II

Distribution Ray Tracing
• Formerly called Distributed Ray Tracing [Cook`84]
• Stochastic Sampling of

– Pixel: Antialiasing
– Lens: Depth-of-field
– BRDF: Glossy reflections
– Lights: Smooth shadows from

area light sources
– Time: Motion blur

Computer Graphics WS05/06 – Ray Tracing II

Beam und Cone Tracing
• General idea:

– Trace continuous bundles of rays
• Cone Tracing:

– Approximate collection of ray with cone(s)
– Subdivide into smaller cones if necessary

• Beam Tracing:
– Exactly represent a ray bundle with pyramid
– Create new beams at intersections (polygons)

• Problems:
– Clipping of beams?
– Good approximations?
– How to compute intersections?

• Not really practical !!

Computer Graphics WS05/06 – Ray Tracing II

Beam Tracing

Computer Graphics WS05/06 – Ray Tracing II

Packet Tracing
• Approach

– Combine many similar ray (e.g. primary or shadow rays)
– Trace them together in SIMD fashion

• All rays perform the same traversal operations
• All rays intersect the same geometry

– Exposes coherence between rays
• All rays touch similar spatial indices
• Loaded data can be reused (in registers & cache)
• More computation per recursion step better optimization

– Overhead
• Rays will perform unnecessary operations
• Overhead low for coherent and small set of rays (e.g. up to 4x4 rays)

Computer Graphics WS05/06 – Ray Tracing II

Wrap Up
• Acceleration Structures / Spatial Indices

– Necessary for sub-linear scalability (in scene size)
– Hierarchies achieve O(log n)
– Kd-trees offer

• Simple building and traversal algorithms
• Good performance for almost all scenes

– BVH are also very popular
– Dynamic changes to scenes

• Require (partial) rebuilding of index
• More research required

• Handling Ray Bundles
– Cone- and beam tracing are not very practical
– Packet tracing combines advantages with practical implementation

