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Ab stract: De vi a tion from stan dard dis per sion re la tions for elec trons and pho tons in the form of an ex tra
term pro por tional to an ar bi trarily high power of mo men tum is stud ied. It is shown that ob ser va tional 
con straints lead to a re gion in the para met ric space that is sim i lar in shape to the re gion ob tained ear lier in 
a the ory in which the ex tra term was pro por tional to third power of momentum.

1. In tro duc tion 

Par al lel to ex plor ing pos si ble paths to uni fi ca tion of quan tum me chan ics with gen eral rel a -
tiv ity within a well-es tab lished the o ret i cal frame work, like string the ory or loop quan tum
grav ity, there ex ists an ap proach in which �sim ple (in some cases even sim ple-minded)
non-clas si cal pic tures of spacetime are be ing an a lyzed with strong em pha sis on their ob -
serv able pre dic tions� [1]. In this ap proach, known as quan tum grav ity phe nom en ol ogy, one
seeks ef fects ob serv able with pres ent day ex per i men tal de vices in or der to sort out ex ist ing
con cepts and ideas in quan tum grav ity and pro vide guid ance for de vel op ing new ones; for
a re view, see [2]. An im por tant in gre di ent of quan tum grav ity phe nom en ol ogy is in ves ti ga -
tion of the con se quences which would ap pear if the par ti cles ac quired, due to in ter ac tion
with spacetime foam, a small ad di tional term in dis per sion re la tion. The idea was pro posed
in [3, 4] and was an a lyzed, for the ex tra term pro por tional to n-th power of mo men tum, in
de tail in [5]. As for later de vel op ments, loop the ory im pli ca tions are ex am ined in [6, 7], con -
nec tion with gen er al ized un cer tainty prin ci ple is dis cussed in [8] and new ob ser va tional data
are re viewed in [9, 10, 11]. Fur ther more, in [12, 13, 14] it is ex plored how mod i fied dis per sion
re la tions arise in elec tro dy nam ics in me dia, and in [15, 16] it is ex am ined how a pos si ble mod i -
fi ca tion of dis per sion re la tions would man i fest it self in black hole phys ics and cos mol ogy.

In [5] the anal y sis was done for n = 2, 3 and (partly) 4, here we ex tend it to ar bi trarily
large n. We re strict our selves to three pro cesses which were shown in [5] to be cru cial for
de ter min ing the al lowed re gion in the para met ric space: vac uum Èerenkov ra di a tion, pho -
ton de cay and col li sion of two pho tons with cre ation of an elec tron-pos i tron pair. In sec -
tion 2 we an a lyze the first two pro cesses, in sec tion 3 we in ves ti gate the third pro cess and
in sec tion 4 we dis cuss re sults.

2. One-par ti cle pro cesses

Consider dispersion relations for photon (energy w, momentum k) and electron
(energy E, momentum p, mass m) of the form
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w x h2 2 2 2 2= + = + +k k E m p pn n, , (1)

where x and h are parameters with physical dimension mass�(n�2). (We are using units in
which c = 1.) As it turns out, for n = 2 the results are qualitatively different than for other
values of n, and since this value was discussed in detail in [5], we skip it from the analysis
and restrict ourselves to n ³ 3.

With mod i fied dis per sion re la tions, we have to in clude into the the ory two pro cesses
with one par ti cle in the ini tial state, which are nor mally for bid den due to en ergy-mo men tum 
con ser va tion: vac uum Èerenkov ra di a tion and pho ton de cay (Fig. 1). De note the 4-mo -
men tum of the pho ton by k  and the 4-momenta of the re main ing two par ti cles (in- and out -
go ing elec tron in the first pro cess and elec tron and pos i tron in the sec ond pro cess) by p 
and q. We have p = k + q for the first pro cess and k = p + q for the sec ond pro cess, so that

for both pro cesses the 4-momenta sat isfy (k � p)2 = q2. Sup pose the elec trons are
ultrarelativistic, p as well as q mññ . At the thresh old, where the momenta k, p and q are
parallel to each other, the equa tion re duces to 
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where q p k= -  and k p-  for the first and second process respectively. Introduce
dimensionless variables x k p= / , 0 1< <x , for the first process, and  y p k= / , 0 1< <y , for
the second pro cess. Rewritten in terms of x and y, the equation for the first process reads 

F x x x x an nº - + + + + =- -[ ( )] ,x h2 21 K (2a)

where x x= -1  and a m p n= 2 / ,  and the equa tion for the sec ond pro cess reads 

G yy y y bn nº - + =- -[ ( )] ,x h 1 1 (2b)

where y y= -1   and  b m k n= 2 / .
Obviously, the first process can take place only if F > 0 and the second process can

take place only if G > 0. This suggests that there are two regions in the ( , )h x  plane, one for
each process, which are safe in the sense that the processes cannot take place in them 
(F £ 0 for the first process and G £ 0 for the second process), no matter what the mo-
mentum of the incoming par ti cle. The functions F and G can be written as

F f f x x xn nµ - + = + + +- -x h, / ( ),2 21 K   and  G g g y yn nµ - = +- -x h , ( ) ,1 1 ()

and a simple analysis shows that f  ranges from 0 to 1 (it rises monotonically from 0 at x = 0
to 1 at x = 1), while g ranges from 2�(n�2) to 1 (it falls down from 1 at y = 0  to  2�(n�2) at y = 1/2 
and rises back to 1 at y = 1). As a result, the safe region for the first process is

x h x h x³ £ < £0 0 0: : ,U (3a)
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and the safe re gion for the sec ond pro cess is 

x h 2 x x h x³ ³ < ³-0 02: : ,n U (3b)

see Fig. 2. Note that when both pro cesses are taken into ac count, one is left with the safe ray 
on the lower diagonal (h x= £ 0) only.

Fig. 2. Safe re gions

The region in the ( , )h x  plane which is allowed by observations is given by the inequal i -
ties F Amax <   and G Bmax < , where A and B are observational upper bounds on a and b,

defined in terms of maximum observed momenta of electrons and photons coming from
extragalactic sources p obs

max  and k obs
max  as A m p obs n= 2 / ( )max  and B m k obs n= 2 / ( )max . The inequal-

ities define a region in the ( , )h x  plane between the lines 

F x A G y Bmax max( ; , ) , ( ; , ) .x h x h= = (4)

Our goal is to find how this region looks like for arbitrary n.
Write the func tions F and G as

F f f f x x x n= - + = + + + -( ) , ( ) ,x h 1 2K   and   G g g g yy= - =( ) ,x h  .  ()

We can easily see that the functios f and g  behave complementary to the functions f and g:

when the latter functions rise, the former functions fall, and vice versa. Specifically, f  falls

monotonically (it starts from  n -1 at x = 0 and falls to 0 at x =1) and g first rises and then
falls (it starts from 0  at y = 0, rises to 1/4 at y =1 2/   and falls back to 0 at y =1). Thus, if F

and G are positive, which is the case we are interested in, the function F falls monotonically 
if x > 0  and the function G  first rises and then falls if h > 0. This suggests that the maximum 

values of F and G are 

x h h > x> = = - = = - - -0 0 1 0 1 2 1 4 2: ( ) ( ) , : ( / ) ( / )(max
(F F n G G n

max
2) ) ,h   ()

and the allowed region in the first quadrant of ( , )h x  plane is a strip adjacent to the axes,
delimited from the right and from above by the straight lines 

x h h h x h x (h) .> = - º > = + º- -0 1 0 4 20

2

0: / ( ) , : ( )A n B n (5)

Con sider now the func tion F for x < 0 and the func tion G for  h < 0. For such x and h,

the func tions F = - +x hf   and G = -x h g be have in the same way as the func tions f and g:

the func tion F rises monotonically and the func tion G first falls and then rises. Con se -
quently, the be hav ior of the func tions F and G changes. Con sider first the func tion F with
the pa ram e ter h equal to h

0
. If x be comes neg a tive, the func tion ac quires a bump whose

height rises as x de creases, and even tu ally, for x equal to some crit i cal value xc , it reaches
the value A. If we con tinue to de crease x , the height of the bump con tin ues to in crease, so
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that in or der to keep the max i mum of F equal to A,  h  must start to de crease. As a re sult, the 

line a de lim it ing the al lowed re gion from the right is ver ti cal at x > xc (the a ( )+ part) and
bent to the left at x < xc (the a ( )- part). The be hav ior of the func tion G in the in ter val  

1 2 1/ £ £y   is sim i lar, we just have to in ter change the vari ables x and h. Thus, for    x x= 0

the func tion ac quires a bump with in creas ing height, which for h equal to some crit i cal
value hc crosses the value B, and from that mo ment on x must fall at a higher rate than x

0
.

As a re sult, the line b de lim it ing the al lowed re gion from above is straight, tilted down -
wards at h > hc (the b( )+ part) and bent down wards at h < hc (the b( )- part). The be hav ior of
the func tions F and G, as well as the form of the al lowed re gion, is de picted in Fig. 3. The
three heavy lines in the left panel are the graphs of the func tion F for h h= 0and x = 0, 

x x= c , x x> c , and the three heavy lines in the cen tral panel are the graphs of the func tion G

for x x= 0  and h = 0,  h = hc , h h> c . Light lines de pict, as in di cated in the fig ure, func tions

f
_

, F and g, G ap pear ing in the ex pres sions for F and G. The re sult ing al lowed re gion in

the ( , )h x -di a gram is the un shaded re gion be tween the heavy lines in the right panel. Note
that for n = 3 the bent parts of the bound ary of the al lowed re gion (the lines a ( )- and  b( )- )

match the ad ja cent straights parts (the lines a ( )+  and b( )+ ) without changing direction.

Fig. 3. Con struc tion of the al lowed re gion

By an a lyz ing the be hav ior of ¢F  one finds that for x < 0 the func tion F has just one

bump which be comes lo cal max i mum as x crosses some value x xc1 c> . If the value of x
fur ther de creases, first the lo cal max i mum of F in creases monotonically and then, af ter x

crosses the value xc , the max i mum be comes global and stays con stant pro vided the value
of h de creases monotonically. The func tion G for h < 0  be haves an a log i cally, if we re strict 

our selves to y run ning from 1/2 to 1. Let us ver ify the  monotonic de crease of h with de -

creas ing x be yond the crit i cal point and prove in such a way that the max i mum of F is

constant there. The func tion  h(x)  is given by the equa tions F x A( ; , )h x =   and 
¶ h xx F x( ; , ) = 0. If we in sert F f f= - +( )x h  into the first equa tion and dif fer en ti ate it with
re spect to x , we ob tain 
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and if we use the second equation, we find that d d fh x/ = > 0. Analogically we can prove
for the function x h( ) beyond the critical point that d d g nx h/ ( )= > - -2 2 . Thus, the lines a and 
b are both bent towards the lower diagonal be yond the critical point.

Let us determine xc and hc (longitudinal shifts of the critical points with respect to the 
origin) for n >> 1. Denote the quantities rescaled by A by a hat and the quantities
rescaled by B by a tilde. The functions appearing in the expression for F are f f xx n= -2  and 

f x x x n= + + -( )1 2K , and since x turns out to be close to 1, for the latter function we have 

f x&= . To find the quantity $xc we must solve equations F x c( ; $ , $ )h x0 1=  and ¶ h xx cF x( ; $ , $ )0 0= ,

where $ / ( )h0 1 1= -n . The first equation yields - = - =-$ & $ &x hc
nxx x2

01 1, hence $ &xc =

& / ( )= - -1 2xxn , and the second equation yields  - ¢ = - - = =- -$ ( ) $ [ ( ) ] & $ &x x hc
n

c
nxx x n x2 3

01 1 0,

hence x n& / ( )= -1 1  and x n en n- - -= - - =2 2 11 1 1& [ / ( )] & . The resulting expression for the

quantity $xc  is $ & ( )xc e n= - -1 , and if we perform an analogical calculation with the function

G, we obtain  ~ & ( )hc e n= - + 1 .  Of course, the results are valid only in the leading order in  

n -1 , therefore we can neglect ±1 in the brackets and write 
$xc   as well as  ~ &hc en= -   (6)

We can also see that the crit i cal points are much fur ther from the or i gin in the lon gi tu di nal

di rec tion than in the transversal di rec tion, $ $ &x hc n>> = -
0

1  and  ~
~

( ) &h x hc c>> =0 4 .

Fi nally, let us de ter mine the as ymp totic form of the lines a ( )- and b( )-  far from the or i -
gin. We are in ter ested in the func tion h x( ) de fined by the con di tion F Amax =  and the func -
tion x h( ) de fined by the con di tion G Bmax =  for x x>> c  and h h>> c  re spec tively.
Con sider the for mer func tion. The value of x for which F Amax =  is now close to 1 for any n,

and is much closer to 1 than in the case x x= c  for  n >>1, there fore we can write 

ff x n x& [ ( ) ]= - -1 2 . To the same or der of mag ni tude, f x x& ( )= +1 . (For  n = 3, this is ex act.)

 Con se quently, for the func tion $ ( ; $ , $ )F F x= h x   we have $ & $ $ ) [ $ $]F x x= - +(h x h + ( - 2)xn 2 , and

if we de note $ $ $h h x± = ±   and use that, as seen from the fi nal for mula,  $ $h h- +<< , we can

write

$ & $ ( )$F x n x= + -- +h h
1

2
1 2.  

()

Equa tion $ ¢ =F 0 yields  x n& / ( )( $ $ )= - - - +1 1 h / h , and if we in sert this into the equa tion
$F = 1, we find that the line a

lim
 ap proached by a ( )- far from the or i gin is given by 

$
$

( )
, $h

h
h+

-
-= -

-
>

2

2 1
0

n
 .                       

 (7a)

In a similar manner we obtain the line  b
lim

. The formula for it turns out to be the same as for
the line  a

lim
, we just have to replace the quantities with a hat by the quantities with a tilde

and consider complementary definition region. Thus,  b
lim

is given by 

~
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, ~h

h
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-
-= -
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(7b)
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We can see that the limit lines are halves of two parabolas with the axis on the lower
diagonal, whose widths are in general different, but become identical for A B=   (Fig. 4).
The line a

lim
 is the lower half and the line  b

lim
is the upper half of the respective parabola.

The bound aries of the al lowed re gion con verge to the limit lines in gen eral only in a
weak sense: they copy their shape, but keep fi nite dis tance from them. For  n > 3, the shifts
of the true limit lines along the axes h-  and  h+  are given by the ex pan sion of the func tions � 
$F and �

~
G  up to third and fourth or der re spec tively. For  n = 3, the bound aries co in cide with

the limit lines and are of the form $ ( / ) $ , $h h h-
2

+ -= - >1 4 2  and  ~ ( / )~h h= - -1 8 2 , ~h- < -8;

thus, the shifts of the limit lines along the axes h-  and h+  are D $h± = 0  and D~h- = -2 ,   

D~h+ =1 . 

Fig. 4. Al lowed re gion far from the or i gin

3. Two-par ti cle pro cess

The two pro cesses con sid ered so far have left us with an al lowed re gion in the form of
an in fi nite wedge around the lower di ag o nal in the ( , )h x  plane. To cut the re gion from be -
low, let us con sider col li sion of two pho tons, hard and soft, with cre ation of an elec -
tron-pos i tron pair (Fig. 5). The pro cess can take place, un like the pre vi ous two, also in a
Lo rentz in vari ant the ory. How ever, af ter pass ing to a the ory with mod i fied dis per sion re -
la tions we find that the lower thresh old shifts in one di rec tion or an other, and there pos si -
bly ap pears an up per thresh old as well.

The con straint on par ti cle momenta in the pho ton col li sion is most eas ily ob tained if
we use the pre vi ous anal y sis for pho ton de cay with the re place ments w w w+ w® =1 0 ,  
k k k® = -1 0w ,  where w0  is the fre quency of the soft pho ton. From the ex pres sion of 
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w1 in terms of k1 we re cover the pre vi ous the ory with the re place ment x x® =1  
= x+ 4w0 /k n- , where  n n- = -1. Thus, the con straint we are look ing for re duces to the
con straint for pho ton de cay with an ex tra term on the left hand side, 

G yy y y k bcol

n n nº - + + =- - -[ ( ) / ]x h w4 0  . (8)

The lower threshold for pair creation is defined as the minimum of the variable k given by

this equation (which contains k also on the right hand side, since b k nµ - ), provided x and h
are fixed and y is running from 0 to 1. Instead of k it is convenient to work with the
dimensionless parameter b = k k LI/ , where k LI  is the threshold for pair creation in a Lorentz
invariant theory,  k mLI = 2

0/ w . The constraint on momenta expressed in terms of  b reads
~~

[
~~ ~~( ) ]G yy y ycol

n n n nº - + + =- -b x b h b4 1 , (9)

where the dou ble tilde de notes rescaling by the di men sional con stant w0
2n /m n- . The func -

tion 
~~
G

col
-1 is a poly no mial of nth or der in b, there fore equa tion ��

~~
G

col
=1 de fines a func tion 

b x h( ;
~~

,~
~

)y  which may have as many as n real val ues for given y. The lower thresh old of e+e�

cre ation in the units  k LI  is the min i mum of this func tion when re stricted to pos i tive val ues.

Re write equa tion ��
~~
G

col
=1 as a def i ni tion of the func tion 

~~ ~~)x( b hy; , , 

~~ ~~( ) [( ) ]x h b b= + + -- - - -y y yyn n n 1 4  .   (10)

The parameter b has an extremum as a function of y if  ¢ = -b ¶ x/ ¶ x = 0
by

~~ ~~
. It holds 

¶ x hf by
nn yy y y

~~
[ ~~ ( ) ]( ),= + --

- -2    f = + + +- - -y y y yn n n3 4 3K ,    ()

therefore there ex ists al ways an extremum at y y= =1 2/ , and for ~
~
h < 0 there may ex ist also

pairs of extrema at y <1 2/  and y >1 2/ , lo cated sym met ri cally with re spect to the point 
y =1 2/ . Thus, un like in Lo rentz in vari ant the ory where the thresh old con fig u ra tion is nec -
es sar ily sym met ric (has y =1 2/ ), in a the ory with mod i fied dis per sion re la tions there may
ex ist also thresh old con fig u ra tions that are asym met ric. For def i nite ness, we will sup pose
that these con fig u ra tions have y <1 2/ . 

For sym met ric con fig u ra tions we have (denoting n = -n 2)
~~ ~~ , ( ).x h b bn= + = -- -2 4 1D D n (11)

Thus, the points rep re sent ing con fig u ra tions with given b lie on a straight line in the (~
~

,
~~

)h x

plane with the slope 2 -n and the shift along the ��
~~
x-axis D. The shift is neg a tive for b >1 and

reaches min i mum with the value D0 4= - - -( / )( / )n n n n   at b0 = -n n/ . If  n >>1, the con-
stants b0  and D0  are close to 1 and 0 re spec tively, b0  &=  1 1+ /n and D0  &= -4 /( )en .

Consider now asymmetric configurations. For ~
~
h ��as a function of y we have 

~~ ( / )h b y= - -
- -1 1n n ,   y f= ( )yy 2  , (12)

and ��
~~
x  ��as a function of y is given by Equation (10) with the above expression inserted for ~

~
h .

For given parameter b, this defines the line  b ( )- with the slope 
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For y =1 2/  the slope co in cides with that for sym met ric con fig u ra tions, d d
~~

/ ~~x h n= -2 , and

for de creas ing y it in creases, ap proach ing 1 as y goes to 0. The pa ram e ter ~
~
h at the same time

goes to -¥. How ever, this does not mean that as ~
~
h de creases, the line b ( )- ap proaches

straight line un der the an gle 45° to the ~
~
h-axis. De note z yy= . For  záá1  we have ~

~
h  &= 

- -
- -( / )1 2n znb and 

~~
x  &= ~

~
( )h b1 1- +-

- -n z zn  &= ~
~

( ~~)/ /h + 2 b hn-
- -1 / 2 n 2 1 2, ()

so that ~
~
h+

&= 2~~ ~~h, h-
&=  - --

-2 1 2 2 1 2n n/ / /( ~~)b h  and the line b
lim

 to which  b ( )- con verges is, just as for 

pho ton de cay, an up per half of a pa rab ola with the axis on the lower di ag o nal, 

~~ ~~ , ~~h
b

h h2

+

-

-= - <
-

n

n2
0 .

(13)

The true limit lines are shifted along the axis h-  to the left the more the closer b to 0. In

particular, for n = 3 the lines  b ( )- as well as  b
lim

are of the form ~
~

( / ) (~
~

)h b h b= - --
-1 8 43 2 2 , 

~~ ( )h b b- < - --4 23 ,  and after a simple algebra we find that their shifts along the axes h- and  

h+ are D~~ ( )h b b-
-= - -2 1 23   and D~~ ( )h b b+

-= -3 1 4 .

The lines of asymmetric configurations are attached to the lines of symmetric

configurations with the same b at the �line of matching points� bm p. . , given parametrically as

~~ / ( )h b n= - + -
-2n n n  ,   

~~
[ / ( )]x b n b= - --

-4 1 2n n  , (14)

where  n n+ = +1. The line starts at the or i gin, touches the low est line of sym met ric con fig -

u ra tions at the point (~
~

,
~~

) (~
~

,
~~

)|h x h x
0 b b0

0
=

=
in the lower left quad rant, and then its be hav ior de -

pends on the value of n: for  n = 3 it falls down monotonically, while for  n > 3 it even tu ally

stops and starts to rise. If  nññ1, the point (~
~

,
~~

)h x
00  is lo cated far from the or i gin just un der the ~

~
h

axis,  ~
~
h0  &=  - +2 2n en/ ( )  and  

~~
x0  &=  - 4 / ( )en  .

One would ex pect that the line of asym met ric con fig u ra tions will pro ceed from the

start ing point at  ~
~ ~~h h= c  (the value of ~

~
h at the line bm p. .) to wards smaller ~

~
h, fall ing down with 

in creas ing slope. How ever, such be hav ior is ob served only if the func tion y rises

monotonically with y for y <1 2/ , or equiv a lently, with z for z <1 4/ . As it turns out, this is

the case only if  n £ 7. For n = 3, 4 the func tion y  equals z2, hence it rises monotonically for
all z > 0, but for greater n it ac quires a max i mum that shifts with in creas ing n to wards

smaller z, un til it falls be low 1/4. This hap pens at n = 8, when y = - +z z z2 21 4 3( ) and 

y y= max  at  z = - =( ) / .3 3 6 0 211. The max i mum then shifts fur ther, down to y n&= -2 1  for  

nññ1. Such be hav ior means that the line b ( )- has a cusp at some ~
~ ~~h hm c> ;  as y de creases, it
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first rises to wards greater ~
~
h, and only af ter ~

~
h reaches the value ��~

~
hm  it turns back and starts to

fall down.

The extremum of the parameter b as a function of y is minimum if ¢¢ = -b ¶ x/ ¶ x > 0
by

2 ~~ ~~
 .

With the expression (10) for 
~~
x , we obtain for symmetric configurations 

¢¢ =
-

-
- +b nb

h h

b b
n2

0

n
~~ ~~

c  ,   
()

and for asymmetric con fig u ra tions        

¢¢ =
-

-+

-

-
b b

y

b b
h)( )21

4 4

2

1

n z d dz

z

/

( )
( ~~

0

y- y .    
()

We want to construct lines in the (~
~

,
~~

)h x  plane at which the lower threshold for  e e+ - creation

equals bk LI . The lines, which we will denote by b, must satisfy ¢ =b 0 and ¢¢ >b 0, and if two

such lines with different values of b cross at the given point in the (~
~

,
~~

)h x  plane, we must

chose the one with the less b. 
Sup pose first that b b< 0 . De ter min ing the line b is straight for ward if n £ 7. For such n it

holds d dzy / > 0 for all z <1 4/ , there fore ¢¢ >b 0 along the whole line of asym met ric con -

fig u ra tions. Note also that ¶ x = - 4 b b b
b

~~
[( ) ]n-

n z+ - - <4 01
0  for all z <1 4/ , hence the lines

of asym met ric con fig u ra tions do not in ter sect. Fur ther more, the line of sym met ric con fig -

u ra tions has ¢¢ >b 0 for all �~
~ ~~h h> c , that is, all the way up from the match ing point with the

line of asym met ric con fig u ra tions to in fin ity. Thus, if we de note the part of the line of

sym met ric con fig u ra tions with �~
~ ~~h h> c by b ( )+ , the line b is the un ion of b ( )-  and  b ( )+ . The

anal y sis is a bit more tricky if n > 7. The line b ( )-  is then com posed of two parts, the part 

b I
( )- which goes from the point ~

~ ~~h h= c , where it matches the line of sym met ric con fig u ra -

tions, to the cusp at �~
~ ~~h h= m , and the part b II

( )-  which goes from the cusp to in fin ity. Along

the for mer part it holds ¢¢ <b 0 and along the lat ter part it holds ¢¢ >b 0. Fur ther more, since

the de riv a tive d d
~~

/ ~~x h  in creases as we move from the match ing point through the cusp to

in fin ity, the lines b I
( )-  and  b II

( )-  are con vex and con cave re spec tively; and since the line b I
( )-

is tan gen tial to the line of sym met ric con fig u ra tions at the match ing point, the cusp is lo -
cated above that line. Thus, the lines b II

( )-  and  b ( )+ , at which both con di tions ¢ =b 0 and 
¢¢ >b 0 are sat is fied, in ter sect at some point ~

~ ~~h h= i be tween the match ing point and the cusp. 

De note the line com posed of b II
( )-  and b ( )+  by b0  and con sider two neigh bor ing lines b0  and� 

~
b0with 

~
b b< . The line �

~ ( )b +  (up per part of  �
~
b0) crosses the line b II

( )-  (left part of b0) at ~
~ ~~h h> i,

that is, above the point of in ter sec tion of the lines b II
( )-  and b ( )+ ; and the line �

~ ( )b II
-  (left part

of  
~
b0) crosses the line  b ( )+ (up per part of b0) at ~

~ ~~h h< i, that is, left to the point of in ter sec -

tion of the lines b II
( )-  and b ( )+ . At the cross ing points, the lower thresh old of  e e+ - an ni hi la -

tion is lo cated at the curve with lower b, which is 
~
b0 . We can see that in or der to ob tain the

line b we must re move from the line b0  the part of b II
( )-  above the point of in ter sec tion, as

well as the part of b ( )+  left to the point of in ter sec tion. Thus, b is the un ion of the parts of
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the lines b II
( )-  and  b ( )+ going from infinity to the point of intersection and from the point of

intersection back to infinity.
Sup pose now that b b> 0 . The part of the line of sym met ric con fig u ra tions com ple men -

tary to b ( )+  does not con trib ute to b be cause it has greater value of b than the line of asym -
met ric con fig u ra tions cross ing it at any given point. Thus, we are left with the line of
asym met ric con fig u ra tions b ( )- , or rather its part b

down

( )-  which is cut ei ther at the line 

b ( ) ( )+ b0 , that is, at z z= 1  such that ��
~~ ~~x hn

1 1 02= +- D  , or at the point where the line b ( )-  in ter -

sects the neigh bor ing line �
~ ( )b - , that is, at z z= =2 01 4( / ) /b b, which ever point co mes first

as we fol low the line from large neg a tive ~
~
h  to ~

~ ~~h h= c . (The cut at z z= 2  is nec es sary since at 

smaller z it holds ¢¢ <b 0.) For n = 3, the cut oc curs at the for mer point (it holds 

z u u1
1 4 1 3 2- = + +[ ( ) / ] , u = -b b/ 0 1,  so that z z u1

1
2

1 4 1- -> = +( )) , and we will as sume

that the same is true for n > 3, be cause even if it was not, the form of the al lowed re gion
dis cussed fur ther would stay qual i ta tively the same.

Sup pose, fol low ing [5], that the lower thresh old of e e- +  an ni hi la tion lies be tween k LI

and 2 k LI .The al lowed re gion in the (~
~

,
~~

)h x  plane is then an in fi nite band be tween the line

b(1) and the un ion of the lines b b
down

( ) ( )( )2 2= -  and b ( ) ( )+ b0  cut at the end point of b(2). The

band, if we fol low it from large pos i tive to large neg a tive val ues of ~
~
h� �, is first straight, keep -

ing its width and tilted down wards with the slope 2 -n , and then it wid ens and bends down -

wards, be com ing par a bolic with the axis on the lower di ag o nal as ��~
~
h -® ¥. While still

straight, the band touches the or i gin from be low. 
The al lowed re gion in the com plete the ory, by which we mean the the ory of the three

pro cesses con sid ered here, is an in ter sec tion of the band we have just con structed with the
in fi nite wedge we have con structed ear lier. To see how this re gion looks like, we must

pass from the dimensionless pa ram e ters  ( $ , $ )h x , (~,
~

)h x  and (~
~
,
~~

)h x  to the di men sional pa ram e -

ters ( , )h x ; that is, we must mul ti ply the pa ram e ters ( $ , $ )h x  by A m p obs n= 2 / ( )max , the pa ram e -

ters (~,
~

)h x  by B m k obs n= 2 / ( )max  and the pa ram e ters (~
~
,
~~

)h x  by B  = =-w0
2 2n / /m m kn

LI
n . For the

momenta ap pear ing in these ex pres sions, let us adopt the val ues used in [5], namely 
k pobs obs

max max= = 50 TeV and k LI =10 TeV (cor re spond ing to w0 25=  meV). In Planck units,

the con stants A, B are 

A B,   &=  
0.5 MeV

TeV

10  GeV

TeV

19

50 50
2 10

2
æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
÷ = ´ -

n

n 16 14 0 02+ =n . ,  4 1012´ ,K  for  n = 3 4, , ,K         (15)

and the con stant B  is greater than the con stants A, B by the fac tor 5n. Us ing equa tions (7b)
and (13), we find that the width of the in ner bound ary of the al lowed re gion for pho ton col -
li sion, when con sid ered far from the or i gin, is greater than the width of the outer bound ary
of the al lowed re gion for pho ton de cay by the fac tor (5/2)n = 15.6, 39, . . . for n = 3, 4, . . .
(The width of a pa rab ola is de fined as the dis tance be tween op po site points at the level of 
fo cus, d = k�1 for y = kx2.) Thus, the bent seg ment of the for mer re gion lies far to the left of
the lat ter re gion, deep in the for bid den part of the ( , )h x  plane.

The allowed region for the three processes considered here is depicted in Fig. 6. The
region, delimited by heavy line, is an intersection of two regions delimited by light lines,
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the allowed region for the two one-particle processes (the wedge) and the allowed region
for the two-particle process (the bowed band). As we can see, the region has the form of a
tilted trapezoid-like strip, with the upper right vertex close to the origin and the right-hand

side close to the x axis. This is just the kind of behavior that has been observed earlier in
the case n = 3, see Fig. 8 in [5].

4. Con clu sion

In a the ory with dis per sion re la tions (1) one would ex pect n to be small, say, 2, 3 or 4,

and x and h to be of or der  m
Pl

n- -( )2 , where  m
Pl

 is Planck mass. To see how far the the ory can 

be stretched, we have sup posed that n as well as x and h can be ar bi trary, re quir ing just
that the dis per sion re la tions do not con tra dict ob ser va tional data. From the fact that the
high est en ergy of elec trons and pho tons en coun tered in ob ser va tions is by many or ders
of mag ni tude less than the Planck mass it fol lows that large val ues of n bring in large

val ues of x and h: as seen from Equa tion (15), x and h are typ i cally of or der 
10 2 1016 14 2 2- - - -´ ´( ) ( )n

Pl

nm , so that they rise steeply with n when ex pressed in Planck units.

The cor re spond ing mass scale is 50 mPl  for n = 3, it falls down to 5´10-7mPl for n = 4, and

as we in crease n, it con tin ues to de crease, ap proach ing grad u ally the value 5´10-15mPl

(max i mum en ergy avail able in ob ser va tions). Of course, the pa ram e ters x and h do not
need to be from the bulk of the al lowed re gion, we can as sume that they are from a tiny
patch around the or i gin. That would push the mass scale to wards mPl, how ever, we should
then come to terms with the fact that the de vi a tion from stan dard dis per sion re la tions will
not be ob served any soon.

Two ob jec tions can be raised against large val ues of n: there is no rea son that in the
Tay lor ex pan sion of en ergy func tion of mo men tum a lot of terms are skipped be fore the
ex pan sion starts; and it does not seem plau si ble for the fu ture the ory of quan tum grav ity,
what ever it will look like, to lead to mass scales that are sub stan tially less than mPl. We did

not at tempt to pro pose a the ory in which n would be large and x and h would be much
greater than m

Pl

n- -( )2 . In stead, our aim was to de ter mine, in the spirit of quan tum grav ity
phe nom en ol ogy, how the ob ser va tional con straints would look in a the ory with large n,

know ing in ad vance that we will need also large x and h in or der to be able to ac tu ally ob -
serve the ef fect of the ad di tional term in dis per sion re la tions. We have found out, by an a -

lyz ing the three main pro cesses de ter min ing the bound aries of the al lowed re gion in the (h, x )
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Fig. 6. Al lowed re gion in the com plete the ory



plane, that the re gion is sim i lar in shape to that ob tained in [5] for n = 3, and is stretched by a

fac tor 2´1014m
Pl

-1  each time we in crease n by unity.
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