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Abstract: Deviation from standard dispersion relations for electrons and photons in the form of an extra
term proportional to an arbitrarily high power of momentum is studied. It is shown that observational
constraints lead to a region in the parametric space that is similar in shape to the region obtained earlier in
a theory in which the extra term was proportional to third power of momentum.

1. Introduction

Parallel to exploring possible paths to unification of quantum mechanics with general rela-
tivity within a well-established theoretical framework, like string theory or loop quantum
gravity, there exists an approach in which “simple (in some cases even simple-minded)
non-classical pictures of spacetime are being analyzed with strong emphasis on their ob-
servable predictions” [1]. In this approach, known as quantum gravity phenomenology, one
seeks effects observable with present day experimental devices in order to sort out existing
concepts and ideas in quantum gravity and provide guidance for developing new ones; for
areview, see [2]. An important ingredient of quantum gravity phenomenology is investiga-
tion of the consequences which would appear if the particles acquired, due to interaction
with spacetime foam, a small additional term in dispersion relation. The idea was proposed
in [3, 4] and was analyzed, for the extra term proportional to n-th power of momentum, in
detail in [5]. As for later developments, loop theory implications are examined in [6, 7], con-
nection with generalized uncertainty principle is discussed in [8] and new observational data
are reviewed in [9, 10, 11]. Furthermore, in [12, 13, 14] it is explored how modified dispersion
relations arise in electrodynamics in media, and in [15, 16] it is examined how a possible modi-
fication of dispersion relations would manifest itself in black hole physics and cosmology.

In [5] the analysis was done for n = 2, 3 and (partly) 4, here we extend it to arbitrarily
large n. We restrict ourselves to three processes which were shown in [5] to be crucial for
determining the allowed region in the parametric space: vacuum Cerenkov radiation, pho-
ton decay and collision of two photons with creation of an electron-positron pair. In sec-
tion 2 we analyze the first two processes, in section 3 we investigate the third process and
in section 4 we discuss results.

2. One-particle processes

Consider dispersion relations for photon (energy m momentum k) and electron
(energy E, momentum p, mass m) of the form

*Dedicated to Professor Peter PreSnajder on the occasion of his 70th birthday
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o =k*+Ek", E'=m’+p +np", (1)
where & and 1 are parameters with physical dimension mass . (We are using units in
which ¢ = 1.) As it turns out, for n = 2 the results are qualitatively different than for other
values of n, and since this value was discussed in detail in [5], we skip it from the analysis
and restrict ourselves ton >3.

e e

Fig. 1. One-particle processes

With modified dispersion relations, we have to include into the theory two processes
with one particle in the initial state, which are normally forbidden due to energy-momentum
conservation: vacuum Cerenkov radiation and photon decay (Fig. 1). Denote the 4-mo-
mentum of the photon by k and the 4-momenta of the remaining two particles (in- and out-
going electron in the first process and electron and positron in the second process) by p
and g. We have p = k + g for the first process and k = p + g for the second process, so that
for both processes the 4-momenta satisfy (k - p)*> = g°. Suppose the electrons are
ultrarelativistic, p as well as g)ym. At the threshold, where the momenta k, p and q are
parallel to each other, the equation reduces to

ék”tl—g) + n{p"(l—];j —q"} =m2§,

where ¢ =p—k and k—p for the first and second process respectively. Introduce
dimensionless variablesx =k / p, 0 <x <1, for the first process, and y=p/k, 0 <y <1, for
the second process. Rewritten in terms of x and y, the equation for the first process reads

F=%[-&x"?+ 1+ X+..4+X" )] =a, (2a)
wherex =1-xand a =m’ [ p", and the equation for the second process reads
G =y[E-nG"" +y" Hl=0b, (2b)

where y =1—y and b=m> [k".

Obviously, the first process can take place only if F >0 and the second process can
take place only if G > 0. This suggests that there are two regions in the (1, §) plane, one for
each process, which are safe in the sense that the processes cannot take place in them
(F <0 for the first process and G <0 for the second process), no matter what the mo-
mentum of the incoming particle. The functions F and G can be written as

Fo-tf+n, f=x"7[(1+x+.+x""),and GxcE-ng, g=(""+y""),
and a simple analysis shows that f ranges from 0O to 1 (it rises monotonically from 0 at x =0
to 1 atx = 1), while g ranges from 2" to 1 (it falls down from 1 aty =0 to 2" ?aty = 1/2
and rises back to 1 at y = 1). As a result, the safe region for the first process is

£>20:M<0UE<0:n<E, (3a)
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and the safe region for the second process is

£20:m>2""eUE<0:n>E, (3b)
see Fig. 2. Note that when both processes are taken into account, one is left with the safe ray
on the lower diagonal (n =& <0) only.

3 S

Fig. 2. Safe regions

The region in the (1), &) plane which is allowed by observations is given by the inequali-
ties F,,, <A and G, <B, where A and B are observational upper bounds on a and b,

defined in terms of maximum observed momenta of electrons and photons coming from
extragalactic sources p?* and k°” as A=m’ [(p°*)" and B=m" [(k’")". The inequal-

max max max max

max

ities define a region in the (1, &) plane between the lines

Fnlax(X; &ﬁn) = A: Gmax(y; g’n) = B (4)
Our goal is to find how this region looks like for arbitrary n.

Write the functions F and G as

F=f-Ef+n, [=X1+%+.+3"%), and G=g(E-ng), g=)¥.
We can easily see that the functios fand g behave complementary to the functions fand g:
when the latter functions rise, the former functions fall, and vice versa. Specifically, f falls
monotonically (it starts from n—1atx =0 and falls to 0 at x =1) and g first rises and then
falls (it starts from 0 at y =0, rises to 1/4 at y=1/2 and falls back to 0 at y =1). Thus, if F
and G are positive, which is the case we are interested in, the function F falls monotonically
if £ >0 and the function G first rises and then falls if n > 0. This suggests that the maximum
values of F and G are

§>0: F,, =F(0)=(m-1n, n>0: G, =G1/2)=01/H(E-2"""n),
and the allowed region in the first quadrant of (n, &) plane is a strip adjacent to the axes,
delimited from the right and from above by the straight lines

£>0: n=A4/(n-1)=mn,, n>0: £E=4B+2"" n=¢(n). ®)

Consider now the function F for & < 0 and the function G for 1 <0. For such andn,
the functions ¥ =-¢ f+n and G = £—n g behave in the same way as the functions fand g:
the function ¥ rises monotonically and the function G first falls and then rises. Conse-
quently, the behavior of the functions F and G changes. Consider first the function F with
the parameter n equal to 1. If £ becomes negative, the function acquires a bump whose
height rises as £ decreases, and eventually, for £equal to some critical value &_, it reaches
the value A. If we continue to decrease &, the height of the bump continues to increase, so



84 V. BALEK, O. M. LECIAN

that in order to keep the maximum of F equal to A,  must start to decrease. As a result, the
line o delimiting the allowed region from the right is vertical at & > & _(the o'*'part) and

bent to the left at £ <&, (the o part). The behavior of the function G in the interval
1/2 <y<1 is similar, we just have to interchange the variables {and n. Thus, for &=¢,
the function acquires a bump with increasing height, which for n equal to some critical
valuen crosses the value B, and from that moment on { must fall at a higher rate than £ .
As a result, the line B delimiting the allowed region from above is straight, tilted down-
wards atm >, (the 3"’ part) and bent downwards atn <n, (the B part). The behavior of
the functions F and G, as well as the form of the allowed region, is depicted in Fig. 3. The
three heavy lines in the left panel are the graphs of the function F for n=n,and £=0,
£=E.,&> ¢, ,and the three heavy lines in the central panel are the graphs of the function G
for§=¢, and n=0, n=n,,n >n,.Light lines depict, as indicated in the figure, functions
f, Fand g, G appearing in the expressions for F and G. The resulting allowed region in

the (n, &)-diagram is the unshaded region between the heavy lines in the right panel. Note
that for n = 3 the bent parts of the boundary of the allowed region (the lines o, "and ‘)

(+)

match the adjacent straights parts (the lines ‘"’ and B**’) without changing direction.

F

Fig. 3. Construction of the allowed region

By analyzing the behavior of F' one finds that for & <0 the function F has just one
bump which becomes local maximum as & crosses some value &, > &_ . If the value of &
further decreases, first the local maximum of F increases monotonically and then, after &
crosses the value &_, the maximum becomes global and stays constant provided the value
of ndecreases monotonically. The function G forn < 0 behaves analogically, if we restrict
ourselves to y running from 1/2 to 1. Let us verify the monotonic decrease of n with de-
creasing & beyond the critical point and prove in such a way that the maximum of F is
constant there. The function n(§) is given by the equations F(x;n,§)=A and
0 .F(x;m,&) =0.If we insert F = f(—¢& f+n)into the first equation and differentiate it with
respect to &, we obtain

7 (_ - dnj L AFEf+ )] dx

0 b}
de ox dz
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and if we use the second equation, we find that dn /[ d& = f > 0. Analogically we can prove
for the function &mn)beyond the critical point that d&/ dn = g >2"""?. Thus, the lines o. and
[ are both bent towards the lower diagonal beyond the critical point.

Let us determine &, andm, (longitudinal shifts of the critical points with respect to the
origin) for n >> 1. Denote the quantities rescaled by A by a hat and the quantities
rescaled by B by a tilde. The functions appearing in the expression for Fare ff =xx""> and
f=Xx(+X +...x"?), and since x turns out to be close to 1, for the latter function we have

f =X. To find the quantity %Cwe must solve equations F'(x; 1, , %L, )=1land 0 F(x;7,, %C )=0,

n=2

where f|, =1/(n—1). The first equation yields — g xx"? = 1-f,X =L hence g =
=—1/(xx"?), and the second equation yields —&, (¥x"?) =& x"[1-(n-1)%] =7, =0,
hence X =1/ (n—1) and x" > =[1-1/(n—1)]"* = e”'. The resulting expression for the
quantity %C is %c =—e(n—1), and if we perform an analogical calculation with the function
G, we obtain 1, =—e(n+1). Of course, the results are valid only in the leading order in
n', therefore we can neglect +1 in the brackets and write

&, aswellas fj, =—en (6)
We can also see that the critical points are much further from the origin in the longitudinal
direction than in the transversal direction, |, | >>1, = n~" and m.|>> E,(m.) =4.

&

Finally, let us determine the asymptotic form of the lines a.‘”and B~ far from the ori-
gin. We are interested in the function n(&) defined by the condition F,,, =A4 and the func-
tion (1) defined by the condition G,,, =B for |§>>[¢ | and | >>n, | respectively.
Consider the former function. The value of x for which F, . =Ais now close to 1 for any n,

and is much closer to 1 than in the case £=§, for n>>1, therefore we can write
ff =x[1-(n—2)x]. To the same order of magnitude, f = x(1+Xx ). (For n =3, thisis exact.)
Consequently, for the function £ = F (x;f,&) we have £ = (f —£)X + [ + (1 —2)E] X2, and
if we denote fj, =M=* % and use that, as seen from the final formula, f|_ << ‘ﬁ+

, we can

write

A~

F =0 x+ %(n— DA, X,

Equation F' = 0 yields x =—-1/(n—-1)(f_/7. ), and if we insert this into the equation
F =1, we find that the line o 4 @pproached by o far from the origin is given by

~2
ﬁ+ == TL > T > O (7a)
2n—1)

In a similar manner we obtain the line {3, . The formula for it turns out to be the same as for
the line o, , we just have to replace the quantities with a hat by the quantities with a tilde
and consider complementary definition region. Thus, B, is given by
~2
- n- -
=— , n.<0
M, 201-1) n

(7o)
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We can see that the limit lines are halves of two parabolas with the axis on the lower
diagonal, whose widths are in general different, but become identical for A =B (Fig. 4).
The line o, is the lower half and the line B3, is the upper half of the respective parabola.
The boundaries of the allowed region converge to the limit lines in general only in a
weak sense: they copy their shape, but keep finite distance from them. For n >3, the shifts
of the true limit lines along the axesm _ and n, are given by the expansion of the functions
FandG up to third and fourth order respectively. For n =3, the boundaries coincide with
the limit lines and are of the form 7|, =—(1/4)/°,f_ >2 and f=—(1/8)7’,7_ <-8
thus, the shifts of the limit lines along the axes_ andn, are Afj, =0 and Af}_ =-2,

AR, =1.

En 1,

e
/

Fig. 4. Allowed region far from the origin

n

3. Two-particle process

The two processes considered so far have left us with an allowed region in the form of
an infinite wedge around the lower diagonal in the (n, &) plane. To cut the region from be-
low, let us consider collision of two photons, hard and soft, with creation of an elec-
tron-positron pair (Fig. 5). The process can take place, unlike the previous two, also in a
Lorentz invariant theory. However, after passing to a theory with modified dispersion re-
lations we find that the lower threshold shifts in one direction or another, and there possi-
bly appears an upper threshold as well.

] e Y

Y e Y
Fig. 5. Two-particle process
The constraint on particle momenta in the photon collision is most easily obtained if

we use the previous analysis for photon decay with the replacements ® — ®, = ©+ ®,,
k >k, =k-w,, where o, is the frequency of the soft photon. From the expression of
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o,in terms of k, we recover the previous theory with the replacement £ — §, =
=&+4w, k™, where n_ = n—1. Thus, the constraint we are looking for reduces to the
constraint for photon decay with an extra term on the left hand side,

G =WYIE—NO" +Y" )+ 4w, [ k" ]1=b. ®)
The lower threshold for pair creation is defined as the minimum of the variable k given by
this equation (which contains k also on the right hand side, since b «ck™"), provided & and n
are fixed and y is running from O to 1. Instead of k it is convenient to work with the
dimensionless parameter 3 =k [k ,,, where k ;, is the threshold for pair creation in a Lorentz
invariant theory, k,, =m’ | ®,. The constraint on momenta expressed in terms of freads

G, =B E-BNO" +3" )+ 4Bl=1, ©)
where the double tilde denotes rescaling by the dimensional constant ey / m*" . The func-

tion éwl —lis a polynomial of nth order in 3, therefore equation (N?ml =1defines a function

B(y; E,T:]) which may have as many as 7 real values for given y. The lower threshold of e¢”e”
creation in the units & ;, is the minimum of this function when restricted to positive values.

Rewrite equation (N;wl =1as a definition of the function E(y; B,ﬁ) R
E=RO" +3" ) +BIOM " -4l (1)

The parameter B has an extremum as a function of y if ' =— @E/ 635 =0. It holds

OE=[n R+ B 0N IG-) ¢=Y " +y T 45,
therefore there exists always an extremum at y =y =1/2, and forﬁ < 0 there may exist also

pairs of extrema at y <1/2 and y>1/2, located symmetrically with respect to the point
y =1/2. Thus, unlike in Lorentz invariant theory where the threshold configuration is nec-
essarily symmetric (has y =1/2), in a theory with modified dispersion relations there may
exist also threshold configurations that are asymmetric. For definiteness, we will suppose
that these configurations have y <1/ 2.

For symmetric configurations we have (denoting v =n-2)

E-2R+A, A=4870-P). (11
Thus, the points representing configurations with given f3 lie on a straight line in the (T:] ,E_,)

plane with the slope 27" and the shift along the E—axis A. The shift is negative for 3 >1and

reaches minimum with the value A, =—(4/n_)@m_[n)" at B, =n/n_.If n>>1, the con-
stants 3, and A, are close to 1 and O respectively, B, = 1+1/nand A, =—4/(en).

Consider now asymmetric configurations. ForT:] as a function of y we have
R=—/m)B v, v =090, (12)

andE as a function of y is given by Equation (10) with the above expression inserted forT:] .

For given parameter B, this defines the line 5~ with the slope
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For y =1/2 the slope coincides with that for symmetric configurations, dz / dﬁ =27, and
for decreasing y it increases, approaching 1 as y goes to 0. The parameterrz] at the same time
goes to —o. However, this does not mean that as T:] decreases, the line b~ approaches
straight line under the angle 45° to the Tz]-axis. Denote z=yy. For z(l we haveT:] =
—(1/n_)B "z *and

€ =R-n2+ BT =R+ 2B,

sothat®], =27, 7j_=—22"°B""*(—7)""* and the line b, to which b converges is, just as for
photon decay, an upper half of a parabola with the axis on the lower diagonal,

" =, = (13)
, N.<0.
2n_ HE

=

The true limit lines are shifted along the axis 1_ to the left the more the closer 3 to 0. In
particular, forn =3 the lines b7V as well as b are of the formﬁ = —(1/8)[33(1%7 —4[3‘2)2,
1:]7 <—4B7(2-P), and after a simple algebra we find that their shifts along the axesm_and
n.are A =-2B7(1-2p) and AR, =B~ (1-4p).

The lines of asymmetric configurations are attached to the lines of symmetric
configurations with the same 3 at the “line of matching points”b,, , , given parametrically as

A=-2""/(v), E=4p"11-2/(v-P)], a4
where n, = n+1. The line starts at the origin, touches the lowest line of symmetric config-
urations at the point (ﬁ 05 %0 )= (1:] R %)l b=, in the lower left quadrant, and then its behavior de-
pends on the value of n: for n =3 it falls down monotonically, while for n >3 it eventually
stops and starts to rise. If ) 1, the point (1:] 0s EO )is located far from the origin just under theT:]
axis, 71, = —2" /(en®) and &, = —4/ (en).

One would expect that the line of asymmetric configurations will proceed from the
starting pointat 1 =1}, (the value of 1 natthelineb, ,) towards smallerj 7, falling down with
increasing slope. However, such behavior is observed only if the function w rises
monotonically with y for y <1/2, or equivalently, with z for z <1/ 4. As it turns out, this is

the case only if n <7. For n = 3, 4 the function y equals z°, hence it rises monotonically for
all z> 0, but for greater n it acquires a maximum that shifts with increasing n towards
smaller z, until it falls below 1/4. This happens at n = 8, when y =z>(1-4z+3z*) and
v =vy,, at z=(3-+/3)/6=0.211 The maximum then shifts further, down to y =2n"' for

m)1. Such behavior means that the line b has a cusp at some T:]m >ﬁc ; asy decreases, it
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first rises towards greater ﬁ, and only afterﬁ reaches the value ﬁm it turns back and starts to
fall down. o
. . .. cent 2% T

The extremum of the parameter 3 as a function of y is minimum if " = -0 &/ 8[5 £>0.

With the expression (10) for E, we obtain for symmetric configurations

B!l =2 VBn n nc

Bo—B "
and for asymmetric configurations
1 2dy [dz | = _
B’ =B ————(=(-Y)
4" (4B, B

We want to construct lines in the (ﬁ R E) plane at which the lower threshold for e e creation
equals Bk ,,. The lines, which we will denote by b, must satisfy f’ =0and " > 0, and if two
such lines with different values of B3 cross at the given point in the (ﬁ ,E) plane, we must
chose the one with the less .

Suppose first that B <3,. Determining the line b is straightforward ifn <7. For such n it
holds dy / dz > 0 for all z <1/ 4, therefore 3" > 0 along the whole line of asymmetric con-
figurations. Note also that 0 Ez —4n ™ [(42)"' B, —B] <O for all z <1/ 4, hence the lines
of asymmetric configurations do not intersect. Furthermore, the line of symmetric config-
urations has " > 0 for all ] >1,, that is, all the way up from the matching point with the
line of asymmetric configurations to infinity. Thus, if we denote the part of the line of
symmetric configurations with 1} >1_ by b**’, the line b is the union of b~ and b*’. The
analysis is a bit more tricky ifn >7. The line b is then composed of two parts, the part
b!”which goes from the point | =1, , where it matches the line of symmetric configura-
tions, to the cusp atﬁ :‘r:]m , and the partb',” which goes from the cusp to infinity. Along
the former part it holds " < 0 and along the latter part it holds 8" > 0. Furthermore, since
the derivative a’% / dﬁ increases as we move from the matching point through the cusp to

infinity, the lines 5!~ and b{,” are convex and concave respectively; and since the line b~
is tangential to the line of symmetric configurations at the matching point, the cusp is lo-
cated above that line. Thus, the lines bf,')~an(1 b, at which both conditions ' =0 and
B" > Oare satisfied, intersect at some point =1, between the matching point and the cusp.

Denote the line composed of b andb™’ by b, and consider two neighboring lines b, and
b with [3 <. The line b (upper part of b ,) crosses the line b, (left part of b,) atn >n .
that is, above the point of intersection of the lines b!,” and b(”, and the line b, (left part
of Z;O) crosses the line b** (upper part of b)) atT:] <ﬁ .» that is, left to the point of intersec-
tion of the lines b;,” and b*’. At the crossing points, the lower threshold of "¢ annihila-
tion is located at the curve with lower 3, which isb,. We can see that in order to obtain the
line b we must remove from the line b, the part of b),” above the point of intersection, as
well as the part of b left to the point of intersection. Thus, b is the union of the parts of
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the lines b|,’ and b" going from infinity to the point of intersection and from the point of
intersection back to infinity.

Suppose now that 3 > 3. The part of the line of symmetric configurations complemen-
tary toh"" does not contribute to b because it has greater value of B than the line of asym-
metric configurations crossing it at any given point. Thus, we are left with the line of
asymmetric configurations b, or rather its part b},) which is cut either at the line

b (B,), thatis, at z =z, suchthat&, =271, +A, , or at the point where the line 5" inter-
sects the neighboring line b, that is, at z = Z, =(1/4)B, /B, whichever point comes first
as we follow the line from large negativeﬁ tOT:] = ﬁ .- (The cut at z =z, is necessary since at
smaller z it holds B" <0.) For n=3, the cut occurs at the former point (it holds
7' =4[+ uJ3+u)/2],u =B/B, —1, sothatz;' >z;' =4(1+u)), and we will assume
that the same is true for n > 3, because even if it was not, the form of the allowed region
discussed further would stay qualitatively the same.

Suppose, following [5], that the lower threshold of e"e” annihilation lies betweenk ,
and 2 k,,.The allowed region in the (T:],E) plane is then an infinite band between the line
b(1) and the union of the lines b(2) =b'’ (2)and b’ (B, ) cut at the end point of b(2). The

down
band, if we follow it from large positive to large negative values of ﬁ, is first straight, keep-
ing its width and tilted downwards with the slope 2", and then it widens and bends down-
wards, becoming parabolic with the axis on the lower diagonal as 1] — —oo. While still

straight, the band touches the origin from below.

The allowed region in the complete theory, by which we mean the theory of the three
processes considered here, is an intersection of the band we have just constructed with the
infinite wedge we have constructed earlier. To see how this region looks like, we must

pass from the dimensionless parameters (1, &), @, E) and (ﬁ, E) to the dimensional parame-

obs
max

ters (n, &) ; that is, we must multiply the parameters (7, %) byA=m’[(p”)", the parame-

ters (i, &) by B=m’ [ (ks

)" and the parameters H,Eby 8 = oy /m” =m’® [k},. For the
momenta appearing in these expressions, let us adopt the values used in [5], namely

k2 =p® =50TeV and k,, =10 TeV (corresponding to o, = 25 meV). In Planck units,

max

the constants A, B are

2 19 v
Ap = |OIMVIII0TGeV oy gieeisv _ 000, 4x102,... for n=34,... (15
50TeV | | 50TeV

and the constant B is greater than the constants A, B by the factor 5". Using equations (7b)
and (13), we find that the width of the inner boundary of the allowed region for photon col-
lision, when considered far from the origin, is greater than the width of the outer boundary
of the allowed region for photon decay by the factor (5/2)" = 15.6, 39, ...forn=3,4, ...
(The width of a parabola is defined as the distance between opposite points at the level of
focus,d =k fory = kx%.) Thus, the bent segment of the former region lies far to the left of
the latter region, deep in the forbidden part of the (n, &) plane.

The allowed region for the three processes considered here is depicted in Fig. 6. The
region, delimited by heavy line, is an intersection of two regions delimited by light lines,
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Fig. 6. Allowed region in the complete theory

the allowed region for the two one-particle processes (the wedge) and the allowed region
for the two-particle process (the bowed band). As we can see, the region has the form of a
tilted trapezoid-like strip, with the upper right vertex close to the origin and the right-hand
side close to the & axis. This is just the kind of behavior that has been observed earlier in
the case n = 3, see Fig. 8 in [5].

4. Conclusion

In a theory with dispersion relations (1) one would expect n to be small, say, 2, 3 or 4,

and & and 1) to be of order m;l( "2 where m », 18 Planck mass. To see how far the theory can

be stretched, we have supposed that n as well as & and 1 can be arbitrary, requiring just
that the dispersion relations do not contradict observational data. From the fact that the
highest energy of electrons and photons encountered in observations is by many orders
of magnitude less than the Planck mass it follows that large values of n bring in large
values of & and m: as seen from Equation (15), & and m are typically of order

107" x (2x10")"?m,"?, so that they rise steeply with n when expressed in Planck units.

The corresponding mass scale is 50 mp; for n = 3, it falls down to 5x 10"mp, for n = 4, and
as we increase 7, it continues to decrease, approaching gradually the value 5x10 °mp
(maximum energy available in observations). Of course, the parameters & and 1 do not
need to be from the bulk of the allowed region, we can assume that they are from a tiny
patch around the origin. That would push the mass scale towards mp;, however, we should
then come to terms with the fact that the deviation from standard dispersion relations will
not be observed any soon.

Two objections can be raised against large values of n: there is no reason that in the
Taylor expansion of energy function of momentum a lot of terms are skipped before the
expansion starts; and it does not seem plausible for the future theory of quantum gravity,
whatever it will look like, to lead to mass scales that are substantially less than mp;. We did
not attempt to propose a theory in which n would be large and & and n would be much
greater than m, " > . Instead, our aim was to determine, in the spirit of quantum gravity
phenomenology, how the observational constraints would look in a theory with large 7,
knowing in advance that we will need also large & and 1) in order to be able to actually ob-
serve the effect of the additional term in dispersion relations. We have found out, by ana-

lyzing the three main processes determining the boundaries of the allowed region in the (0, &)
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plane, that the region is similar in shape to that obtained in [5] for n = 3, and is stretched by a

factor 2x 1014’”1:11 each time we increase n by unity.
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