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Abstract: Proposed theories for the observed accelerated expansion of the Universe are analyzed from 
viewpoints of Feynman�s criteria on physical theories. On their basis we have derived the most general
set of equations between fields which can be generated by point like particles with masses and with given 
various charges. This general set of equations is formally identical with laws of motion of the general
theory of relativity completed by the dark energy and by the cosmological constant. The dark energy
density is produced by a tensor field due to the existence of the cosmological constant. The derived laws
of motion are exactly solved for a spherically symmetric gravitational field generated by a heavy body
with the mass M. Its metric corresponds to a black hole which must have three horizons. An
oversimplified model of the Universe in which galaxies are regarded as test particles moving in the
gravitational field of this black hole provides the simple explanation for understanding of the origin and
causes for the observed accelerated expansion of the Universe. The theory provides a generalized
Hubble law and all physical observables are determined uniquely by three dimensionful fundamental
constants the presence of which is dictated by the internal structure of the theory.

PACS numbers: 04.20.-q, 04.20.Cv, 02.40.Hw, 98.80.Dr

1. Introduction

The proper un der stand ing of the or i gin for the ob served ac cel er ated ex pan sion of the
Uni verse rep re sents one of the most fun da men tal open prob lem in phys ics even af ter
20 years of these dis cov er ies [1, 2]. Since then in cos mol ogy sev eral phys i cal mod els and
the o ries have been pro posed for pos si ble ex pla na tions of this phe nom e non. The ex is tence
of the dark en ergy [3] seems to be the most ac cepted hy poth e sis for the ex pla na tion of this
ac cel er a tion. The pro posed two forms for the dark en ergy are rep re sented by in tro duc ing
the cos mo log i cal con stant L into Ein stein equa tions of gen eral the ory of rel a tiv ity (GTR)
[4], or by a sca lar field such as a kind of a quin tes sence whose en ergy den sity can de pend
on co or di nates in a met ric space [5, 6]. The hy poth e sis for the dark en ergy is, in fact, very
much de pend ent on a way how one mod i fies GTR. There fore, there are pos si bil i ties that
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mod i fi ca tions to GTR com pletely elim i nate the need for dark en ergy [7, 8]. There ex ist, of
course, skep ti cal al ter na tives to dark en ergy in such strong state ments that the dark energy
does not actually exist and is merely an improper measurement artifact [9�12].

All of these mod els and the o ries for the ex pla na tion of the ob served ac cel er ated ex pan -
sion of the Uni verse are, in fact, em pir i cally equiv a lent the o ries ac count ing for the ex pla -
na tion of the same  ob ser va tions on a ba sis of dif fer ent as sump tions. All of them they have
the com mon fea ture by which they tie di rectly ef fects with causes on the ba sis of per fect
log i cal ar gu ments so in or der their as sump tions were con sis tent with ob ser va tions. Thus
these as sump tions bring no ad di tional em pir i cal con tent to be tested and by this fact these
the o ries are unfalsifiable in the sense de fined by Pop per[13]. In our pro gram we want to
iden tify at least one of them which could be the best can di date cor re spond ing to the ex ist -
ing phys i cal re al ity by ap ply ing Feynman�s cri te ria on phys i cal the o ries. Ac cord ing to
Feynman [14]: �The mod ern phys ics had ban ished any pos si bil ity of dis cov er ing a sys tem
of laws un am big u ously ty ing ef fects to causes; or a sys tem of laws de duced and con joined
with per fect log i cal con sis tency; or a system of laws rooted in the objects that people can
see and feel.�

Led by these Feynman cri te ria, our aims are to find the most gen eral set of equa tions
be tween var i ous fields which can be gen er ated by point like par ti cles with masses and
with var i ous charges mov ing along worldlines of time-like char ac ters in a given met ric
space. We will show ex plic itly that the set of these most gen eral equa tions is for mally
iden ti cal with all laws of mo tion of the stan dard gen eral the ory of rel a tiv ity com pleted by

the cos mo log i cal con stant L and by an antisymmetric ten sor field  G xab ( ). The ten sor field 

G xab ( ) does not in ter act with an elec tro mag netic field and there fore its ef fects are in vis i ble 

by in stru ments of op ti cal and ra dar as tron o mers. The field G xab ( ) does not in ter act with

any charges ex cept for masses and its en ergy den sity con trib utes to the stress en ergy ten -
sor of fields in the Ein stein equa tions of GTR. It rep re sents the dark en ergy den sity in a
con tra dis tinc tion to the the o ries [5, 6].

In the IV. Section of this paper we demonstrate the exact solution to the derived
equations corresponding to the gravitational field generated by a heavy mass at the center
of the Universe. We will explicitly show how test bodies far from the center of the
Universe are accelerated away from its center. On this simplified physical system one can
understand the origin of the observed accelerated expansion of the Universe [1, 2].

2. General properties of worldlines

Ac cord ing to Okun [15] �in the mod ern lan guage of rel a tiv ity the ory there is only one
mass, the New to nian mass m, which does not de pend on a par ti cle state or on a ref er ence
frame.� The mass m of a par ti cle is an in ter nal and in vari ant char ac ter is tic of the par ti cle
like its elec tric charge e, baryon num ber, hypercharge and so on. In or der to elu ci date the
role of mass we con sider a curve of time like char ac ter, i.e., a worldline cor re spond ing to a
mas sive par ti cle in a met ric space with a given met ric ten sor g

ab
a b, , , , , .= 0 1 2 3 Each such

worldline

z z s z s= ( ( ), ( ))0 (II.1)

can be parametrized by the in vari ant pa ram e ter s, i.e., by its �length� de fined by the re la tion
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can be regarded as the tangential vector of this worldline. From the last two definitions one
gets the relation
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which is the universal property of the worldlines in the metric space, namely, that
tangential vec tors w a are always unit vectors in the sense (II.3).

In the metric space with the given metric ten sor g
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we define the vector
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where m is the mass of par ti cle and c is an uni ver sal con stant. For the sake of sim plic ity and
for a mo ment we con sider the Min kow ski space-time with the met ric g
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and the four vec tor p pa = ( , )0 p  has the components
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which are iden ti cal with the me chan i cal four-mo men tum of the par ti cle with the mass m in
the spe cial the ory of rel a tiv ity.

Next we in tro duce the dimensionful en tity known as the en ergy of the par ti cle E p c= 0

in gen eral met ric space and by this fact the fun da men tal con stant c has the di men sion of
ve loc ity. For this rea sons the vec tor p a de fined by (II.4a) is the vec tor of en ergy-mo men -
tum of the par ti cle in each met ric space. The vec tor p a is there fore pro por tional to the tan -
gen tial vec tor w a and sat is fies the gen er ally valid re la tion

g p p m cab

a b = 2 2 (II.4b)

under any circumstances. On the last equation (II.4b) we apply the covariant de riv a tive 
D

Ds
along the worldline z s( ) to get the relation
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where Gmn
a  is affine connection [16] defined by

{ }Gmn
a as

m ns n ms s mn¶ ¶ ¶= + -
1

2
g g g g (II.6)

and evaluted on the worldline z s( ). The generally valid relation (II.5) dictates that the
vector
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must be un der any cir cum stances an or thogo nal vec tor to the tan gen tial vec tor w a of the
given worldline.

For any given worldline z s( ) in the given met ric space with the met ric g
ab

the right
hand site of the ex pres sion (II.7) can be ex plic itly cal cu lated with some result
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by which one de rives the vec tor F za ( ) de fined on the worldline z s( ). If we de note the proper 
time T  by the re la tion d ds cº T , then we can re write (II.8) in the form
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and interpret it as the relativistic law of motion of the particle moving under the influence
of two forces
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is in ter preted as the �grav i ta tional force� due to the ex is tence of met ric space with the met -
ric ten sor g

ab
 de pend ent on co or di nates and F za ( ) can be re garded as an ex ter nal force. It

means that one can al ways as sign an ex ter nal force F za ( ) to the given worldline in the met -
ric space ac cord ing to Eq. (II.9) and the in flu ence of met ric space on the mo tion of the par -
ti cle can be re garded as the grav i ta tional force. How ever, the forces F za ( ) can not be
ar bi trary, but must be or thogo nal to the tan gen tial vec tors w a , i.e. they must sat isfy the
equa tions

g F z
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un der any cir cum stances. We de velop the gen eral method for the ex plicit de ter mi na tion of
the forces F za ( ) sat is fy ing the last re la tion in gen eral for any ex ist ing in ter ac tions between
particles.

If one se lects from all worldlines such one which gives F za ( ) = 0 , then for this
worldline one gets the re la tion
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which represents the equation for geodetics in the metric space. In this case the motion of
the particle is without the presence of external forces and therefore it is a free motion in the
metric space.

Next we con sider a sys tem of N worldlines in a given met ric space and each worldline 
zn , n = 1, 2, . . . , N, is parametrized by one out of co or di nates of the met ric space, let us

choose the co or di nate x ct0 = , i.e., z t ct z tn n( ) ( , ( ))= .
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The gen eral re la tions (II.1)�(II.11) must be sat is fied for each curve cor re spond ing to
the worldline of a par ti cle with the mass  mnab so lutely and for any ex ist ing in ter ac tions be -
tween these par ti cles. In this pa per we de velop the gen eral method by which the ex ter nal
forces F za ( ) de fined by Eq. (II.8) are explicitly determined.

3. Field theory, the mechanical energy-momentum tensor 
    and field strength tensors

The laws of motion of relativistic mechanics of massive particles (II.8), generally
valid for every worldline z t ct z tn n( ) ( , ( ))= ,  n N=1 2 3, , , ,K ,  in the form
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z
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a m
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a

T T
+ =G ( ) ( ) (III.1)

will be for mu lated in field the ory for a given set of worldlines with the aim to de ter mine the 
forces F zn n

a ( ) ex plic itly. In what fol lows, for the sake of sim plic ity, we re strict our selves to
the 4-di men sional met ric space � spacetime, how ever, our con sid er ations are valid in met -
ric spaces of any di men sions. By the def i ni tion we de note the left hand sides of (III.1) as
�forces� ¢F zn n

a ( ) and for these forces we de rive their den sity  ¢f xa ( ) .
In 4-dimensional metric space we have the invariant 4-volume element

d d d dW4 4 3= =g x g c t x ;      g gº det ab
(III.2a)

and in each its point we define the invariant 3-volume element
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Our aim is to find the force density ¢f xa ( )  in the form of covariant di ver gence of the sym -
met ric me chan i cal energymomentum tensor T x T xm m

ab ba( ) ( )=  , i.e.
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Such ten sor in deed ex ists and is de ter mined by curve integrals along the world lines  
z t ct z tn n( ) ( , ( ))=  in the form
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By the simple integration over x ct0 =  we get the result
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which indeed satisfies Eq. (III.3b). Next we note that the quantity
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is a 4-vector which satisfies the invariant conservation law

J xm
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by its definition (III.4c), because the invariant conservation law is satisfied by every
individual term in the sum (III.4c). Thus the masses mnare indeed internal and invariant
characteristics of particles and the mechanical energymomentum ten sor T xm

ab ( ) can be

expressed in the elegant covariant form
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as the direct product of two four vectors giving the scalar function

D x g T xm( ) ( )= ab

ab  . (III.4f)

The studied system of worldlines exists in the metric space with the given g
ab

, where
one has the Riemann curvature tensor defined by
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from which one can derive the only symmetric tensors of the second rank

R g Rmc
ln

lmnc=  , (III.5b)

i.e. Ricci ten sor and g L
ab

, where L is, in gen eral, a func tion of four teen cur va ture sca lars
which can be con structed out of R

lmnc
 and g

ab
.

From the definitions (III.5) it is clear that the Ricci tensor has the di men sion 1 2/ l ,
where l is a fundamental dimensionful constant with the dimension of a length.

Next we want to define the most general form for the den sity f xa ( ) of the forces F zn n
a ( )

present on the right hand side of Eq. (III.1). Its most general form is given as the sum of
curve integrals along the worldlines z tn( ), i.e.,
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d
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where A xan ( ) is an antisymmetric and S xan ( ) is a sym met ric ten sor. The only sym met ric
ten sors which are as so ci ated with the met ric space are the Ricci ten sor R an  and g Lan . With
the help of them we con struct the most gen eral sym met ric ten sor 

S R g Lab ab ab ab~ - - H  , (III.7)

where H ab ( )x  de notes yet an un spec i fied sym met ric ten sor which will be de ter mined later on.

There ex ist many antisymmetric ten sors A xab ( ), but in our fur ther con sid er ations, for

the sake of sim plic ity, we con sider only one antisymmetric ten sor F xab ( ) and with it we

write the most gen eral force den sity (III.6) in the form

{ }f x
x

g
g e F k R g L m x z

n

N

n n n
a

m

mn
an an an an d( ) ( ) (= + - - -òå

=

d

1

2 4H ) , (III.8a)

where  en  and  mn  are in ter nal and in vari ant char ac ter is tics of par ti cles as their some charges   
en  and masses  mn  and  k is a fun da men tal dimensionful con stant. By the di rect in te gra tion
of the last in te gral over x ct0 =  we get the re sult
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The force den sity f xa ( ) must have the di men sion [ ][ ]E l -4 , what implies that dimensions of
its terms in the sum (III.8b) are as given by

[ ] [ ][ ]e F En
as = -l 1,    [ ] [ ]k = l 3 kg�1s�2. (III.9)

Thus, the dimensionful fundamental konstant k has exactly the same dimension as the
Newton gravitational con stant G. For the sake of brevity and from now on we use the
notation

S R g Lan an an an= - - H . (III.10)

We note that quantities entering the expression (III.8b)
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are four-vectors which satisfy the invariant conservation laws

j x J xm
m
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and the 4-vector (III.11b) has the same dimension as the 4-vector (III.4c) associated with
the mechanical energymomentum ten sor T xm

ab ( ).The 4-vec tors j xm ( ) and J xm ( ) are used to

ex press f xa ( ) in the elegant explicitly covariant form
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In the next step we find such sym met ric and traceless ten sor qab ( )x , the stress en ergy

ten sor of the fields Fab  and  S ab , the covariant di ver gence of which gives the force den sity 
f xa ( ), i.e.,
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Such tensor indeed exists in the form
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where G ab is an antisymmetric tensor and the konstant k guar an tees that the dimensions of
all terms in (III.14) are the same and given by

[ ] [ ][ ]qab = -E l 3. (III.15)

The re la tions (III.12) and (III.13) are sat is fied if and only if the ten sor fields Fab , G ab  and 
S ab  sat isfy the fol low ing equa tions

F x
c

j xab
a

b( ) ( ); =
1

 ,        F F Fab m ma b bm a; ; ;+ + = 0 , (III.16)
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The equa tions (III.16) are iden ti cal with Maxwell�s equa tions of elec tro dy nam ics and en

are elec tric charges of par ti cles. The ten sor F xab ( )  is the elec tro mag netic field strength ten -

sor which is gauge in vari ant un der the U(1) gauge group trans for ma tions. The ex pres sions
(III.17) are sim i lar to the first of Eq. (III.16), how ever the fields G ab and S ab must sat isfy
Eq. (III.18). 

From Eqs. (III.9)�(III.18) it follows that electric charges en  and masses mn  must have
dimensions

[ ] [ ][ ] [ ][ ]e k m E2 2= = l  . (III.19)

It means that general properties of worldlines corresponding to massive particles dictate
the existence of three dimensionful fundamental con stants c, l and G, as a complete set of
units by which one can measure masses m, electric charges e, and en ergy E in units
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It is therefore necessary and sufficient to have three dimensionful units in order to
reproduce in an empirically meaningful way the dimensions of all quantities entering our
theory. The presented origin of the fundamental constants of physics is perfectly consistent 
with the analysis made by Weinberg [17] and Okun [18].

Next we as sume that we have found the fields Fab , G ab and S ab as so lu tions to Eqs.
III.16)�(III.18). In this case the to tal en ergy-mo men tum ten sor

T x T x xab ab abq( ) ( ) ( )= +m (III.21)

satisfies the important equation
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b( ) ; = 0 (III.22)

which is equivalent to the re la tion ¢ =f x f xa a( ) ( )  rep re sent ing the generally valid relations
(III.1) formulated in the presented field theory. Now if we carry out the integration of the
integral
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then we get the explicit result
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Thus we have obtained laws of motion (III.1) generally valid for every worldline in which
the forces F zn n

a ( ) are explicitly determined by (III.23), i.e.
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However, the force F zn n
a ( ) must be under any conditions always orthogonal to the vec tor

d dzn
a / T n , i.e., it must satisfy the relation
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= 0 . (III.25)

The last re la tion gen er ally valid for ev ery worldline can be sat is fied if and only if the sym -
met ric ten sor field S xab ( ) = 0, i.e.

R g Lab ab ab- = H  . (III.26)

In the pre sented the ory we have at our dis posal only one sym met ric ten sor and it is 
T xab ( )  de fined by (III.21). By this fact H ab ab= KT , where K is a con stant ex pressed by

the uni ver sal con stants c G,  and l. The di men sional anal y sis de ter mines the con stant 
K G c= g / 4 , where g is a dimensionless nu mer i cal con stant, and the re la tion (III.26) can be
writ ten in the form

R g L
G

c
Tab ab abg- =

4
 . (III.27)

The equa tion (III.22) with S xab ( ) = 0  and S xab

b
( )

;
= 0 im ply that Eq. (III.27) must be of

the form

R g R g
G

c
Tab ab ab abg- - =

1

2 4
L , (III.28)

where R g R=
ab

ab is the sca lar cur va ture and L is the so called cos mo log i cal con stant with

the di men sion [L] =1/[ ]2l . The last equa tions are for mally iden ti cal with Ein stein equa -

tions in gen eral the ory of rel a tiv ity known from text books pro vid ing that g p= 8 .
By Eq. (III.28), i.e., S xab ( ) = 0  and S xab

b
( )

;
= 0, the re la tion (III.18) is sim pli fied to

the form
k

c
g G J g G G G Gmn

am n ab mn

mn;b bm;n nb;m+ + + =
1

2
0[ ]  . (III.29)

The ex pres sion in the bracket is an antisymmetric ten sor of the third rank which has only
four in de pend ent com po nents and can be writ ten in the form

G G G
k

c
g Jmn;b bm;n nb;m mnbs

se+ + º -
~

,   (III.30)

where 
~

( )J xs  is a 4-vec tor and e
mnbs

 stands for the to tally antisymmetric Levi-Civitta sym bol 

with the con ven tion e e0123
0123 1= - = . The last re la tion and the law of mo tion (III.17) for the 

field G xab ( ) can re mind one laws of mo tion of an elec tro dy nam ics with mag netic

monopoles with the cur rent den sity 
~

( )J xs  [19]. How ever, in our case the cur rent den sity 
~

( )J xs   is not a given 4-vec tor, but it is the 4-vec tor gen er ated by the ten sor field G xmn ( )

which sat is fies the law of mo tion (III.17). By in sert ing the def i ni tion (III.30) into (III.29)
and by de fin ing the dual ten sor field

~
G gGbs

mn

mnbseº
1

2
(III.31)

we can re write Eqs.(III.17) and (III.29) in the sim ple covariant forms

G x
k

c
J xab

a
b( ) ( );; = -       G x J x G x J xbn

n

bn

n( ) ( )
~

( )
~

( )=  . (III.32)
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Sim i larly, one can de fine the dual ten sor 
~

( )/F F x
g

ab abmn
mneº 1

2 1 2   to the elec tro mag netic field 

strength ten sor Fab  and ex press the Maxwell equa tions (III.16) and the Lo rentz force den -
sity (III.12) in the covariant forms

F x
c

j xab
a

b( ) ( );; =
1

      
~

( ) ;;F xab
a = 0      f x

c
g F x j xa

mn
am n( ) ( ) ( )=

1
 .  (III.33)

The last equa tions rep re sent laws of mo tion of clas si cal elec tro dy nam ics which were de -
rived as rig or ous con se quences of dif fer en tial ge om e try in the four di men sional met ric
space � spacetime.

By com par ing Eqs. (III.32) and (III.33) one sees that only first equa tions in them are
sim i lar, how ever the sec ond equa tion in (III.32) rep re sents a non lin ear con straint on the
field G xab ( )  and  a �Lo rentz� force den sity cor re spond ing to the field G xab ( ) does not ex ist.

From now on we ac cept the nu mer i cal value for g p= 8  to have Eq. (III.28) in the form

R g R g
G

c
Tab ab ab abp

- - =
1

2

8
4

L  , (III.34)

with the cos mo log i cal con stant L. The last equa tions are only for mally iden ti cal with the
Ein stein equa tions of the stan dard gen eral the ory of rel a tiv ity, be cause in our case gen eral
prop er ties of worldlines im ply the ex is tence of the field G ab  which al ways gives a con tri bu -
tion to the ten sor T ab stand ing on the right hand side of Eq. (III.34). How ever, as one
knows, no such ten sor field G ab  ex ists in the stan dard Ein stein gen eral the ory of rel a tiv ity.
If the pre sented the o ret i cal anal y sis of the nec es sary ex is tence of the ten sor field G ab  cor re -
sponded to phys i cal re al ity, then its con tri bu tion into T ab  could rep re sent the dark en ergy in 
the spacetime.

Let us sup pose that we have found ex act so lu tions to Eqs. (III.32)�(III.34) de ter min -
ing F xab ( ) and g x

ab
( ) as ex plicit func tions of co or di nates x in the spacetime, then we get

laws of mo tion of a test par ti cle with elec tric charge e and mass m in the form

d

d

d

d

d

d

p
z p

z e

c
g F z

za

mn
a m

n

mn
am

n

T. T. T.
+ =G ( ) ( )  . (III.35)

The last equa tions rep re sent laws of mo tion of the rel a tiv is tic me chan ics in the gen eral the -
ory of rel a tiv ity. The Eqs. (III.32)�(III.35) are clas si cal laws of mo tion of phys ics de rived
as rig or ous con se quences of dif fer en tial ge om e try in the spacetime and they rep re sent the
closed set of most gen eral equa tions be tween fields gen er ated by par ti cles with masses and
elec tric charges. The pre sented the ory has in duced the ex is tence of three fun da men tal
dimensionful con stants c, G and the cos mo log i cal con stant L as a nat u ral set of units in cos -
mol ogy. By this fact the unit of length l and the con stant k en ter ing Eqs. (III.11b)�(III.32)
are re placed by the re la tions

l =
4p

L
 ,       k = 4pG. (III.36)

The clas si cal tests of Ein stein gen eral the ory of rel a tiv ity: the grav i ta tional red-shift of
spec tral lines, the pre ces sion of peri he lia of or bits of plan ets, the de flec tion of light by the
Sun and the time de lay of ra dar ech oes pass ing the Sun are in the per fect agree ment with
em pir i cal ob ser va tions [16, 20]. All four tests were car ried out in the empty space, i.e.,
with out the dark en ergy and with the cos mo log i cal con stant L = 0  in the spher i cally sym -
met ric grav i ta tional field with the met ric
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d d d d ds B r c t A r r r r2 2 2 2 2 2 2 2 2= - - -( ) ( ) sinJ J j  , (III.37)

where where r,J and j are the spher i cal po lar co or di nates.
Ac cord ing to Birkhoff the o rem [16] ev ery spher i cally sym met ric grav i ta tional field in

empty space must be static and with the Schwarzschild met ric

B r
r

r
S( ) = -1  ;      A r

B r
( )

( )
=

1
 ;       r

GM

c
S =

2
2

 , (III.38)

where M is the mass of Sun.
How ever, gen eral prop er ties of worldlines cor re spond ing to mas sive par ti cles re quire the
nec es sary ex is tence of the field G xab ( ) which can never be zero. Thus the spacetime must

con tain the dark en ergy cor re spond ing to this field and by this fact a grav i ta tional field in
empty space can not ex ist. If the pre sented anal y sis with the nec es sary ex is tence of the dark
en ergy con tra dicted to the clas si cal tests of the stan dard gen eral the ory of rel a tiv ity, then
we would re gard con tent of our pa per as an ac a demic and mean ing less ex er cise in dif fer en -
tial ge om e try or as a so phis ti cated way for a der i va tion of equa tions which are ac ci den tally
iden ti cal with laws of mo tion of clas si cal phys ics. For these rea sons in the next sec tion we
find ex act so lu tions to Eqs. (III.32)�(III.35) for a point like par ti cle with mass M and elec -
tric charge Q hav ing the worldline z t ct( ) ( , )= 0  with the aim to elu ci date the or i gin and

causes for the ob served ac cel er ated ex pan sion of the Uni verse [1, 2].

4. Static spherically symmetric gravitational field 
    with the dark energy in the space time

We de rive the prop er ties of the met ric space with the grav i ta tional field gen er ated by a
point like par ti cle with the mass M and elec tric charge Q hav ing the worldline z t ct( ) ( , )= 0 .

We use the spher i cal po lar co or di nates r,J and j with the di ag o nal met ric in the stan dard
form [16]

d d d d ds g c t g r g g2

00

2 2

11

2

22

2

33

2= + + + =J j ()

      = - - -B r c t A r r r r( ) ( ) sin2 2 2 2 2 2 2 2d d d dJ J j  . (IV.1a)

The in di ces a b,  of ten sors are iden ti fied so that 0 1 2= = =t r, , J and 3 = j. It is very con ve -
nient to use the func tion A r( ) ex pressed in the form

A r
f r

B r
( )

( )

( )
=

2

(IV.1b)

with the func tion f r( ) to be de ter mined and which gives g f r r= 2 4 2( ) sin J. In this no ta tion
the af fine con nec tion Gmn

a  is com puted from the for mula (II.6). Its only nonvanishing com -
po nents are

G G01

0

10

0

2
= =

¢B

B
 , ()

G00

1

22
=

¢BB

f
 ;    G11

1

2

2

2
=

æ

è
çç

ö

ø
÷÷

B

f r

f

B

d

d
 ;     G22

1

2
= -

rB

f
 ;     G33

1

2

2= -
rB

f
sin J

()

G G G G12

2

21

2

13

3

31

3 1
= = = =

r
 ;  G33

2 = - sin cosJ J ;  G G23

3

32

3= =
cos

sin

J

J
 ,   (IV.2a)
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where ¢B r( )  means dif fer en ti a tion with re spect to r. Sim i larly the Riemann ten sor R
lmnc

 is

cal cu lated from the for mula (III.5a) and its only nonvanishing com po nents are

R R R R B
f

f
B0101 0110 1001 1010

1

2
= - = - = = ¢

¢
- ¢¢

æ

è
ç

ö

ø
÷,

()

R R R R
rBB

f
0202 0220 2002 2020 22

= - = - = = -
¢
 , ()

R R R R
BB

f
r0303 0330 3003 3030 2

2

2
= - = - = = -

¢
sin J , ()

R R R R
B

B

f

f
r1212 1221 2112 2121

2
= - = - = =

¢
-

¢æ

è
ç

ö

ø
÷  ,

()

R R R R
B

B

f

f
r1313 1331 3113 3131

2

2
= - = - = =

¢
-

¢æ

è
ç

ö

ø
÷ sin J ,

()

R R R R
B

f
r2323 2332 3223 3232 2

2 21= - = - = = -
æ

è
ç

ö

ø
÷ sin J . (IV.2b)

The nonvanishing Riemann ten sor is the gen eral and plau si ble rep re sen ta tion of the ex is -
tence of a grav i ta tional field. For the met ric (IV.1) the Riemann ten sor (IV.2b) has, in fact,
only four in de pend ent com po nents. The Ricci ten sor R

b

a is com puted from the last for mu -
lae and its only nonvanishing com po nents are

R
fr r

r B

f
0

0

2

21

2
=

¢æ

è
çç

ö

ø
÷÷

d

d
 ;    R R

B

r

f

f
1

1

0

0

3

2
= -

¢
 ;   R R

fr r

rB

f r
2

2

3

3

2 2

1 1
= =

æ

è
ç

ö

ø
÷ -

d

d
(IV.3a)

which give the sca lar cur va ture R in the form

R
fr r f r

r B rB
f

f r
=

é

ë
ê

ù

û
ú -

¢ì
í
î

ü
ý
þ

-
1 1

2
2

2

2

2 2

d

d

d

d
( )  . (IV.3b)

The point-like par ti cle with the mass M and elec tric charge Q with the worldline 
z t ct( ) ( , )= 0  has the me chan i cal 4-mo men tum p p= ( , )0 0  which must sat isfy the con di tion
(II.4b), i.e.,

g p p B p M cab

a b = =( )0 2 2 2, ()

which im plies the so lu tion

p
Mc

B
0 = ()

un der the nec es sary con di tion

lim ( )
r

B r
®

>
0

0 . (IV.4)

This par ti cle gen er ates the me chan i cal en ergy-mo men tum ten sor Tm
ab  as given by the for -

mula (III.4e) with the only one nonvanishing com po nent  Tm
00and the sca lar D in the forms

T
Mc

f B

r

r
m
00

2

24
=

p

d( )
 ,    D

Mc B

fr
r=

2

24p
d( ) . (IV.5)

Thus, the con di tion (IV.4) is the ab so lutely nec es sary one for the mean ing ful def i ni tions of 
p 0 , Tm

00and D. As one can no tice the Schwazschild met ric (III.38) con tra dicts to the con di -
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tion (IV.4). This fact does not dis turb us at all, be cause the Schwarzschild met ric (III.38)
was de rived in the the ory per mit ting the ex is tence of grav i ta tional field even in an empty
space, i.e., even if p Tm

0 00 0= = , while in our the o ret i cal anal y sis a grav i ta tional field in an
empty space can not ex ist. Thus, we have two dis tinct the o ries which are au ton o mous and
must be in ter nally self-con sis tent ac count ing for the same em pir i cal ob ser va tions as two
em pir i cally equiv a lent the o ries. For Feynman [14], es pe cially, �the ten sions and con tra dic -
tions be tween al ter na tive the o ries served as a cre ative force, an en gine, for gen er at ing new
knowl edge�. These con tra dic tions will sim ply dis ap pear un der the pres ence of dark en -
ergy. 

The cor re spond ing cur rent den si ties j x( ) and J x( ) as de fined by (III.11) are given by

j j= ( , )0 0  ,    j
Qc

r0

4
=

p
d

fr 2
( ) ;       J J= ( , )0 0  ,    J

G

c

M

fr
r0

2

24
=

L

p
d( ) . (IV.6)

They gen er ate the field strength ten sors Fab  and G ab satisfying Eqs. (III.32) and (III.33)
with their only nonvanishing com po nents as given by

[ ]{ }F F
Q

fr
r a r10 01

2

2

4
1= - = + -

p
c c( ) ( )  ; ()

[ ]{ }G G
fr

GM

c
r a r01 10

2

2
2

1= - = æ

è
ç

ö

ø
÷ + -

L
c c( ) ( )  ; (IV.7a)

G G
fr

GM

c
23 32

4

2

= - = æ

è
ç

ö

ø
÷

L/ b

sin J
,

()

where a and b > 0 are dimensionless pa ram e ters to be de ter mined later on. Here c( )r  de -

notes the step func tion de fined so that c( )r =1 for r ³ 0, c( )r = 0 for r < 0 and ¢ =c d( ) ( )r r .
We re gard the step func tion in (IV.7a) as the dis tri bu tion rig or ously de fined on a set of

real an a lytic func tions c b( ; )r  of the vari able r for ev ery value of the pa ram e ter b > 0 by the

re la tion

c c b
b

( ) lim ( ; )r r=
®¥

 , (IV.7b)

where c b( ; )r  can be rep re sented in the form

c b
b

b( ; )r e r= +
æ

è
çç

ö

ø
÷÷

-

-

1
1

1

. (IV.7c)

We de ter mine the cur rent den sity 
~

(
~

, )J J= 0 0  ,

~ /
J

G b

c

M

fr

f

f
0

2

2 24
=

¢L

p
 ,

()

and Eqs. (III.32) im ply the dif fer en tial equa tion for the func tion f r( ) in the form

f r
b

f

f
( ) ( )0

1
2

d =
¢
 . (IV.8a)

The last equa tion has the gen eral so lu tion in the form of the dis tri bu tion

[ ]{ }f r b r( ) ( )= - -
-

1 1
1

c (IV.8b)
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un der the con di tion f( )0 1= . Thus, f r( ) is the dis tri bu tion rig or ously de fined on the set of
real an a lytic func tions f r( ; )b  of the vari able r for ev ery value of the pa ram e ter  b > 0  by the

re la tion

f r f r( ) lim ( ; )=
®¥b

b  , ()

where f r( ; )b  is given by (IV.8b) in which c( )r  is re placed by  c b( ; )r  . In this case the func -
tion  f r( ) has the prop er ties f r( ) =1 for ev ery r ³ 0 and f r b( ) ( )= + -1 1  for ev ery r < 0.

The field strength ten sors (IV.7a) im ply the only nonvanishing di ag o nal com po nents
of the stress en ergy ten sor q

b

a  as given by

q q q q0

0

1

1
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3= = - = - = ()
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r ræ
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÷ +

2
2 2c( ) c( ) -1a [ ]  . (IV.9a)

By the last for mula the to tal en ergy-mo men tum ten sor T
b

a  as de fined by (III.21) is
explicitely de ter mined by the re la tions

T
Mc B

fr
r0

0
2

2 0

0

4
= +

p
d q( )  ;         T T T1
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2
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3

3

0

0= - = - = q  . (IV.9b)

The Ein stein equa tions (III.34) are writ ten in the form

R R
G

c
Tb

a

b

a

b

a

b

ad d
p

- - =
1

2

8
4

L ()

and they im ply the fol low ing set of equa tions:
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- - = =R
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c

B
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D4 2

8
2 2 4
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( )  , (IV.10b)

R
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G

c
0

0

2 2 4 0

08
+ L = +d

p
q( )  . (IV.10c)

The Eqs. (IV.10a) and (IV.8) re quire the con di tion

lim
r

r B
GM

c b®

=
0

2
(IV.11)

to be sat is fied. Eq. (IV.10b) de ter mines the sca lar cur va ture R of the spacetime by the re la -
tion

R
GM
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r
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= - - æ

è
ç

ö

ø
÷4 2

2

2

3
L

d( ) ()

which with the ex pres sion for R (IV.3b) leads to the sec ond or der dif fer en tial equa tion
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( ) (IV.12)

for the func tion B r( ). This dif fer en tial equa tion can be eas ily in te grated with the re sult

B r f r
C f r

r

C

r
f r r( ) ( )

( )
( )= + + -2 1 2

2

2 21

3
L  , (IV.13)
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where C1  and  C 2are in te gra tion con stants. By tak ing into ac count the re la tion (IV.11), then 
the in te gra tion con stant  C 2 is given by the for mula

C
GM
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2 2

2

2

1
= æ

è
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ø
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()

The ex plic itly known form (IV.13) for B r( ) used in Eq. (IV.10c) im plies the al ge braic
equa tion
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which must be sat is fied for ev ery r. Its so lu tions de ter mine the pa ram e ters
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and
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uniquely.
At this point we want to emphasise that the Ein stein equa tions (IV.10) do not spec ify

the in te gra tion con stant C1 and by this fact they do not de ter mine the met ric uniquely. The
value of C1 must be de ter mined from the mo tion of a test par ti cle with the mass m and elec -

tric charge e in the static grav i ta tional and elec tric fields with the met ric (IV.13) for r > 0.
The laws of this mo tion are given by (III.35), i.e.,  

d

d

d

d

d

d

p
p

z e

c
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mn
a m
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mn
am

n

T T T
+ =G  , (IV.15)

where z ct ra J j= ( , , , ), p m
za

a

=
d

dT

 and the af fine con nec tion Gmn
a  is ex plic itly de ter mined

by the known func tions f r( ) and B r( ) as given by the re la tions (IV.8) and (IV.13) re spec -
tively. Since the grav i ta tional and elec tric fields are iso tro pic, the mo tion of the test par ti cle 
must be con fined to planes pass ing through the or i gin r = 0, i.e., ei ther to me rid ian planes 
j = const., or to the equa to rial plane J p= 2. One can con vince him self from (IV.15) that or -
bits of the test par ti cle are ex actly the same in both me rid ian planes and in equa to rial plane. 

We may con sider the or bit of our par ti cle con fined to the equa to rial plane, that is

J
p

=
2

 ,    p m2 0= =
d

d

J

T
. ()

In this case Eqs. (IV.15) for a = 0 and a = 3 have the forms
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which per mit their sim ple in te gra tions with the re sults

p B
eQ

cr
mc0

4
+ =

p
e ;    p

J

r
3

2
=  , (IV.16b)
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where e > 0 and J are in te gra tion con stants which rep re sent integrals of mo tion of the test
par ti cle. The con stant J is its an gu lar mo men tum. The mo tion of the test par ti cle must be
along its world line and it must sat isfy the re la tion

g p p B r p
B r

p r p m cab

a b = - - =( )( )
( )

( ) ( )0 2 1 2 2 3 2 2 21
. (IV.16c)

Eq. (IV.15) for a =1 has the ex plicit form
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d
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 . (IV.17)

By ex ploit ing the re sults (IV.16) in the last equa tion we re write it in the form

d

d
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r
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1

0
T

+ =( )  , (IV.18a)

where
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2 42
(IV.18b)

can be re garded as the to tal po ten tial en ergy of the test par ti cle. Here in the first term fg r( )
de notes the grav i ta tional po ten tial, the sec ond term rep re sents the po ten tial en ergy due to
the cen trif u gal force and in the third term fC ( )r  is iden ti fied with the ef fec tive Cou lomb po -
ten tial.

By mul ti ply ing Eq. (IV.18a) with d
d

d
d

d
d

r
t

r
tT

T =  we may write it as
d

dt m
p U r

1

2
01 2( ) ( )+ì

í
î

ü
ý
þ

=
()

and our last con stant of the mo tion is there fore E = 1
2

2 2mc e as given by
1

2

1

2
1 2 2 2

m
p U r mc( ) ( )+ = e . (IV.18c)

The last for mula is iden ti cal with the equa tion re lat ing the ki netic en ergy ( ) / ( )p m1 2 2  and
the ef fec tive po ten tial en ergy U r( ) in the nonrelativistic me chan ics [21] for a par ti cle with
the mass m mov ing in a spher i cally sym met ric po ten tial. This means that the ef fec tive
grav i ta tional po ten tial  fg r( )  as de fined by (IV.18b) must re duce on its nonrelativistic form
in the nonrelativistic lim its L ® 0 and c ® ¥ , i.e.,

lim lim const.
c 0®¥ ®

= - +
L

1

2
2c B r

GM

r
( ) (IV.18d)

The last con di tion de ter mines the value of the con stant C1 uniquely in the form

C
GM

c
rS1 2

2= - º -  , ()

where rS is the Schwarzschild ra dius cor re spond ing to the mass M. The con di tion (IV.18d)

rep re sents the em pir i cal re quire ment with out of which one could not de ter mine the met ric
of the sys tem un der con sid er ation uniquely. By the last re la tion and with the ex pres sion
(IV.14) we have de ter mined the met ric (IV.1) ex plic itly in the form
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r b

r

r
rS S( ) = - + -1

1

4

1

32

2

2

2L ,     r ³ 0 (IV.19)

which rep re sents the gen er al iza tion and mod i fi ca tion of the Reissner-NordstrÆm met ric
[20, 22] un der the pres ence of dark en ergy and cos mo log i cal con stant L.

In tu itively it may seem as an un ac cept able fact that the ef fec tive Cou lomb po ten tial  
fC ( )r  as de fined by (IV.18b) could be de pend ent on a state E of test par ti cle. We briefly
ana lyse this un ex pected sit u a tion on the Cou lomb sys tem sim i lar to the hy dro gen-like
atom with Q eZ Z= - >, 0, and e is the el e men tary charge of elec tron. By ig nor ing grav i ta -

tional ef fects with re spect to Cou lomb forces we may write Eq. (IV.18c) in the form
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which, with the re la tions

m
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2
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rep re sents the ex actly solv able Keppler prob lem [21] for any per mit ted val ues of con stants 
e > 0 and J.

Only for the sake of short no ta tions we al low to use the Planck con stant h for the def i -
ni tions of the fol low ing dimensionless and real pa ram e ters
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The states of the elec tron are enu mer ated by two num bers e > 0 and J. For 0 1< <e , i.e., 
E < 0, the elec tron has bound state or bits, as given by the ex act so lu tion of the above equa -
tions, in the form

( )
1

4
1

2

2 2r

Ze m

J( )
cos

j p

e

c
h cj= +  .

()

At perinuclei and apnuclei, r reaches its min i mum and max i mum val ues r-  and r+  as given

by

r
Ze

J

m±
=

4 1

12

2 2p c

e hm

()

and the elec tron or bit pre cesses in each rev o lu tion by the an gle

dj p
c

= -
æ

è
ç

ö

ø
÷2

1
1  .

()

Thus, the elec tron or bit is, in gen eral, not a closed el lipse. By the as sump tion, which can be
em pir i cally tested by its con se quences, we may as sume that the elec tron or bits r( )j  are
closed curves. This as sump tion is sat is fied if and only if the pa ram e ter c is a ra tio nal num -
ber

1

c

n m

n
=

+
 , ()

where n and m are in te gers. The last con di tion im plies im me di ately that pa ram e ters c a,  and 
J / h must have dis crete spec tra of val ues con sist ing of ra tio nal num bers. There ex ist in fi -
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nitely many so lu tions sat is fy ing these cri te ria and from them we se lect one so lu tion in the
fol low ing form

J
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where n are pos i tive and neg a tive in te gers.
The bound state en er gies E mc= -1

2

2 2 1( )e  be come min i mal for states ( , )e J  if and only
if ( )p1 2 0= . In these states the elec tron or bits have ec cen tric i ties h = 0 im ply ing the
quantization of the pa ram e ter e,

e
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and the or bits be come cir cles with ra dii
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The cor re spond ing bound state en er gies are
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which be come iden ti cal with spec tra of hy dro gen-like at oms in nonrelativistic quan tum
me chan ics in the nonrelativistic limit c ® ¥. Note that the pa ram e ters c and e can dif fer
from one only by rel a tiv is tic terms of the sec ond or der.

The last in equal i ties are sat is fied if and only if the fol low ing con straint is sat is fied

Z
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4
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æ

è
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ö

ø
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which is ex actly the same one as that fol low ing from the rel a tiv is tic quan tum me chan ics
gov erned by the Dirac equa tion.

Thus, the gen eral the ory of rel a tiv ity pre dicts that point like par ti cle charges Q are lim -
ited from above and ground state en er gies of Cou lomb sys tems are lim ited from bel low.
The ex plicit de pend ence of the ef fec tive Cou lomb po ten tial fC r( ) on a state e of test par ti -
cle does not bring any con tra dic tions to em pir i cal ob ser va tions.

In what fol lows the met ric (IV.1) with B r( ) as given by (IV.19) will be ap plied for un -
der stand ing of the or i gin and causes for the ob served ac cel er ated ex pan sion of the Uni -
verse [1, 2]. For this rea son we may con sider an over sim pli fied model of a Uni verse
hav ing a very heavy body in its cen ter with the mass M and with Q = 0 and its gal ax ies are

re garded as test par ti cles. The em pir i cal value [23] for the cos mo log i cal con stant

L = ´ - -111 10 52 2. m ()

im plies LrS
2 1<<  for any mean ing ful Schwarzschild ra dius rS . Even if rS were about one

light year, rS »1016  m, then LrS
2  would be LrS

2 2010» - . Thus, we are per mit ted to re tain
only the lin ear terms in LrS

2  in the for mula (IV.19) for B r( ), i.e.,

B r
r

r
r
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r
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S
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16

1

3
2

2

2

2L L . (IV.20)

The plot of B r( ) is sche mat i cally de picted on Fig. 1.
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Fig. 1. The schematical plot of B r( ).

The met ric with B r( ) as given by (IV.20) cor re sponds to a black hole with two in ner ho -
ri zons
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and one outer ho ri zon
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where B r( ) > 0 for r rÎ -( , )0  and r r rÎ +( , )0 , and B r( ) < 0 for  r r rÎ - +( , ) and r r> 0 . The
met ric (IV.1) and the Riemann ten sor (IV.2b) are sin gu lar on the ho ri zons. How ever, these
sin gu lar i ties do not ap pear in the Ricci ten sor (IV.3) and in invariants con structed out of
Riemann ten sor (IV.2b).

The func tion B r( ) has a very nar row and very deep min i mum at r r S= »
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with B r
rS

( ) ( )max
/@ - »1 19

4

1 3
2L

. The approximative val ues r r r
±

, ,
min0 and rmax as given by

(IV.21) do not dif fer es sen tially from those fol low ing from ex act nu mer i cal cal cu la tions.
Next we ex am ine prop er ties of gal axy or bits. Their ra dial com po nents p1 sat isfy

Eqs. (IV.18c) writ ten in the form
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The func tion 2mU r( ) has a sim i lar be hav iour as the func tion B r( ) de picted on Fig. 1. Thus,
gal ax ies with e2 1<  and with r r rSÎ( , )max  have

{ }p r m c mU r1 2 2 2
1 2

2( ) ( )
/

= ± -e (IV.22b)

with two turn ing points at which p r1 0( ) =  and they have bound or bits. Note that for  
r r rSÎ( , )max , the func tion B r( ) re duces to the Schwarzschild met ric B r r rS( ) /= -1  with an
ex traor di nary high ac cu racy. Thus the re sults of all clas si cal tests of gen eral the ory of rel a -

THE ORIGIN AND CAUSES FOR THE OBSERVED ...                   77



tiv ity within the so lar sys tem [16] must be per fectly con sis tent with the Schwarzschild met -
ric even un der the ex is tence of dark en ergy and the pres ence of cos mo log i cal con stant.

We next ana lyse gal axy or bits with  r r³ max , i.e., in the space re gion, where one has the
ef fec tive met ric
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In this case the ra dial com po nent p m r1 = d
dT

 sat is fies the re la tion (IV.22) writ ten in the form
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In this space re gion a gal axy or bit can have only one turn ing point at  r r= ~, sat is fy ing the
fol low ing re la tions
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at which p1 0=  and rep re sents an un bound or bit. The last re la tions re quire the pa ram e ters r
and e to have the fol low ing approximative val ues
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The dif fer en tial equa tion (IV.23b) has the ex act so lu tion in the form
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where T
0
 is the in te gra tion con stant cho sen so that  r r= ~ for T T=

0
. Thus for T T>>
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, these
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We iden tify the Hub ble con stant H c r0 0= /  and we de fine the ef fec tive Hub ble con stant 
H H= 0 / e  with  e2 2 21= + J mcr/ ( )max   in or der to ex press nr  and a r  in the forms
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The last for mu lae can be re garded as a gen er al ized Hub ble law in which the ef fec tive Hub -
ble con stant H is slightly de pend ent on in di vid ual prop er ties of gal ax ies rep re sented by
their an gu lar momenta J and their masses m. Thus, the em pir i cal val ues of H cor re spond ing 
to var i ous gal ax ies are ex pected to ex hibit a small dis per sion of them bel low the value H 0 .
The em pir i cal data as pre sented in [24, 25] show that it is in deed so. The Hub ble time 
t HH = = ´1 5 48 100

17/ . s is very close to the value pre sented in [24, 25]. The for mula
(IV.25b) pre dicts the ac cel er ated ex pan sion of the Uni verse by gal ax ies with 
r r rÎ( , / )max 0 3   and  r r> 0 , and the deaccelerated com pres sion of the Uni verse by gal ax ies

with r r rÎ( / , )0 03 .

Sim i larly we de ter mine cir cu lar ve loc i ties nj of gal ax ies with un bound or bits by the for mula
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which pre dicts the anticlockwise di rec tion of gal axy ro ta tions by gal ax ies with  
r r rÎ( , )max 0  and clock wise ro ta tions by gal ax ies with  r r> 0  pro vided that  J > 0. Thus, the
pre sented the ory brings em pir i cal el e ments which can be tested by em pir i cal ob ser va tions.
The last re sult is qual i ta tively con sis tent with anal y sis of ro ta tion curves of gal ax ies
[26�30]. Ac cord ing to Feynman [14] �. . . the only true test of a the ory is its abil ity to pro -
duce good num bers, num bers agree ing with ex per i ment�. It seems that the pre sented the -
ory sat is fies this cri te rion.

5. Discussion

We have ex plic itly dem on strated that gen eral prop er ties of curves cor re spond ing to
worldlines of mas sive par ti cles in the 4-di men sional met ric space � spacetime im ply the ex -
is tence of ten sor fields and  ecessary re la tions among them which are iden ti cal with laws of
mo tion of clas si cal phys ics. By the same way they re quire the ex is tence of three di men sion-
ful fun da men tal con stants by which one can re pro duce in an em pir i cally mean ing ful way all 
quan ti ties en ter ing the pre sented the ory in or der to be com pared with em pir i cal observables. 
The o ret i cal pre dic tions of the the ory are per fectly con sis tent with the clas si cal tests of gen -
eral the ory of rel a tiv ity and pro vide the sim ple ex pla na tion for un der stand ing of the or i gin
and causes for the ob served accelerated expansion of the Universe.

Even if we have not expected that the presented theoretical analysis could be accepted
as a possible way for completing the standard Einstein general theory of relativity by the
dark energy with the cosmological constant, the developed methods can be used for
solving the following problems as simple exercises in differential geometry.

One can solve ex actly cor re spond ing equa tions in or der to find the mod i fi ca tion of the
Kerr-Newmann met ric [20, 22] un der the pres ence of the dark en ergy in the space. In the
rel a tively sim ple prob lem one can con sider in stead of one ten sor field F xab ( ) four ten sor

fields F xa
ab ( ) , a = 1 2 3 4, , , , with the non-abelian gauge group SU(2)×U(1) sym me try in

or der to de rive laws of mo tion of Wein berg�s uni fied the ory of elec tro-weak in ter ac -
tions [31] and their im pli ca tions on the grav i ta tional field and its met ric sim i larly as we
have derived Maxwell�s equations.
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