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Abstract: Proposed theories for the observed accelerated expansion of the Universe are analyzed from
viewpoints of Feynman’s criteria on physical theories. On their basis we have derived the most general
set of equations between fields which can be generated by point like particles with masses and with given
various charges. This general set of equations is formally identical with laws of motion of the general
theory of relativity completed by the dark energy and by the cosmological constant. The dark energy
density is produced by a tensor field due to the existence of the cosmological constant. The derived laws
of motion are exactly solved for a spherically symmetric gravitational field generated by a heavy body
with the mass M. Its metric corresponds to a black hole which must have three horizons. An
oversimplified model of the Universe in which galaxies are regarded as test particles moving in the
gravitational field of this black hole provides the simple explanation for understanding of the origin and
causes for the observed accelerated expansion of the Universe. The theory provides a generalized
Hubble law and all physical observables are determined uniquely by three dimensionful fundamental
constants the presence of which is dictated by the internal structure of the theory.

PACS numbers: 04.20.-q, 04.20.Cv, 02.40.Hw, 98.80.Dr

1. Introduction

The proper understanding of the origin for the observed accelerated expansion of the
Universe represents one of the most fundamental open problem in physics even after
20 years of these discoveries [1, 2]. Since then in cosmology several physical models and
theories have been proposed for possible explanations of this phenomenon. The existence
of the dark energy [3] seems to be the most accepted hypothesis for the explanation of this
acceleration. The proposed two forms for the dark energy are represented by introducing
the cosmological constant A into Einstein equations of general theory of relativity (GTR)
[4], or by a scalar field such as a kind of a quintessence whose energy density can depend
on coordinates in a metric space [5, 6]. The hypothesis for the dark energy is, in fact, very
much dependent on a way how one modifies GTR. Therefore, there are possibilities that
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modifications to GTR completely eliminate the need for dark energy [7, 8]. There exist, of
course, skeptical alternatives to dark energy in such strong statements that the dark energy
does not actually exist and is merely an improper measurement artifact [9-12].

All of these models and theories for the explanation of the observed accelerated expan-
sion of the Universe are, in fact, empirically equivalent theories accounting for the expla-
nation of the same observations on a basis of different assumptions. All of them they have
the common feature by which they tie directly effects with causes on the basis of perfect
logical arguments so in order their assumptions were consistent with observations. Thus
these assumptions bring no additional empirical content to be tested and by this fact these
theories are unfalsifiable in the sense defined by Popper[13]. In our program we want to
identify at least one of them which could be the best candidate corresponding to the exist-
ing physical reality by applying Feynman’s criteria on physical theories. According to
Feynman [14]: “The modern physics had banished any possibility of discovering a system
of laws unambiguously tying effects to causes; or a system of laws deduced and conjoined
with perfect logical consistency; or a system of laws rooted in the objects that people can
see and feel.”

Led by these Feynman criteria, our aims are to find the most general set of equations
between various fields which can be generated by point like particles with masses and
with various charges moving along worldlines of time-like characters in a given metric
space. We will show explicitly that the set of these most general equations is formally
identical with all laws of motion of the standard general theory of relativity completed by
the cosmological constant A and by an antisymmetric tensor field G* (x). The tensor field
G (x)does not interact with an electromagnetic field and therefore its effects are invisible
by instruments of optical and radar astronomers. The field G (x) does not interact with
any charges except for masses and its energy density contributes to the stress energy ten-
sor of fields in the Einstein equations of GTR. It represents the dark energy density in a
contradistinction to the theories [5, 6].

In the IV. Section of this paper we demonstrate the exact solution to the derived
equations corresponding to the gravitational field generated by a heavy mass at the center
of the Universe. We will explicitly show how test bodies far from the center of the
Universe are accelerated away from its center. On this simplified physical system one can
understand the origin of the observed accelerated expansion of the Universe [1, 2].

2. General properties of worldlines

According to Okun [15] “in the modern language of relativity theory there is only one
mass, the Newtonian mass m, which does not depend on a particle state or on a reference
frame.” The mass m of a particle is an internal and invariant characteristic of the particle
like its electric charge e, baryon number, hypercharge and so on. In order to elucidate the
role of mass we consider a curve of time like character, i.e., a worldline corresponding to a
massive particle in a metric space with a given metric tensor g op? o, =0,1,2,3. Each such
worldline

2=(2"(s),2(s)) (L1
can be parametrized by the invariant parameter s, i.e., by its “length” defined by the relation
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ds® = g,,dz" dz” (IL.2a)
and the expression
w, = ddzs (I1.2b)

can be regarded as the tangential vector of this worldline. From the last two definitions one
gets the relation
& d
8up ds ds
which is the universal property of the worldlines in the metric space, namely, that
tangential vectors w “are always unit vectors in the sense (IL.3).
In the metric space with the given metric tensor g , we define the vector

o

= guﬁw“wB =1 (IL.3)

o

p =mc =mew* , (11421)

where m is the mass of particle and c is an universal constant. For the sake of simplicity and
for a moment we consider the Minkowski space-time with the metric g, o, =0,1,2,3,
8w =landg,k =-08,, i,k=1,2,3 and the worldline is parametrized by the time ¢, i.e.,
z=(ct, z(t)). In this simple case
22
ds® = cz[l—zsztz = Adr?
C

and the four vector p* =(p°, p) has the components
0 me mz
P = =, P= —
R

which are identical with the mechanical four-momentum of the particle with the mass m in
the special theory of relativity.

Next we introduce the dimensionful entity known as the energy of the particle E = p°c
in general metric space and by this fact the fundamental constant ¢ has the dimension of
velocity. For this reasons the vector p”defined by (II.4a) is the vector of energy-momen-

tum of the particle in each metric space. The vector p“is therefore proportional to the tan-
gential vector w“ and satisfies the generally valid relation

g0 P’ =m’c (IL4b)
under any circumstances. On the last equation (II.4b) we apply the covariant derivative D?g
along the worldline z(s) to get the relation

gaﬁ{(z]: +ILp czzsv }((f =0, (I1L.5)
where l“;i is affine connection [16] defined by

I = %g“{% 8yo + 0, 85— 08y | (IL.6)

and evaluted on the worldline z(s). The generally valid relation (IL.5) dictates that the
vector
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Lo p” o, 42

ZF @ EE+ L. r P
must be under any circumstances an orthogonal vector to the tangential vector w“ of the
given worldline.

For any given worldline z(s) in the given metric space with the metric 8 the right
hand site of the expression (II.7) can be explicitly calculated with some result

dgf iTop ‘Z; - %F“(z), (IL8)
by which one derives the vector F* (z)defined on the worldline z(s). If we denote the proper
time 7 by the relation ds =cdr, then we can rewrite (I1.8) in the form

dp* ., dZY

d7r L 4 dr
and interpret it as the relativistic law of motion of the particle moving under the influence
of two forces

(IL7)

=F"(2) (1.9)

V' _peyrFe), (IL.10)
dr
where
dz"

F @) =-T p

dr

is interpreted as the “gravitational force” due to the existence of metric space with the met-
ric tensor g, dependent on coordinates and F “(z) can be regarded as an external force. It
means that one can always assign an external force F* (z)to the given worldline in the met-
ric space according to Eq. (II.9) and the influence of metric space on the motion of the par-
ticle can be regarded as the gravitational force. However, the forces F”(z) cannot be
arbitrary, but must be orthogonal to the tangential vectors w“, i.e. they must satisfy the
equations

8o “(Z)EB =0 (IL11)

dr

under any circumstances. We develop the general method for the explicit determination of
the forces F” (z) satisfying the last relation in general for any existing interactions between
particles.

If one selects from all worldlines such one which gives F*(z)=0 , then for this
worldline one gets the relation

7 L. d2dz

as” ™ ds ds
which represents the equation for geodetics in the metric space. In this case the motion of
the particle is without the presence of external forces and therefore it is a free motion in the
metric space.

Next we consider a system of N worldlines in a given metric space and each worldline
z,,n=1,2,...,N, is parametrized by one out of coordinates of the metric space, let us

0, (IL12)

choose the coordinate x° =ct, i.e., z,(2) =(ct,z,(1)).
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The general relations (II.1)-(II.11) must be satisfied for each curve corresponding to
the worldline of a particle with the mass m,absolutely and for any existing interactions be-
tween these particles. In this paper we develop the general method by which the external
forces F“ (z) defined by Eq. (I1.8) are explicitly determined.

3. Field theory, the mechanical energy-momentum tensor
and field strength tensors

The laws of motion of relativistic mechanics of massive particles (II.8), generally
valid for every worldline z, () =(ct, z,(¢)), n=1,2,3, ..., N, in the form

L Y A e (IL1)
dr, dr,

will be formulated in field theory for a given set of worldlines with the aim to determine the
forces F,' (z, ) explicitly. In what follows, for the sake of simplicity, we restrict ourselves to
the 4-dimensional metric space - spacetime, however, our considerations are valid in met-
ric spaces of any dimensions. By the definition we denote the left hand sides of (III.1) as
“forces” F “(z,) and for these forces we derive their density f'*(x).

In 4-dimensional metric space we have the invariant 4-volume element

dQ* = Jgd'x=[gedtd’x; g= ‘detgUlB (I11.2a)
and in each its point we define the invariant 3-volume element
0
do? = @%d%{ = c\/?%d%(; ds? = gaﬁdxo‘dxﬁ, (II1.2b)

Our aim is to find the force density f'* (x) in the form of covariant divergence of the sym-
metric mechanical energymomentum tensor 7" (x) =T (x) , i.e.

=T x),, (I11.32)
where
1
TP, = Eaﬁ[\/ﬁ:‘f@)} + 5 T2 (%)
so in order to get the relation
N o v
[dof = Z{dpﬂ . ds, } (I11.3b)
| 4, dr,

Such tensor indeed exists and is determined by curve integrals along the world lines
z,(t)=(ct, z,(t)) in the form

N de

TP =2 me’ | —=

2l

By the simple integration over x° = ct we get the result

%ﬂ *x—-z,) =T (x). (I11.4a)

m

N o B
T%(x) =Y. ¢ dx mn%&‘(x—zn(t)), (I11.4b)

m £ lﬁds

which indeed satisfies Eq. (II.3b). Next we note that the quantity
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z %3(;(_1”(;)) Ejg(x) (IIL.4¢c)
n=1 ‘\/§ d
is a 4-vector which satisfies the invariant conservation law
I, =0 (ITL.4d)

by its definition (IIl.4c), because the invariant conservation law is satisfied by every
individual term in the sum (IIL.4c). Thus the masses m,are indeed internal and invariant
characteristics of particles and the mechanical energymomentum tensor 7°° (x) can be

expressed in the elegant covariant form

T%(x) = x (I1L.4e)
() & (%)
as the direct product of two four vectors giving the scalar function
D(x) =g, T (%). (IL.4f)

The studied system of worldlines exists in the metric space with the given g, where
one has the Riemann curvature tensor defined by

— B r* B
wa - { 0 Vg/»x +0, a/guv au angv gux} + gaﬁ{rktrlw - ?vrux (IH‘Sa)

from which one can derive the only symmetric tensors of the second rank

R,=g¢"R,,, (IIL.5b)
i.e. Ricci tensor and g, L, where Lis, in general, a function of fourteen curvature scalars
which can be constructed out of R, Ay and g

From the definitions (II1.5) it is clear that the Ricci tensor has the dimension 1/ /2,
where / is a fundamental dimensionful constant with the dimension of a length.

Next we want to define the most general form for the density f“ (x)of the forces F;' (z,)
present on the right hand side of Eq. (III.1). Its most general form is given as the sum of
curve integrals along the worldlines z, (¢), i.e.,

= ZI o [4 () +5°(0)]6* (x—2,1)). (IIL6)

where A (x) is an antisymmetric and S* (x) is a symmetric tensor. The only symmetric
tensors which are associated with the metric space are the Ricci tensor R* and g “* L With
the help of them we construct the most general symmetric tensor

S~ RP gL H*®, (I11.7)
where 7 “* (x) denotes yet an unspecified symmetric tensor which will be determined later on.

There exist many antisymmetric tensors A" (x), but in our further considerations, for
the sake of simplicity, we consider only one antisymmetric tensor F*" (x) and with it we
write the most general force density (I11.6) in the form

£ () = zN:j% gw{enF‘” +k(R™ —g“L—H® )m:}64(x—zn) , (I11.8a)

where e, and m, are internal and invariant characteristics of particles as their some charges
e, and masses m, and k is a fundamental dimensionful constant. By the direct integration
of the last integral overx® =ct we get the result
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1 Z 1 av v av av d.X“
f“(x):zgﬁgw{ef +k(R™ —g™L-H )mf}?y(x—z”(t))‘ (I11.8b)

The force density £* (x)must have the dimension [E][/]™*, what implies that dimensions of
its terms in the sum (II1.8b) are as given by

[eF"]1=[EIl(]", [K=[/]kg's™ (1L.9)
Thus, the dimensionful fundamental konstant k£ has exactly the same dimension as the

Newton gravitational constant G. For the sake of brevity and from now on we use the
notation

S® = R™ —g“L—H™. (I11.10)
We note that quantities entering the expression (II1.8b)

N

Z%e %63(7;— z,(1)) = j* (%) (IL.11a)
and

k1 (m)) dx

I 2 (M) @ s ) =g (IIL.11b)

Zﬂ;\@( C) o O x=n@) =0

are four-vectors which satisfy the invariant conservation laws

F @, =@, =0 (IL11¢)
and the 4-vector (III.11b) has the same dimension as the 4-vector (III.4¢) associated with
the mechanical energymomentum tensor Tm‘"B (x).The 4-vectors j* (x)andJ* (x)are used to
express f“ (x)in the elegant explicitly covariant form

1
fAx) =—g AF“ " +c*S™J" }. (IIL.12)
c

In the next step we find such symmetric and traceless tensor 8 (x), the stress energy
tensor of the fields F** and §“, the covariant divergence of which gives the force density
fe@),ie.,

[0 =-0"(x), . (IIL.13)
Such tensor indeed exists in the form

Oaﬁ :{igonBvaVva _gva‘a“Fﬁv}"'
1(1 , ,
+7{{1g“ﬁG“‘Gw -8,G*G™ + 1c?g [S*GY + S G™ ]}, (II.14)

where G “ is an antisymmetric tensor and the konstant k guarantees that the dimensions of
all terms in (II1.14) are the same and given by

[0 =[EI[(]". (IIL.15)
The relations (IT1.12) and (II1.13) are satisfied if and only if the tensor fields F**, G* and
S satisfy the following equations

F. =0, (I11.16)

Bu o

o 1 /
F B(x):a :;jﬁ(x)s Fa[};l +F;IU~ §B+

G ), = —LSJ (x), (II.17)
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and

k

[od v 1 o vV
;ng “y +Eg PG G +Gp, G 1+

nvip vBu

2 o Bv B av B av _
+0c%g, {SHGY + S G + ™Gy} =0. (IIL.18)

The equations (III.16) are identical with Maxwell’s equations of electrodynamics and e,
are electric charges of particles. The tensor F** (x) is the electromagnetic field strength ten-
sor which is gauge invariant under the U(1) gauge group transformations. The expressions
(I1.17) are similar to the first of Eq. (IIL.16), however the fields G* and § “* must satisfy
Eq. (II1.18).

From Egs. (II1.9)-(111.18) it follows that electric charges e, and masses m, must have
dimensions

[€’] =[Kl[m*]1=[E]I[(]. (IIL.19)
It means that general properties of worldlines corresponding to massive particles dictate

the existence of three dimensionful fundamental constants ¢, / and G, as a complete set of
units by which one can measure masses m, electric charges e, and energy E in units

1) ALl [1[c]
_ el = , - ~ (I11.20)
[m] (G [e] Jic1 [E] (G]

It is therefore necessary and sufficient to have three dimensionful units in order to
reproduce in an empirically meaningful way the dimensions of all quantities entering our
theory. The presented origin of the fundamental constants of physics is perfectly consistent
with the analysis made by Weinberg [17] and Okun [18].

Next we assume that we have found the fields F*, G*and S “*as solutions to Egs.
[I1.16)-(III.18). In this case the total energy-momentum tensor

T(x) = T2 (x) + 67(x) (II1.21)
satisfies the important equation
T, =0 (II1.22)

which is equivalent to the relation f'* (x) = f* (x) representing the generally valid relations
(III.1) formulated in the presented field theory. Now if we carry out the integration of the
integral

[a'T( =0,
then we get the explicit result

X[ dpe dzy | 1 dz,
no4 T n | _ = e F + kS mZ LA 111.23
nz;{d(r,, whh d‘f,,} c,;g”v{ @) G} dr, R

n

Thus we have obtained laws of motion (III.1) generally valid for every worldline in which
the forces F; (z,) are explicitly determined by (II1.23), i.e.

Fe) =g, {eF™ @)+ks™ G, )mf}% : (II1.24)
c dr,
However, the force F" (z,) must be under any conditions always orthogonal to the vector
dz} /dr,, i.e., it must satisfy the relation

n>
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8upF (@) jj_’ =0. (I1.25)

The last relation generally valid for every worldline can be satisfied if and only if the sym-
metric tensor field S (x) =0, i.e.
R? — gL =", (I11.26)
In the presented theory we have at our disposal only one symmetric tensor and it is
T (x) defined by (IIL.21). By this fact H** = KT, where K is a constant expressed by
the universal constants ¢,G and /. The dimensional analysis determines the constant

K=vG/[c*, where yis a dimensionless numerical constant, and the relation (II1.26) can be
written in the form

G
of afy _ o
R —g™L=y x T (111.27)

The equation (II1.22) with § * (x) =0 and S ** (x) , =0imply that Eq. (I11.27) must be of
the form

R _ % gPR—g“A = Y%Tuﬁ, (I11.28)

where R=g R*is the scalar curvature and A is the so called cosmological constant with

the dimension [A]=1/[I]*. The last equations are formally identical with Einstein equa-
tions in general theory of relativity known from textbooks providing that y =8m.
By Eq. (II1.28), i.e., S’ (x) =0 and S **(x) ,» =0, the relation (IIL.18) is simplified to

the form

k

o v 1 o v
“8.G" g PG"[G, 5 +Gpy G 1=0. (I11.29)

nvip

The expression in the bracket is an antisymmetric tensor of the third rank which has only
four independent components and can be written in the form

k To
GP‘V%B + GBH;V + GVBLI = _;\/ES;WBUJ > (III.30)

whereJ ° (x)is a 4-vector and €,y Stands for the totally antisymmetric Levi-Civitta symbol

p
with the convention "> =—¢_,,, =1. The last relation and the law of motion (II1.17) for the

field G* (x) can remind one laws of motion of an electrodynamics with magnetic
monopoles with the current density J ° (x) [19]. However, in our case the current density
J°(x) is not a given 4-vector, but it is the 4-vector generated by the tensor field G*" (x)

which satisfies the law of motion (III.17). By inserting the definition (II1.30) into (I11.29)
and by defining the dual tensor field

~ 1 .
G, = E\/gc;v S (IIL31)

we can rewrite Egs.(II1.17) and (II1.29) in the simple covariant forms

G, = —fﬂ(x); G, ()J'()=G,, ()T (x). (IIL.32)
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Similarly, one can define the dual tensor F** = ﬁ g F,, (x) to the electromagnetic field

strength tensor F** and express the Maxwell equations (II.16) and the Lorentz force den-
sity (III.12) in the covariant forms

F™(x), = %jﬁ(X); F, =0 f(x)= %8,WF““ (0] (). (I1.33)

The last equations represent laws of motion of classical electrodynamics which were de-
rived as rigorous consequences of differential geometry in the four dimensional metric
space - spacetime.

By comparing Egs. (II1.32) and (II1.33) one sees that only first equations in them are
similar, however the second equation in (II[.32) represents a nonlinear constraint on the
field G** (x) and a “Lorentz” force density corresponding to the field G* (x)does not exist.

From now on we accept the numerical value for y =8nto have Eq. (II1.28) in the form

(II1.34)

>

R —lgaﬁR—gaﬁA — grxﬁ
2 c

with the cosmological constant A. The last equations are only formally identical with the
Einstein equations of the standard general theory of relativity, because in our case general
properties of worldlines imply the existence of the field G* which always gives a contribu-
tion to the tensor T*’standing on the right hand side of Eq. (II1.34). However, as one
knows, no such tensor field G* exists in the standard Einstein general theory of relativity.
If the presented theoretical analysis of the necessary existence of the tensor field G* corre-
sponded to physical reality, then its contribution into 7" could represent the dark energy in
the spacetime.

Let us suppose that we have found exact solutions to Eqgs. (I11.32)-(I11.34) determin-
ing F*® (x) and 8 o (X) as explicit functions of coordinates x in the spacetime, then we get

laws of motion of a test particle with electric charge e and mass m in the form

e v, a2
Voirior S -fe mr 0T (I1L35)
The last equations represent laws of motion of the relativistic mechanics in the general the-
ory of relativity. The Eqs. (II1.32)-(II1.35) are classical laws of motion of physics derived
as rigorous consequences of differential geometry in the spacetime and they represent the
closed set of most general equations between fields generated by particles with masses and
electric charges. The presented theory has induced the existence of three fundamental
dimensionful constants ¢, G and the cosmological constant A as a natural set of units in cos-
mology. By this fact the unit of length ¢ and the constant k entering Egs. (II1.11b)-(I11.32)
are replaced by the relations
4n

0= e k=4nG. (IIL.36)

The classical tests of Einstein general theory of relativity: the gravitational red-shift of
spectral lines, the precession of perihelia of orbits of planets, the deflection of light by the
Sun and the time delay of radar echoes passing the Sun are in the perfect agreement with
empirical observations [16, 20]. All four tests were carried out in the empty space, i.e.,
without the dark energy and with the cosmological constant A =0 in the spherically sym-
metric gravitational field with the metric
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ds? = B(r)c*dt* — A(r)dr® —r*d9* —r*sin®* 9do” , (I11.37)
where wherer, 3 and ¢ are the spherical polar coordinates.

According to Birkhoff theorem [16] every spherically symmetric gravitational field in
empty space must be static and with the Schwarzschild metric
1 2GM

B(r) :1—:1; Ar)=——:; 1

: (I11.38)
B(r) c?

b}

where M is the mass of Sun.

However, general properties of worldlines corresponding to massive particles require the
necessary existence of the field G* (x) which can never be zero. Thus the spacetime must
contain the dark energy corresponding to this field and by this fact a gravitational field in
empty space cannot exist. If the presented analysis with the necessary existence of the dark
energy contradicted to the classical tests of the standard general theory of relativity, then
we would regard content of our paper as an academic and meaningless exercise in differen-
tial geometry or as a sophisticated way for a derivation of equations which are accidentally
identical with laws of motion of classical physics. For these reasons in the next section we
find exact solutions to Eqgs. (I11.32)-(II1.35) for a point like particle with mass M and elec-
tric charge Q having the worldline z(¢) =(ct,0) with the aim to elucidate the origin and

causes for the observed accelerated expansion of the Universe [1, 2].

4. Static spherically symmetric gravitational field
with the dark energy in the space time

We derive the properties of the metric space with the gravitational field generated by a
point like particle with the mass M and electric charge Q having the worldline z(¢) =(ct,0).
We use the spherical polar coordinatesr, 3 and ¢ with the diagonal metric in the standard
form [16]

ds® = g,,c’dt’ + g,,dr’ + g,,d9° + g,,do’ =

= B(r)c*dt* — A(r)dr? —r’d9* —r’sin® 9do” . (IV.1a)

The indices a, B of tensors are identified so that 0 =¢,1=r,2 =9 and 3 = ¢. It is very conve-

nient to use the function A(r) expressed in the form

2

Ay =L (IV.1b)

B(r)

with the function f{r)to be determined and which gives g = f*() r* sin® 9. In this notation

the affine connection I}, is computed from the formula (IL.6). Its only nonvanishing com-
ponents are

B!
T =T =53
BB’ B 2 B B
1—‘010 =520 Flll =i A i L 5 1—~212 = _%; r313 = —%SiHZS
2f 2 dr\ B f f

cosd

1 .
=T} =T,=T. = e [} =-sin9cos9; I, =T}, = (IV.2a)

. )
sin 9
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where B'(r) means differentiation with respect to r. Similarly the Riemann tensor R,  is

Auvy,
calculated from the formula (III.5a) and its only nonvanishing components are
l /f, "
Ryio1 = =Ryi0 = ~Riggr = Rygpo = 2(3 ? -B j’
rBB’
R _=-R, =-R__ =R =—""
0202 0220 2002 2020 27
R..=-R_.=-R_ =R =———rsin’9,
0303 0330 3003 3030 27
B/ fV
Ry =Ry =Ry, = Ry = [23 _f]r >
B’ fV .
Ry, = —Rpyy = =Ry = Ry, = (23 _fjrsmz g,
B 2 2
Ry = Ry = —Rypyy = Ryyyy = [fz ljr sin” 9. (IV.2b)

The nonvanishing Riemann tensor is the general and plausible representation of the exis-
tence of a gravitational field. For the metric (IV.1) the Riemann tensor (IV.2b) has, in fact,
only four independent components. The Ricci tensor R[‘: is computed from the last formu-
lae and its only nonvanishing components are

2t U
o 1 dIrB) g 2BS g L dfB) 1 av.3a)
2fr-dr( f r f fredrf) r
which give the scalar curvature R in the form
Rz% 4 li(rzB) _QFBLZ _%. (IV.3b)
fro\dr| fdr f|r

The point-like particle with the mass M and electric charge Q with the worldline
z(t) =(ct, 0) has the mechanical 4-momentum p = (p°,0) which must satisfy the condition
(IL.4b), i.e.,

8" P’ = B(p°) = M*¢?,

which implies the solution
VB

under the necessary condition

lim B¢) > 0. IV.4)
This particle generates the mechanical energy-momentum tensor 7** as given by the for-
mula (III.4e) with the only one nonvanishing component 7" and the scalar D in the forms

70 _ Mc? () _ Mc’VB

" AnfJB r* 4nfr’

Thus, the condition (IV.4) is the absolutely necessary one for the meaningful definitions of
p°, 7;?0 and D. As one can notice the Schwazschild metric (II1.38) contradicts to the condi-

3(r). (Iv.5)
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tion (IV.4). This fact does not disturb us at all, because the Schwarzschild metric (II1.38)
was derived in the theory permitting the existence of gravitational field even in an empty
space, i.e., even if p° =T’ =0, while in our theoretical analysis a gravitational field in an
empty space cannot exist. Thus, we have two distinct theories which are autonomous and
must be internally self-consistent accounting for the same empirical observations as two
empirically equivalent theories. For Feynman [14], especially, “the tensions and contradic-
tions between alternative theories served as a creative force, an engine, for generating new
knowledge”. These contradictions will simply disappear under the presence of dark en-
ergy.

The corresponding current densities j(x) and J(x) as defined by (III.11) are given by

JAG M

=00, =L 50y T=0n0, 5 =AM 5 V.6

J=3050, Jj dnfr? ) v",0 dnc f? ") (Iv.6)
They generate the field strength tensors F** and G “ satisfying Egs. (I11.32) and (II1.33)
with their only nonvanishing components as given by

F'=-F"= 4;2 {x(r)+ a[x(r)—l]z} ;
2
G- e JAb [Gﬂj
frisin9\ ¢ )’

where a and b > 0 are dimensionless parameters to be determined later on. Here y () de-

notes the step function defined so that % () =1forr >0, x() =0 forr <0and %'() = 5().
We regard the step function in (IV.7a) as the distribution rigorously defined on a set of

real analytic functions y(r; B) of the variable r for every value of the parameter 3 > 0 by the

relation
) = %gg xr;B), (IV.7b)
where y(r; B) can be represented in the form
-1
1
X(r;B) _ (l + eB’J . IV.7¢)
VB

We determine the current density J =(J °,0),
o _GYATB M 1
dte  fr* f° ’
and Egs. (II1.32) imply the differential equation for the function f{r) in the form
1f
f0)d(r) = ZF . (IV.8a)

The last equation has the general solution in the form of the distribution

firy={1-b[x) —1]}7l (IV.8b)
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under the condition f{0)=1. Thus, f{r)is the distribution rigorously defined on the set of
real analytic functions f{r;3) of the variable r for every value of the parameter 3 >0 by the
relation

fir) = %LI{gf(r; B,
where f(r;p)is given by (IV.8b) in which y () is replaced by y(; ). In this case the func-
tion f(r)has the properties f(r) =1for everyr >0and f(r)=(1+b)" for every r < 0.

The field strength tensors (IV.7a) imply the only nonvanishing diagonal components
of the stress energy tensor 6‘; as given by

05 = 0] =—02 =0 =
A (GMN'[ 1 ) . 1 (
=] — JE— -1 _
22 {bfz )+ @) -1 }+ .
By the last formula the total energy-momentum tensor TBOL as defined by (IIL.21) is
explicitely determined by the relations
70 = Mc*\B

o 4thr2

Q

2
4nr

jz{x(r)+ a[y(r)-11'}. (IV.9a)

8r)+0y; T =-T)=-T) =6). (IV.9b)

The Einstein equations (II1.34) are written in the form

8nG .,

T
ct P

o 1 o oA
Ry _ESBR_SBA_

and they imply the following set of equations:

GM B £ GMd(r)
—R—4A:2%4£€8(r) - STZGD, (IV.10b)
c fr c
RO+ A= G—i”@ﬁ(r) LY (IV.10¢)
c fr c

The Egs. (IV.10a) and (IV.8) require the condition

lim r</B = @4 (Iv.11)
r—0 c b

to be satisfied. Eq. (IV.10b) determines the scalar curvature R of the spacetime by the rela-
tion

2
R=—4A- ztG—jzwj 8(?
c br
which with the expression for R (IV.3b) leads to the second order differential equation
dfld
2f—4Afr’ ——=—(’B)}=0 Iv.12
f-4nfr dr{fdrv )} av.12)

for the function B(). This differential equation can be easily integrated with the result

B(r) = fA(r)+ le(r)-k%z—%Afz(r)rZ, (IV.13)
r

r



THE ORIGIN AND CAUSES FOR THE OBSERVED ... 73

where C, and C,are integration constants. By taking into account the relation (IV.11), then
the integration constant C,is given by the formula

GM\’ 1
CZZ(TJ 22
c b

The explicitly known form (IV.13) for B(r)used in Eq. (IV.10c) implies the algebraic
equation
1 GM\*[ 1 1 Q°
o A(7j {bfz +x0)+ az[X(’”)—l]z}+ I GIE

which must be satisfied for every r. Its solutions determine the parameters

{x0)+ @’lx)-11°}

1 A(GMY [R(omy*  (amy 1 @* )"
E:E 7 + j 7 +A ? +EGM2 (IV14a)
and
2 2 2 2 7!
e (“lj 1_,\,,(@2‘4) A(GLZWJ L (IV.14b)
b c c 4t GM
uniquely.

At this point we want to emphasise that the Einstein equations (IV.10) do not specify
the integration constant C, and by this fact they do not determine the metric uniquely. The
value of C, must be determined from the motion of a test particle with the mass m and elec-

tric charge e in the static gravitational and electric fields with the metric (IV.13) forr > 0.
The laws of this motion are given by (IIL.35), i.e.,

dp* dz¥ e dz"
+TC =g Fr
d7 " 4 dr cg”V dr

> (Iv.15)

o

where z* =(ct,1, S, @), p* :mdz
dr

and the affine connection I' || is explicitly determined

by the known functions f{r) and B(r) as given by the relations (IV.8) and (IV.13) respec-
tively. Since the gravitational and electric fields are isotropic, the motion of the test particle
must be confined to planes passing through the originr =0, i.e., either to meridian planes
¢ = const., or to the equatorial plane 3 =Z. One can convince himself from (IV.15) that or-
bits of the test particle are exactly the same in both meridian planes and in equatorial plane.
We may consider the orbit of our particle confined to the equatorial plane, that is

In this case Egs. (IV.15) for oo =0 and o =3 have the forms
B dr_eQ 1dr &' 2 dr

dr B dr 4ncr’Bdr’ dr r' dr
which permit their simple integrations with the results

pOB + 460 =mce; p3 = iz s (IV16b)
Tcr r

=0 (IV.16a)
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where ¢ >0 and J are integration constants which represent integrals of motion of the test
particle. The constant J is its angular momentum. The motion of the test particle must be
along its world line and it must satisfy the relation

2 1 1,2 2 2 2.2
8P P’ =BO)(P°Y ———(p' ) —r’(p’) =m’c’. (IV.16¢)
B(r)

Eq. (IV.15) for a =1 has the explicit form

dp' B[ o 1, 2} BJ? eQ B’
=z B(p'Y —— HLa— = V.17
dr i 2m ) B(p ) mr®  4ncr* m ( )
By exploiting the results (IV.16) in the last equation we rewrite it in the form
dp' d
+SLUp-=o, V.18
o Tarl? (AV-182)
where
JZ
Ur) =m<|>g(r)+ 5 B(r)+ ed.(r)
2mr
with
1, Q ( 1 eQ)
=—cB 5 = — — _— IV18b
60 2 ¢ )3 e 4nr ¢ 2mc* 4nr ( )

can be regarded as the total potential energy of the test particle. Here in the first term ¢, ()
denotes the gravitational potential, the second term represents the potential energy due to
the centrifugal force and in the third term ¢ () is identified with the effective Coulomb po-
tential.

By multiplying Eq. (IV.18a) with & 4 =& we may write it as

d7 dt dt
a1, .. }
Sy +uer=0
dt{Zm(p) r)

and our last constant of the motion is therefore & = L mc*g*as given by

L(pl)2 +U@F)=—mc’¢. (IV.18c)
2m

1
2
The last formula is identical with the equation relating the kinetic energy (p' ) /(2m) and
the effective potential energy U(r) in the nonrelativistic mechanics [21] for a particle with
the mass m moving in a spherically symmetric potential. This means that the effective
gravitational potential ¢, (") as defined by (IV.18b) must reduce on its nonrelativistic form
in the nonrelativistic limits A - Oandc — o0, i.e.,

lim limlczB(r) = 7ﬂl[+ const. (IV.18d)

coo A0 r
The last condition determines the value of the constant C, uniquely in the form

GM

C="2—5=-1,
C

wherer is the Schwarzschild radius corresponding to the mass M. The condition (IV.18d)

represents the empirical requirement without of which one could not determine the metric
of the system under consideration uniquely. By the last relation and with the expression
(IV.14) we have determined the metric (IV.1) explicitly in the form
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2
Bry=1-5+ 15 Lae 150 (Iv.19)
r 4b°r- 3
which represents the generalization and modification of the Reissner-Nordstram metric
[20, 22] under the presence of dark energy and cosmological constant A.

Intuitively it may seem as an unacceptable fact that the effective Coulomb potential
¢ () as defined by (IV.18b) could be dependent on a state ¢ of test particle. We briefly
analyse this unexpected situation on the Coulomb system similar to the hydrogen-like
atom with Q =—eZ, Z> 0, and e is the elementary charge of electron. By ignoring gravita-

tional effects with respect to Coulomb forces we may write Eq. (IV.18c¢) in the form

1 ,, J* zZé 1z 1, ,
— +—-— &+ — | =—mc (e -1)=E
2m ) 2mr®  4mr 2mc* 4nr 2 ( )

which, with the relations
ar_ . pde_J
"o P My TR
represents the exactly solvable Keppler problem [21] for any permitted values of constants
e>0andJ.
Only for the sake of short notations we allow to use the Planck constant 7 for the defi-
nitions of the following dimensionless and real parameters

zé )" ( 1 )szz "
o= ; =|1-a’=| ; =|1+[1-— .
anhe” [ J zj 1 &) o’
The states of the electron are enumerated by two numbers € >0 and J. For 0 <e <1, i.e.,

E <0, the electron has bound state orbits, as given by the exact solution of the above equa-
tions, in the form

>

1 zé me
r(e) 4n y3J?

(L+ncosyo) .

At perinuclei and apnuclei, 7 reaches its minimum and maximum valuesr_andr, as given
by

Ayt 1
t 0 Zé me ﬂ

and the electron orbit precesses in each revolution by the angle

op = Zn(l—lj .
X

Thus, the electron orbit is, in general, not a closed ellipse. By the assumption, which can be
empirically tested by its consequences, we may assume that the electron orbits r(¢) are
closed curves. This assumption is satisfied if and only if the parameter y is a rational num-
ber

1 v+p

v

where vand 1 are integers. The last condition implies immediately that parameters y, o and
J [/ h must have discrete spectra of values consisting of rational numbers. There exist infi-



76 A. TELEKIL, B. LACSNY, M. NOGA

nitely many solutions satisfying these criteria and from them we select one solution in the
following form

7 2 2 2\ 7!

(o} o o
—=n+—3 y=|n—-———||n+—| , nz0,
h 4n [ 4nj[ 4nJ

where n are positive and negative integers.

The bound state energies E =4 mc*(¢” —1) become minimal for states (¢, J)if and only
if (p')?> =0. In these states the electron orbits have eccentricities =0 implying the
quantization of the parameter &,

o’ a?)’
g =|n——7>I/]Nn+—|,

and the orbits become circles with radii

2 2\2
n=4? #—Ag— >0.
Ze'm 4n
The corresponding bound state energies are
m ( Ze ’ o’ ? m ( Ze ’ )
E=-—5|—||n+—| >-——5|—| >—=mc
20 4n 4n 20 4n 2
which become identical with spectra of hydrogen-like atoms in nonrelativistic quantum
mechanics in the nonrelativistic limit ¢ — o. Note that the parameters y and € can differ

from one only by relativistic terms of the second order.
The last inequalities are satisfied if and only if the following constraint is satisfied

2[ ¢ 2<1
4rhic

which is exactly the same one as that following from the relativistic quantum mechanics
governed by the Dirac equation.

Thus, the general theory of relativity predicts that point like particle charges|Q|are lim-
ited from above and ground state energies of Coulomb systems are limited from bellow.
The explicit dependence of the effective Coulomb potential ¢.. () on a state € of test parti-
cle does not bring any contradictions to empirical observations.

In what follows the metric (IV.1) with B(r)as given by (IV.19) will be applied for un-
derstanding of the origin and causes for the observed accelerated expansion of the Uni-
verse [1, 2]. For this reason we may consider an oversimplified model of a Universe
having a very heavy body in its center with the mass M and with Q =0 and its galaxies are

regarded as test particles. The empirical value [23] for the cosmological constant

A=111x10" m™
implies Ar; <<1 for any meaningful Schwarzschild radius r; . Even if r, were about one
light year,r, ~10'° m, then Ar; would be Ar; ~107°. Thus, we are permitted to retain
only the linear terms in Ars2 in the formula (IV.19) for Br), i.e.,

2
Bry=1-"+ Lars a2 (Iv.20)
r 16 r- 3

The plot of B(r)is schematically depicted on Fig. 1.
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Fig. 1. The schematical plot of B(r).

The metric with B(r)as given by (IV.20) corresponds to a black hole with two inner ho-
rizons

r 1 2
r, < (1 _ZAr;j : av21a)
and one outer horizon
1/2 12
3 3
ry~ [Arzj r = (Xj , (IV.21b)
N

where B(r) >0 for r €(0,r )and r e(r,,r,), and B(r)<O0for re(_,r, )and r>r,. The
metric (IV.1) and the Riemann tensor (IV.2b) are singular on the horizons. However, these
singularities do not appear in the Ricci tensor (IV.3) and in invariants constructed out of
Riemann tensor (IV.2b).

The function B(r) has a very narrow and very deep minimum at r =r__

in

3 .
~ & Arg with

B(r,, )~1-4/(Ary)<<10* and a very broad maximum atr =r,,_,
13 1/6
3 Ars2
roo= I~ ry; o, <<rp. <<r,, IV.21c
max [ZA’_;] N [ 12 ] 0 + 0 ( )

with B, )= 1—(%)” * ~1. The approximative valuesr,,r,,r . andr_ as given by
(IV.21) do not differ éssentially from those following from exact numerical calculations.

Next we examine properties of galaxy orbits. Their radial components p'satisfy
Eqgs. (IV.18c) written in the form

2

(p')? =m*c*e - (mzc2 + JZJB(r) =m’c’e -2mU(r). (IV.22a)
r
The function 2mU(r) has a similar behaviour as the function B(r) depicted on Fig. 1. Thus,
galaxies with ¢* < 1 and with r e (g 7oy ) have
LN 2202 2
p@)= i{m ce 2mU(r)} (IV.22b)
with two turning points at which p'()=0 and they have bound orbits. Note that for

r e, r,,, ) the function B(r) reduces to the Schwarzschild metric B(r) =1-r, /r with an
extraordinary high accuracy. Thus the results of all classical tests of general theory of rela-
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tivity within the solar system [16] must be perfectly consistent with the Schwarzschild met-
ric even under the existence of dark energy and the presence of cosmological constant.

We next analyse galaxy orbits with r >r__,i.e., in the space region, where one has the
effective metric

max >

To

2
B(r) :1—[rj . (IV.23a)

In this case the radial component p' = m- satisfies the relation (IV.22) written in the form

2 2 27?
(jjr_j =62(r7°) [NUJ 1 ~*+ 0 (IV.23b)
0
where
1, J?
=—(&-1+7); = .
p 2(8 x) X oy

In this space region a galaxy orbit can have only one turning point at r =7, satisfying the
following relations

2 2
['] = pt(pi+ P~ ('] <«<1, (IV.23¢)
rO rO
at which p' =0and represents an unbound orbit. The last relations require the parameters p
and ¢ to have the following approximative values
~ S g=1+ L

2m*c*r: m’c’r’

max max

P (IV.23d)

The differential equation (IV.23b) has the exact solution in the form
2
[r] oy Ch{zc(T _ ,,_0)} p, (IV 24a)
rO rO

where 7 _is the integration constant chosen so that r =7 for 7 - T Thus for 7 > 7, these
unbound orbits have radial velocities v, and radial accelerations a, expressed by the for-
mulae

2
v, _dr_drdr ¢ ] (1 (IV.24b)
dt  dr dt er, r,
a _ﬁ_li(ﬁ)z (IV.240)
T A 2dr\dt) e

We identify the Hubble constant H, =c /r, and we define the effective Hubble constant
H=H,|e with ¢’ =1+J* [(mcr,, )’ in order to express v, and a, in the forms

v, = Hr{l - [:J } (IV.25a)
a, = Hzr{l—[rj }{1—3(rj } (IV.25b)
rO rO
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The last formulae can be regarded as a generalized Hubble law in which the effective Hub-
ble constant H is slightly dependent on individual properties of galaxies represented by
their angular momenta J and their masses m. Thus, the empirical values of H corresponding
to various galaxies are expected to exhibit a small dispersion of them bellow the value H .
The empirical data as presented in [24, 25] show that it is indeed so. The Hubble time
t, =1/H,=548x10"s is very close to the value presented in [24, 25]. The formula
(IV.25b) predicts the accelerated expansion of the Universe by galaxies with
€@ pusTo /+/3) and r >7,, and the deaccelerated compression of the Universe by galaxies

withr €(r, /-3, Ty).
Similarly we determine circular velocities v, of galaxies with unbound orbits by the formula

2
y =30 _ dedr _J ) [r (IV.26)
* dt  dr dt  mer r

0

which predicts the anticlockwise direction of galaxy rotations by galaxies with
r e(r,..»",)and clockwise rotations by galaxies with r >r, provided that J > 0. Thus, the
presented theory brings empirical elements which can be tested by empirical observations.
The last result is qualitatively consistent with analysis of rotation curves of galaxies
[26-30]. According to Feynman [14] “. . . the only true test of a theory is its ability to pro-
duce good numbers, numbers agreeing with experiment”. It seems that the presented the-
ory satisfies this criterion.

5. Discussion

We have explicitly demonstrated that general properties of curves corresponding to
worldlines of massive particles in the 4-dimensional metric space - spacetime imply the ex-
istence of tensor fields and ecessary relations among them which are identical with laws of
motion of classical physics. By the same way they require the existence of three dimension-
ful fundamental constants by which one can reproduce in an empirically meaningful way all
quantities entering the presented theory in order to be compared with empirical observables.
Theoretical predictions of the theory are perfectly consistent with the classical tests of gen-
eral theory of relativity and provide the simple explanation for understanding of the origin
and causes for the observed accelerated expansion of the Universe.

Even if we have not expected that the presented theoretical analysis could be accepted
as a possible way for completing the standard Einstein general theory of relativity by the
dark energy with the cosmological constant, the developed methods can be used for
solving the following problems as simple exercises in differential geometry.

One can solve exactly corresponding equations in order to find the modification of the
Kerr-Newmann metric [20, 22] under the presence of the dark energy in the space. In the
relatively simple problem one can consider instead of one tensor field F** (x) four tensor
fields F* (x), a = 1, 2, 3, 4, with the non-abelian gauge group SU(2)xU(1) symmetry in
order to derive laws of motion of Weinberg’s unified theory of electro-weak interac-
tions [31] and their implications on the gravitational field and its metric similarly as we
have derived Maxwell’s equations.
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