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Chapter 21

The Semantic Web: Webizing
Knowledge Representation

Jim Hendler and Frank van Harmelen

Abstract

The World Wide Web opens up new opportunities for the use of knowledge repre-
sentation: a formal description of the semantic content of Web pages can allow better
processing by computational agents. Further, the naming scheme of the Web, using
Universal Resource Indicators, allows KR systems to avoid the ambiguities of natural
language and to allow linking between semantic documents. These capabilities open
up a raft of new possibilities for KR, but also present challenges to some traditional
KR assumptions.

21.1 Introduction

The web-page http://www.cs.rpi.edu/~hendler is not much different than most other
pages in many ways. Besides content, it contains many links to other pages: links to
pages of students, links to downloadable files, links to various digital libraries, links
to the Web resources used in classes and to University pages that describe when the
classes were given, what the prerequisites were, etc. In short, a great deal of the infor-
mation “on” this page is not actually on the page at all, it is provided by the linking
mechanisms of the Web. It is, in fact, exactly this network effect of gaining advantage
by linking to information created by other people, rather than recreating it locally, that
makes the Web so powerful.

Now consider knowledge representation. When trying to create a machine-readable
KR page that would contain similar information, we could not get this kind of network
effect using the KR techniques described in most of the chapters in this book. First,
even if we were to use a particular representation technique, and even if it is a well-
defined technique like FOL, there is still the issue of using information defined by
someone else. One author might write:

ForAll(x)(Advisor(x, Hendler) — StudentOf(Hendler,x).
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while another might put

Advisor(_x,_y) :- PhDAdvisor(_y,_x).
PhDAdvisor(Hendler,Smith).

Try to unify these KBs. Even though there is no logical mismatch, the mere syn-
tactic differences between the representations makes it impossible to simply re-use
the knowledge between KBs. The problem would be even worse when the two KBs
were using different forms of KR, say some particular subset of FOL, some particular
temporal logic, or some kind of modal operators.

Even when using the same exact logical language, say the Conceptual Graphs that
John Sowa describes in Chapter 5, and even when using the same implementation
(so syntax matters go away), we still do not have the kind of linking we have on the
Web. Most KR systems do not have a mechanism by which to specify that a KB living
somewhere else should be included at query time so as to make use of the knowledge
defined by someone else. In short, we do not have a way to get the network effect in
KR that we get in the Web world.

In fact, in many KR systems the notion of knowledge not directly under the con-
trol of a single mechanism, and not incorporated at what would be the equivalent of
compile time, is anathema to the design. It can lead to inconsistency in all sorts of
nasty ways. For example, one KB might be using knowledge in a way that is incom-
patible or inconsistent with another via unexpected interactions. If one KB said “man”
implies “male” where the other was using the term in the non-gendered “all men are
mortals” sense, then, when our KBs are linked a mother from one system becomes
a male in the other system, but mothers are known to be female, and thus we have
a contradiction from which all manner of improper things could be inferred in many
systems, requiring belief revision at the least. Or consider even if the terms are used
correctly, but at query time the other KB’s server is down, and thus the list of students
varies, depending on the uptime of the server, again leading to potential problems.

Traditionally, the field of knowledge representation has faced these potential prob-
lems by either ignoring them (by assuming people are using the same KR system, or
doing all merging at “compile” time), by addressing them as special cases (such as
in the design of temporal reasoners (cf. Chapter 12) or belief revision systems (cf.
Chapter 8)) or by defining the problem away. This latter is generally done by using
inexpressive languages that do not allow inconsistency, or defining inconsistency as
an “error”’ that will be handled offline.

Additionally, there is another issue that KR systems in Al have tended to ignore:
the issue of scaling. KR often talks of algorithmic complexity, or even performance is-
sues, but compared to the size of a good database system, or an incredible information
space like the World Wide Web, KR systems have lagged far behind. The engineering
challenges proposed by KBs that could be linked together to take advantage of the
network effect that could be achieved thereby, are beyond the scaling issues explored
in most Al work today.

In short, there is a set of KR challenges that have not been widely explored un-
til recently. First, solving syntactic interoperability problems demands standards: not
just at some kind of KR logic level, but all the way down to the nitty-gritty syntactic
details. Second, linking KR systems requires “extra-logical” infrastructure that can be
exploited to achieve the network effect. Third, the languages designed need to be scal-
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able, at least in some sense thereof, to much larger sizes than traditional in Al work.
Fourth, and finally, achieving such linkage presents challenges to current KR formula-
tions demanding new kinds of flexibility and addressing issues that have largely been
previously ignored.

From a KR perspective, designing systems to overcome these challenges, using the
Web itself for much of the extra-logical infrastructure, is the very definition of what
has come to be known as the “Semantic Web”. It was this thinking that the authors of
a widely cited vision paper on the Semantic Web [2] to conclude that

Knowledge representation is currently in a state comparable to that of hyper-
text before the advent of the web: it is clearly a good idea, and some very nice
demonstrations exist, but it has not yet changed the world. It contains the seeds
of important applications, but to unleash its full power it must be linked into a
single global system.

Other articles have been written that explain how Semantic Web systems are like
traditional KR systems (cf. Chapter 3 which describes the correspondence of the Se-
mantic Web language OWL to description logics), and thus this article will concentrate
on the other side of this: the things that make Semantic Web KR different from tradi-
tional systems.

However, before we go on, it is important to note one way in which this chapter
differs from many of the others in this Handbook. The KR languages that we will
discuss here are not academic efforts aimed at extending the philosophical reach of
computational reasoning. They are languages that were designed as standards with an
eye towards widespread use. The languages RDF, RDFS and OWL, which we will
discuss in the remainder of this chapter, are without question the most widely used
KR languages in history. A web search performed around the beginning of 2007 finds
millions of RDF and RDFS documents, and tens of thousands of OWL ontologies.
The user community goes way beyond the traditional Al users, and these languages
form the basis of a new phase of commercial development going forward under the
name “Web 3.0”. This article discusses these languages from a KR perspective, but a
realization of the scale of the deployment, the wide range of users, and the power that
has been achieved through the standardization of these KR languages is crucial to an
understanding of their design.

21.2 The Semantic Web Today

The Semantic Web is an extension of the current World Wide Web in which infor-
mation is tied to machine-readable metadata, making it easy to exchange, integrate
and process data in a systematic, machine-automated manner. Using standardized
languages, published as World Wide Web Consortium (W3C) recommendations, Se-
mantic Web data cannot only explicitly describe the knowledge content underlying
HTML pages, but also specify the implicit information contained in media like im-
ages and videos, or be a publicly accessible and usable representation of an otherwise
inaccessible database or other resource.

The standardized languages which are the basis of the Semantic Web form a lay-
ered stack, at the bottom of which lies the Resource Description Framework (RDF)
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[16]. RDF is a simple assertional language that is designed to represent informa-
tion in the form of triples, i.e., statements of the form: subject, predicate, object.
RDF predicates may be thought of as attributes of resources and in this sense cor-
respond to traditional attribute-value pairs. p(s, 0): resource s has resource o as value
for attribute p. The arguments to RDF predicates must always be ground values ex-
cept for the possibility of local existential variables to represent anonymous objects:
colleague(Jim, _1), hometown(_1, Amsterdam) states that Jim has some (otherwise
unknown) colleague whose hometown is Amsterdam.

RDF however, contains no mechanisms for describing these predicates, nor does
it support description of relationships between predicates and other resources. This
is provided by the RDF vocabulary description language, RDF Schema (RDFS [6]).
RDFS allows the specification of classes (generalized categories or unary relations)
and properties (predicates or binary relations), which can be arranged in a generaliza-
tion hierarchy: a hierarchy for classes, and a hierarchy for properties. In addition, it
allows simple typing of such properties, by stating the classes to which subject and
object of a particular property must belong. This allows simple inferencing of the fol-
lowing forms: inferring class membership and subclass relations through transitive
inference in the subclass hierarchy, inferring class membership through occurrence
in typed property-positions, and inferring property values and subproperty relations
through transitive inference in the subproperty hierarchy.

From an Al perspective, RDFS is similar to some of our early frame systems in
its representational capabilities. Notably, RDF and RDFS lack any notion of negation
or disjunction and (as mentioned above) have only a very limited notion of existential
quantification. Together this makes for a language with very limited expressive power.
One illustration of this limited expressivity is the fact that (barring the use of XML
datatypes), it is not possible to express inconsistencies in RDF. Also, it has turned out
to be practical to perform exhaustive forward inferencing, i.e., to compute the entire
deductive closure of an RDF graph. In fact, some of the most widely used RDF storage
and query engines (e.g., Sesame [4]) work in this way. This is clearly only possible
with a sufficiently weak language which does not in practice cause the exponential
blow-up that deductive closures of richer languages suffer from.

The Web Ontology Language (OWL) [7], released in February 2004 as a W3C
recommendation, is a more expressive ontology language that is layered on top of
RDF and RDFS. OWL can be used to define classes and properties as in RDFS, but
in addition, it provides a rich set of constructs to create new class descriptions as
logical combinations (intersections, unions, or complements) of other classes; define
value and cardinality restrictions on properties (e.g., a restriction on a class to have
only one value for a particular property) and so on. OWL’s expressivity is sufficient
to cover most of the well-known Description Logic formalisms, and some of its rep-
resentational characteristics largely resemble those of DL. However, OWL is unique
in two ways. First, it is the first reasonably expressive ontology language to become
a standard recognized by a major standards body. This is very important for tool in-
teroperability and ontology reuse, which we discuss below. In addition, OWL is the
first widely-used ontology language whose design is based on the Web architecture,
i.e., it is open (non-proprietary); it uses Universal Resource Identifiers (URIs) to un-
ambiguously identify resources on the Web (similar to RDF and RDFS); it supports
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the linking of terms across ontologies making it possible to cross-reference and reuse
information; and it has an XML syntax (RDF/XML) for easy data exchange.

OWL provides three increasingly expressive sub-languages: OWL Lite, OWL DL,
and OWL Full, each with a different intended audience based on scope and complexity
of the application domain. For example, the goal of OWL Lite is to provide a language
that is viewed by tool builders to be easy enough and useful enough to support, thereby
acting as an entry ontology language for semantic web application developers, whereas
OWL Full provides more freedom in domain modeling at the cost of a higher learning
curve. At the time of this writing, an effort is underway to define another sublanguage,
sometimes referred to as RDFS+ and other times as OWL Very Lite, which is intended
to be a much simpler version that provides only simple reasoning extensions to RDFS
to allow for very efficient scalability. A second effort [5] has identified a number of
subsets of OWL that have polynomial reasoning performance.

Within the KR community, the most used form of OWL is OWL DL, due to its
support for automated reasoning. OWL DL has a formal model-theoretic semantics
[18] providing a rigorous and provably decidable semantics for the language. As dis-
cussed in Chapter 3, DLs are a decidable subset of First Order Logic (FOL), being
restricted to the 2-variable fragment of FOL. The decidability of the logic ensures that
sound and complete DL reasoners can be built to check the consistency of an OWL
DL ontology, i.e., verify whether there are any logical contradictions in the ontology
axioms. Furthermore, reasoners can be used to derive inferences from the asserted in-
formation, e.g., infer whether a particular concept in an ontology is a subconcept of
another, or whether a particular individual in an ontology belongs to a specific class.
Popular existing DL reasoners in the OWL community include Pellet [21] and FaCT
[13] which are available for free download and use, as well as several commercial
products.

In addition to reasoners, numerous OWL ontology browsers/editors such as Pro-
tégé [17], SWOOP [14] and KAON [3] have been built to aid in the design and
construction of OWL ontology models. Most of these OWL tools have expanded their
functionality beyond basic editing to include features such as change management
and query handling, and in a lot of cases included a reasoner for consistency check-
ing of the ontology. For example, Protégé allows integration of any DIG-compliant
reasoner and has plug-ins for collaborative ontology development, ontology change-
management, ontology visualization, import and export to and from various represen-
tation formats. SWOOP provides the ability to automatically partition, collaboratively
annotate and version control OWL ontologies. For example, Fig. 21.1 shows some of
the features of the Swoop editor being used to browse an OWL ontology.

While tools such as these are familiar to many in the AI community, the need for
wider deployment and ontology development by non-Al-experts (for example, subject
matter experts in some domain), requires that these tools explore making the Al con-
cepts available to others. Current efforts include using the “cultural metaphors” of the
online culture, such as hypertext links, expandable menus, Web-browser-like look and
feel, etc. to make these tools more comfortable to users who are familiar with the Web
but not with Al
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Figure 21.1: The standard syntax, and Web features, of OWL have led to the development of a num-
ber of new, Web-based, tools. SWOOP, shown in this figure, is an example of an ontology browser/editor
developed for the Semantic Web.

21.3 Semantic Web KR Language Design

Despite these primary similarities to traditional Al work, there are some key differ-
ences in the design of OWL, and of current efforts to build new languages adding
features missing from OWL, from traditional Al work. These differences are in many
ways similar to the ways in which the World Wide Web was different from traditional
Hypertext systems, and thus the term Semantic Web is most correctly applied to sys-
tems which focus on these features. In the remainder of this article we describe some
of these differences, focusing on

e The importance of standards based on the Web infrastructure.
e The “Webization” of ontology language.

e The emphasis on scalability.

We will then discuss some of the emerging trends on the Semantic Web includ-
ing work on bringing rule languages and FOL to the Semantic Web. We conclude by
discussing some of the challenges to traditional Al reasoning that we will need to
overcome if we are going to “unleash KR’s full power”.

21.3.1 Web Infrastructure

There are two reasons why the decision to build OWL and other Semantic Web lan-
guages based on Web standards, as opposed to other attempts to standardize knowl-
edge exchange [9, 15], are so critical to the uptake of this technology. One is the
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importance of being able to exploit the Web infrastructure for wider deployment,
which we discuss in this section, and one is more important to the technical under-
pinnings of KR, the grounding of assertions and definitions dereferencably.

The building of the Semantic Web on top of the Web infrastructure is largely moti-
vated by a lesson learned from the efforts to more widely disseminate expert systems
technology in the mid-1980’s. Often seen as a failure, despite wide use today of rule-
based technologies, one of the reasons expert systems had trouble with uptake is that,
especially in the early days, they did not “play nice” with the rest of a user or orga-
nization’s computer infrastructure. The need for special languages and machines, and
the difficulty in embedding rule-bases into existing code was a major impediment. For
a web of KR to succeed, it must be deployable via existing infrastructure, and the Web
infrastructure is the mostly widely deployed and used in the world today.

Underlying the web is the Hypertext Transfer Protocol [8], the ubiquitous HTTP
typed into web pages. For the facts and axioms of the Semantic Web to be sharable
on the Web infrastructure, it is clearly crucial that they must be encoded in an HTTP
friendly way, mandating use of HTML, XML, RDF or some other widely used web
format (MIME type) for exchange. The Semantic Web is built largely on RDF, for
reasons discussed in the next section. However, Web embedding is more than using
these languages: simply HTTP-GETting a document to display in the browser is not
akin to putting KR on the Web.

Most Web applications today use a three-tiered architecture in their client—server
communication. The client sends the HTTP-GET request to the server which is to
return a document in HTML or other specified MIME type (XML is becoming much
more prevalent, and many applications are switching to that today). The server, rather
than just serving up the document as would be done for static HTML, generates the
document by using a database or other backend which keeps the base information
in whatever proprietary form the provider uses. The “middle tier” issues queries (or
similar) to find the relevant information and transform it into the requested document
format, and this is in turn returned to the client as the response to the GET request.

For a KR infrastructure to live on the Web, it is important that it can be integrated
into such applications. The Semantic Web infrastructure was designed with this in
mind. While proprietary knowledge bases and knowledge base languages could un-
derlie the applications, without standards for the exchange formats, what is requested
by one cannot be generated by another. So a major aspect of the Semantic Web lan-
guages is simply this: that it can coexist with other web applications, be made to work
through server modifications, and to integrate well into current and future Web based
architectures. This is also an important economic incentive to wider adoption of Se-
mantic Web KR by industry, the deployed infrastructure for information exchange,
web servers and clients, does not require replacement to get any reasoning benefits the
Semantic Web can offer, and many end-users will see the benefit of the Semantic Web
solely as new functionality delivered to them through their Web browser.

21.3.2 Webizing KR

With the advent of the Web, the neologism “webize” has come into being to refer to
bringing new resources to the Web in a way that allows them to be integrated into
the existing infrastructure, as described above, but also to be linked to one another to
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achieve the network effect that makes the Web succeed. In the words of Tim Berners-
Lee, the inventor of the Web

The essential process in webizing is to take a system which is designed as
a closed world, and then ask what happens when it is considered as part of an
open world. Practically, this effect on a computer language is to replace the
names/tokens/identifiers for URIs. Thus, where before reference could only be
made to something in the same document/program/module one can with equal
ease make reference to something in a different one somewhere in that abstract
space which is the Web. (Berners-Lee, 2001)

In essence, we make something a first-class citizen of the web by assigning it its
own Universal Resource Identifier (URI). This is an identifier obeying a set of rules
of web access, but essentially is equivalent to providing a pointer into a near infinite
name space. Thus, the URI http://www.w3.0rg/2003/08/owlfaq.html is the identifier
for the W3C OWL FAQ, as a pointer into Web space.

There are a number of important aspects of URIs with respect to making the Web
work: the definition of URI scheme, the convention that the first element is the server
at which the resource named can be found, etc. From the KR point of view, however,
there is another feature that is very crucial: any resource on the Web can be given an
identifier, and any Web server pointed at that name will retrieve the same underlying
representation of the resource. Using RDF as the basis of Semantic Web KR ensures
that any term defined in a Web-based ontology is given a globally recognized identifier.

In a traditional KR system we can generally assert a new class or predicate or
formula, and within the KB it resides the name is unique. However, if we want to
refer to it from outside that KB, there is generally not a way to do so. So if we want
to say “the concept Student which is used by Jim Hendler’s Web Page” or “the
concept person as defined in CYC” there needs to be an identifier for the concept,
and traditional KR has not provided an externally addressable referent.

On the Web, URIs provide this function, and RDF was designed precisely to take
advantage of this. The URI

http://www.cs.umd.edu/users/hendler/onts/Research.owl#student
is an identifier that cannot be used for other definition but the student concept. This
URI thus provides a label that could be used anywhere in “web space” and remains
unambiguous—two different KBs that each refer to this term must be referring to the
same thing by definition.

The ability to have global names is a very powerful concept in and of its own right,
and there are a number of philosophical issues in KR to be discussed in this respect (a
couple of which we touch on later in this chapter). The most important, however, is the
notion of dereferencability. On the Web, a URI can be used not only to name a docu-
ment, but as a reference to a document—in your browser when you click on an HTTP
URI, a document is fetched and typically a presentation is displayed by your browser.

RDFS and OWL are defined so that the concepts created in the ontology definition
documents are assigned URIs that dereference to a representation of the document that
defined them. So, for example, the student URI defined above not only gives a precise
name to the student concept, but also if an HTTP-GET is performed on the URI, an
OWL document containing the definition will be returned to the client performing
the GET. Thus, while simply by examining the name there is no way to tell whether
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the definition of “student” is a class name, a predicate, or an individual, by retrieving
the document and parsing it into RDF, an assertion will be found that answers this
question. Thus, we would find a piece of OWL that entails that

http://www.cs.umd.edu/users/hendler/onts/Research.owl#student
rdf:type owl:class

(RDF statements are comprised of triples read as object predicate object, thus this
says that the binary relation “rdf:type” holds between the subject URI and the URI
“Owl:class”—for details on the RDF representation as both triples and as XML docu-
ments, see [7].)

Typically, when dealing with OWL as a KR language we use an XML rendering, or
other presentation syntax, to remove the details of the RDF triples and provide a level
of abstraction. For example, the triple above could be rendered in the N3 presentation
syntax as

@prefix: “http://www.cs.umd.edu/users/hendler/onts/Research.owl”.
: student a owl:class.!

Other, more complex relations can also be similarly shortened, for example, the OWL
specification [7] also contains an “abstract syntax” so that a statement such as

Ontology(<http://www.cs.umd.edu/users/hendler/onts/Research.owl>

Class (Research:CS_Course partial

restriction(Research:offeredIn someValuesFrom(Research:CS_Department))
Research:Course))

which states that the concept defined at the URI
http://www.cs.umd.edu/users/hendler/onts/Research.owl#CS_Course

is a subclass of those things which are in the intersection of Courses and those things

which are existentially quantified as being offered in a CS_Department (and fur-

ther that CS_Department, CS_Course, Course and offeredIn are also defined). This

statement would be rendered in XML as the much less readable (but nicely Web com-

patible)

<owl:Class rdf:about="#CS_Course”’ >
<rdfs:subClassOf>
<owl:Class rdf:about="#Course”/>
</rdfs:subClassOf>
<rdfs:subClassOf >
<owl:Restriction>
<owl:onProperty >
<owl:ObjectProperty rdf:about="#offeredIn”/>
</owl:onProperty >
<owl:someValuesFrom>
<owl:Class rdf:about="#CS_Department”/>
</owl:someValuesFrom>
</owl:Restriction>

Lydf: and owl: are common abbreviations for actual deferencable URIs that link to the standards docu-
ments that define RDF and OWL, respectively.
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</rdfs:subClassOf>
</owl:Class>

which in turn would “compile” into a large number of RDF triples, forming a labeled,
directed graph of URIs, that could be stored in an RDF datastore and used by RDF,
RDFS and or OWL tools.

Regardless, however, of the representation syntax used, the semantics of the ex-
pression are defined in the OWL Model Theory [18] and the URIs for the classes,
individuals, and predicates defined in such expressions are uniquely and globally
assigned to allow Semantic Web systems to use each others’ data and domain de-
scriptions in a clean, Web-accessible, and distributed (open) manner.

There are other interoperability advantages which we will not go into here. For
example, the is an emerging standard for an RDF-based query language (SPARQL
[19]) which can be used for querying data (or Abox) assertions that have been de-
fined against RDFS and OWL ontologies. For more about the Semantic Web from
the perspective of interoperability, see the W3C Semantic Web Activity Web page
(http://www.w3.0rg/2001/sw).

21.3.3 Scalability and the Semantic Web

There are two aspects of scalability that apply to the design of Semantic Web KR
systems, one is the scalability of the underlying reasoning itself, as is a concern in
most KR work, and the other is a scalability in the sense that the Web is scalable, the
creation of an open and distributed KR world. This latter puts some constraints on the
requirements for OWL, and any successor languages, and is a point where Web and
Al research come very much into contact (and sometimes conflict).

The first kind of scalability on the Web is the one that is usually discussed, the
fact that the Web itself is massive, with hundreds of billions of documents of many
different kinds, some open and accessible, some of limited access (sometimes called
the deep web). In addition, with one of the goals of the Semantic Web being to bring
significantly more data resources to the Web, and to make these more accessible via
linking to ontological knowledge, the scale of the emerging Semantic Web Knowledge
Bases dwarves just about anything tried in Al before now.

For one example, a number of people in the “Health Care and Life Sciences Interest
Group”? are working to develop ontologies in biological areas and to link these to sets
of data coming out of various datasources to better integrate these data sources. As one
example, the Uniprot (Universal Protein Resource) Web site offers access to protein
sequencing data being produced at a number of sites. Knowledge Bases, containing
hundreds of millions of triples have been developed, and these are being tied to OWL
ontologies that range in size from tens to thousands of classes. Scaling Al reasoning
techniques, even when using the decidable fragment of OWL, to these sorts of scales is
a major engineering challenge for Semantic Web researchers.? At the time of writing,
the most scalable RDFS system can handle up to a few tens of billions of RDF triples

2http://www.w3.0rg/2001/sw/hcls/ .

31t is worth noting that a number of large OWL ontologies also exist without instances, for example, the
National Cancer Institute maintains a metathesaurus that is released in OWL. At the time of this writing it
has over 50,000 class definitions [10].
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while still complying with the standard semantics. For the various OWL variants, these
numbers are significantly smaller. In particular reasoning with very large numbers of
instances has traditionally imposed significant problems for DL reasoners.

The other scaling challenge to Semantic Web KR, and one of the key challenges
in the design of OWL, was designing a language that would fit into the overall Web
architecture and its constraints. Consider again the example of the introduction, where
we consider linked knowledge documents as analogous to linked Web pages. It may
seem like it is simple to talk about the contents of a Web page, but in reality it is
extremely difficult (and still not well defined). Is the content just what is returned by a
single HTTP-Get (i.e., the “page” you see in your browser), is it all possible renderings
of that page in different MIME types, is it the page plus all the documents it is linked
to directly, or all the pages on the same site? In fact, if we consider the “transitive
closure” of the link space, then the content associated with any particular page is, in
the worst case, the entirety of World Wide Web!

In creating a knowledge representation for the Web, it was important to keep in
mind that it too would include documents (cf. ontologies), linked to datasets (cf. RDF
triple stores), linked to possibly other documents, other datasets, and to regular web
resources (for example, it is useful to say that the person described in the Web page
http://www.cs.umd.edu/~hendler is named “Jim Hendler’—combining an HTML ref-
erent and a KB referent in a smooth way). If one assumed that such knowledge sources
were being created dynamically, for example, via a web crawl or dynamic mapping
from multiple databases to a triple store, then it appeared that full knowledge of all the
assertions associated with a fact on the Web, would essentially map to the problem of
finding all the content linked to a particular web page—in the worst case, the entire
Semantic Web.

Given this notion of Web KR being amenable to applications like crawlers, which
might at any point in time have an “incomplete” view of the word, the design of
Semantic Web languages has favored the open-world semantics of FOL to the closed-
world semantics of databases. In addition, assuming an incremental addition of in-
formation (i.e., a crawler accreting knowledge over time) a monotonic logic ended
up being favored. For example, in the design of the OWL language, an original ob-
jective was to have the language include default reasoning, motivated by many Al
applications, but no non-monotonic solution amenable to Web architecture concerns
was found. This debate continues at the time of this writing in the design of a rules
language for the Semantic Web (cf. [12]) where the need for negation as failure is
recognized as important to many applications, but no mechanism for closing the world
of discourse, compatible with open and distributed Web principles, has been devel-
oped.

214 OWL—Defining a Semantic Web KR Language

The best example of a current KR language for the Web, which meets the requirements
above but still meets the needs of many KR projects is the Web Ontology Language
OWL, which became a World Wide Web Consortium recommendation in February
of 2004. OWL was designed to be expressive enough for many practical problems,
simple enough for “real users” to get a start without taking an Al course, and designed
to meet the needs of companies interested in deploying Al-related applications on the
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Web. As we will discuss, OWL comes in three “dialects” known as OWL Lite, OWL
DL, and OWL Full. As we shall see, the rationale behind having these three dialects
helps explains how OWL supports the different needs of different user communities.

To start with, OWL is designed as an extension to the Resource Description Frame-
work (RDF) and RDF Schema (RDFS) language developed by earlier standards ef-
forts. RDF and RDFS provide several useful KR concepts, roughly corresponding
to the ISA-hierarchy and simple slot definitions of early frame-based KR languages.
One difference, however, is that RDF is designed such that several important aspects
of the Web are built in. RDF provides a mechanism for assigning URIs to class names
(thus giving them the global addressing property described previously), it provides a
mechanism for the internationalization of terms (based on Unicodes), and it provides a
mechanism for accessing the “XML Schema Datatypes” that are used on the Web for
providing standard definitions for common datatypes such as strings, integers, dates,
etc. In short, by building OWL on RDF the needs for web embedding are largely met.

However, embedding on RDF was something of a struggle for designing a Web
KR language. Traditional KR languages have not provided mechanisms for external
references, externally defined datatypes ad the like. In addition, some common features
of KR languages (cf. variables in arguments, closed lists, and mechanisms for asserting
equivalence of terms) were not provided in the original RDF. The working group thus
had to provide a design that either avoided the problems, created solutions at the OWL
level, or required working with those updating the RDF standard to provide common
solutions.

In addition, the designers of OWL inherited some constraints from the Web do-
main. Some of the designers felt that a Web ontology language should be monotonic
and without defaults, given that new information is often discovered on the Web and
reinferencing in the presence of new information. Some designers felt that it was cru-
cial the language be decidable, others argued that there should be a well-designed
decidable fragment of the language. In addition, although RDF allowed properties
on classes, these were always universal, and the designers of OWL felt it was cru-
cial on the Web to be able to have class descriptions that could be restricted to only
some subset of a class as this would mean that if definitions from multiple documents
were merged, there would be means to separate aspects of the class definitions. Note
that from these definitions it becomes clear why OWL resembles a Description Logic
language—DLs largely meet these KR design goals.

However, there were also KR design goals of OWL that could not be met within
standard approached to DL, but which use cases mandated for OWL necessitated.
A good example of this is inverse functional datatypes. One of the features of OWL
that is very important in many Web applications is the ability to designate two indi-
viduals or classes to be equivalent. OWL provides mechanisms for directly asserting
this, but very important in many cases was the use of an “Inverse Functional Property”
definition, which allows an OWL ontology to designate some property as being unique
to individuals. That is,

P1 an inverseFunctionalProperty < PI1(x,y) A Pl(z,y) = equivalent(x,z).

(An example of the use of this feature is in FOAF, where we can designate that
individuals with the same “foaf:mbox” property (i.e., same email address) should be
merged into the same node in the FOAF networks.)
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However, there was a problem. If, using standard DL semantics, one designated a
datatypeProperty to be inverse functional, then the system becomes undecidable. On
the one hand, decidability is a desirable feature, on the other hand, many use cases of
OWL require that datatypes be inverse functional (in particular, database keys mapped
to RDF require inverse functional datatype properties). No single design could sat-
isfy both goals. This was one of the reasons for defining both a general form of OWL
(OWL Full) which does not restrict datatypes in this way, and OWL DL, a decidable
profile of OWL which does. Several other features of the use of OWL also have sim-
ilar dichotomies, including using classes as instances (i.e., metamodeling) and having
classes that have not been typed (Datatype, objectType, annotationType, or ontolo-
gyProperty) in the defining document. In all these cases, the semantics of OWL DL
could be kept clean and decidable and the semantics of OWL Full included some fea-
tures that allow undecidability, necessary for some of the webized applications.

In addition, in designing OWL one option was to choose the language to include
the largest decidable subset of FOL known (i.e., the most expressive DLs known)
while another option was to include only options whose value was proven important
and useful. OWL Lite is a subset of OWL DL that removes some features that were
felt to be outside this class, or that might be confusing to novice users.

Other challenges in the design of OWL required providing the semantics for some
of the Web features of the language that were not included in many standard KR
languages. For example, since OWL defines the URI mechanism, it is easy for an
OWL document to refer to terms in other ontology documents. Thus, the vocabulary
of OWL that can be used within a single document can be used to express relations
between classes in an ontology and those defined in other ontologies. This could in-
clude simple assertions, perhaps stating that what some European document refers to
as :footballTeam is different from what a US document means by the same term, or
that it is equivalent to what some US document calls a :soccerTeam.

The links between documents can, however, also be more complex than this. For
example, supposing we would like to say that our pet cat is a short-tailed Abyssinian
cat and that we would like to use the properties of Cat that are already in CYC, but
perhaps Cyc does not have all the features we need (for example, tail-length or the
AbyssinianCat Class). In OWL we can simply extend the classes from CYC by cre-
ating a document that defines the CYC: namespace as pointing to CYC’s URIs, and
asserting, for example:

:AbyssinianCat a cyc:petCat.

:tailLength a owl:datatypeProperty;
range cyc:Cat; {note that in CYC a petCat would be asserted to be a Cat}
domain xsd:string.

:myCat a :AbyssinianCat;
:tailLength “short”.*

However, if a reasoner sees this document, what semantics should it adopt? Should
the terms from CYC be expected to include all the semantics of the CYC ontology,
should there be no “official” semantics for this, letting external links be defined by

4We make length a string for simplicity of this example, we leave defining and enumerated class of
appropriate lengths as an exercise to the reader.
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some sort of extra-logical mechanism, or could some other solution be devised and
standardized at some later time. OWL provides mechanisms for declaring that one
ontology “imports” another, and therefore all the semantics should be observed, and a
mechanism by which this can be defined as an annotation property (or, in OWL Full,
left unspecified) essentially asserting that no semantics should be assigned to the class
a priori but rather that systems might use externally defined mechanisms to meet user
expectations.

A recurring issue in the design of web-based KR languages is the choice between
open world semantics and closed world semantics. A closed world semantics typically
allows the derivation of conclusions from the absence of conclusions to the contrary.
In programming languages such as Prolog, this is known as Negation by Failure, and
is closely related to default reasoning. Although in general the Web would seem more
suited to open-world reasoning (and indeed both RDFS and OWL adopt an open-world
semantics) there are many use-cases where a closed-world semantics is appropriate:
students in a class, customers of a company, cities in a country are all examples of
closed sets: if a student is not listed as enrolled, we can safely assume she is not
enrolled. Although useful in many cases, there is currently no practical mechanism in
RDFS or OWL to state that a given set of individuals (or facts) is “closed”.

A related, although different, issue is the unique name assumption. Typically, data-
base systems assume a single, unique name for each individual. If we encounter two
individuals with different names, we can safely assume they are indeed different indi-
viduals. Again, on the web this assumption would be too strong. In a world as large as
the web, many individuals are known under multiple names (“Jim Hendler”, “James
Hendler”, “Prof. J. Hendler”, “the author of Chapter 217, etc.). When encountering two
such different names, we should safely assume that they may or may not designate the
same individual, until further reasoning decides the issue one way or the other. OWL
contains a simple device to state that all individuals in an enumerated set are known
to be different (i.e., that they are not just different names for some of the same indi-
viduals), but this language construct (owl :allDifferent) requires the explicit
enumeration of these names, which can be either impractical, or even impossible in
principle.

Traditionally, systems such as databases and logic programming systems have
tended to support closed-worlds and unique names, while knowledge representation
systems and theorem provers support open-worlds and non-unique names. Ontologies
are sometimes in need of one, and sometimes in need of the other. This conundrum
was nicely resolved in [11], which identified a fragment of OWL baptized DLP, for
Description Logic Programming: this fragment is the largest fragment on which the
choice for CWA and UNA does not matter as depicted in Fig. 21.2. That is to say, OWL
DLP is weak enough so that the differences between the choices do not show up. The
advantage of this is that people or applications that wish to make different choices
on these assumptions can still exchange ontologies in OWL DLP without harm. Of
course, as soon as they go outside OWL DLP, they will notice that they draw differ-
ent conclusions from the same statements. In other words, they will notice that they
disagree on the semantics.

Fortunately, DLP is still large enough that it can be used for useful representation
and reasoning tasks. It allows the use of such OWL constructors as class and property
equivalence, equality and inequality between individuals, inverse, transitive, symmet-



J. Hendler, F. van Harmelen 835

First-Order
Logic

Horn Logic “'1
Programs

Description

Logic |
Programs

Description
Logic
Programs

(Negation As

Failure)

< (Procedural 5
"~ Attachments) -~

Figure 21.2: Relation of OWL-DLP to other KR languages.

ric and functional properties, and the intersection of classes. It excludes however
constructors such as intersection and arbitrary cardinality-constraints. These construc-
tors do not only allow useful expressivity for many practical cases, while guaranteeing
correct interchange between OWL reasoners independent of their CWA and UNA,
they also allow for a translation into efficiently implementable reasoning techniques
based on databases and logic programs.

As is already clear from the above two points, RDFS and OWL do not allow any
form of default reasoning, even though many years of KR applications have shown
this to be a very useful device for dealing with incomplete knowledge. This would
be particularly important in a world as large as the Web, where not all properties
of all objects will be explicitly known, but must often be inferred by default until
shown otherwise. However, a lack of concensus in the KR community on how to best
formalize defaults has prevented such features from being included in the Semantic
Web standardized representation languages.

Finally, a point often raised is that the large and open world of the Web will almost
certainly need some forms of uncertainty and fuzziness. Again, lack of concensus has
prevented such language features from being included, although it would seem clear
that they will ultimately be needed in some form or other, either in the representation
or in the inference mechanisms.

As time progresses, new work also continues which pushes OWL in different di-
rections. In practical use on the Web, OWL has needed to be scaled to problems that
have been much larger than those previously attempted in KR research. Very large
Tboxes (thousands of class definitions) coupled with extremely larges Aboxes (mil-
lions of individuals) turned out to be relatively easy to construct, and necessary for
Web uses. To this end, as we mentioned earlier, several groups are exploring tractable
subsets of OWL, some of which are very close to RDFS others of which attempt to
provide more functionality while remaining polynomial (cf. [20] which describes a
number of these). On the other hand, some usages are exploring more expressive fea-
tures that were not included in OWL including qualified restrictions, limited forms of
non-monotonicity, integration with rules, mereological constructs, and others.
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21.5 Semantic Web KR Challenges

Perhaps the most interesting thing about OWL, and future Semantic Web KR lan-
guages, is not what was solved in the OWL design, but what was left unsolved. For
example, above we described what happens when one document imports another.
However, on the Web the typical mechanism for implementing this inclusion is an
HTTP-Get of the imported document. What happens if the server where that docu-
ment lives is down, or if the owner of the document makes changes that remove the
class I am referring to (or even worse, makes a change that subtly changes the se-
mantics)? Or what happens if the document we link to links, in turn, to some other
document which has a different semantic interpretation of some shared terms we use?
For example, we may have said cyc:cat is a cyc:mammal, someone else that it is a
cyc:insect, as they prefer the cat class for referring to caterpillars, and cyc: contains an
assertion that mammals and insects are disjoint classes. At this point, all my instances
of cats become inconsistent, a real problem especially when trying to use some typical
logical reasoner that uses some form of reasoning by negation, in which case it would
follow that any unasserted fact was true. Definitely not the desired behavior!

Most KR systems have been designed in the past to assume that inconsistency is
a problem, and to define mechanisms to rule it out (either by limiting expressivity or
defining inconsistency as an error condition) or which provide some mechanism (like
a belief revision mechanism) that triggers from knowing the sources of the inconsis-
tency. Semantic Web KR appears to mandate either some form of local consistency
or the development of paraconsistent or other, some argue higher order, logics that
disallow the general proof of all concepts from an inconsistency.”

In addition to attempts to explore semantics that handle some of the Web prob-
lems in KR, there are also attempts to explore the provision of capabilities that OWL
disallows, such as providing mechanisms for scoping RDF graphs to allow default rea-
soning and negation as failure or to provide unifying logics in which other Web KR
languages can be expressed, providing semantic interoperability without an insistence
(as in the case of OWL) on syntactic uniformity.

21.6 Beyond OWL

The continued use of Semantic Web KR, beyond the OWL language, requires the
design of other reasoning frameworks in ways that provide the same opportunities for
interoperability standards and linking that OWL provides for basic KR vocabularies.
A number of efforts have looked, for example, at bringing the power of rules to the
Web for providing the linking of properties that OWL does not provide. A number
of these efforts came together in the RuleML effort [12] as well as the development
of Web specific rule languages like N3 [1], aimed specifically at providing support
for RDF-based ontologies. At the time this chapter is being written, the World Wide
Web Consortium has created the Rules Interchange Format (RIF) Working Group to
explore the standardization of rules for the Web and to formalize a mapping between
OWL and this emerging rules language.

SThe interested reader is also directed to SCL [20] an attempt to provide a unifying logic for the Web
which allows some higher-order-like reasoning within the constricts of FOL.
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Other efforts are exploring other kinds of KR on the Web. Probabilistic extensions
to OWL are also a current area of interest and several efforts are underway to extend
OWL to provide richer expressivity ranging from extensions that aim to maintain the
OWL DL guarantees to new, post OWL languages that extend the logic in many of the
ways found in other chapters in this book.

A key point to note about OWL is that it was not intended to be the be-all and end-
all knowledge representation for the Web. Like any good standard, it was designed
to be a consensus language that could be used by a wide variety of users, sacrificing
some of the advanced expressivity features that were not yet ready for standardization
or for which there did not yet seem to be use cases compelling to the non-researchers
involved in the standardization process. It is a truism in the standards community that
good standards evolve, and the many activities looking to extend OWL in various
directions are a healthy sign that OWL adoption is taking place.

21.7 Conclusion

At the time of this writing, subsets of the OWL language are being supported by
major database vendors and RDF and RDFS are seeing wide use in both corporate and
wider Web applications under the name “Web 3.0”. In the academic arena, significant
investment from the US and EU governments have helped to create a large community
exploring many aspects of the use of Semantic Web technologies. New efforts in the
standardization community are exploring adding rules to the Semantic Web, the use
of semantic web ontologies in health care and life sciences, approaches to embedding
Semantic annotations in traditional Web pages, adding probability to OWL, and others
(See in particular the World Wide Web Consortium’s Semantic Web Activity.®) OWL
has become the most used KR language in the history of the field, not because of its
particular representational power, but rather because it was designed to be a common
syntax usable by many KR systems, to be webized for easier sharing of ontologies and
concepts, and to be expressive enough for many problems without totally sacrificing
scalability.
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