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Abstract: In the paper we present several notes which may be useful for all who want to teach
undergraduate students about photons at a phenomenological level, in particular to explain the black
body radiation as a photon gas.

1. Introduction

In the undergraduate courses of fundamentals of physics and of introductory statistical
physics students get familiar with the notion of photons on a phenomenological level well
before the advanced course of quantum electrodynamics. Photons are for the first time
mentioned in context of photoeffect, Compton scattering and black body radiation.
Explaining black body radiation in terms of a grand canonical photon gas in a box the
lecturer has to justify the fact that the chemical potential of photons is zero. In this paper we
shall try to present several ways of argumentation, not starting with any fundamental
principles (or axioms). We shall rather present a set of non-hierarchical interrelated facts
which all together make the statement “chemical potential of photons is zero” plausible.

This is a Babylonian way of reasoning as described by Feynman [1]: “What I have
called the Babylonian idea is to say, [ happen to know this, and I happen to know that, and
maybe I know that; and I work everything out from there. Tomorrow I may forget that this
is true, but remember that something else is true, so I can reconstruct it all again. I am
never quite sure of where I am supposed to begin or where I am supposed to end. I just re-
member enough all the time so that as the memory fades and some of the pieces fall out I
can put the thing back together again every day.”

2. Radiation as a photon gas

Maybe the fastest way how to derive the black body radiation formula is to consider the
grand canonical distribution for a photon gas in a cubic box with the edge a. The one-parti-
cle states are given by wave vectors
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Thus the energy spectrum is
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The number of states with the energy less then ¢ is given by the 1/8 of the volume of a
sphere in the (m, n, [) space
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The prefactor 2 is for the two photon polarizations. The density of states is then given by
the derivative of ¢
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To calculate the total energy of photons in the box we just take the mean occupation num-
ber of each one-particle state which is given by the Bose Einstein distribution formula,
multiply by the energy of the state and sum over all the states:
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Now comes the crucial moment: what is the correct value for the chemical potential of pho-
tons | at temperature 7. We can say: it is to be determined experimentally. We compare the
final formula with the experimental radiation spectrum and fit the correct value of p.

The result of such a fit would give p = 0 independently of the temperature.
Taking p =0 we get
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The function below the integral is just the Planck formula for the frequency spectrum of the
black body radiation. To get this agreement with experiment it was essential to putp = 0. At
this level of reasoning the zero value of the photon chemical potential is just an
experimental fit. There is nothing wrong about it a priori. There are many situations like
this in physics. In electrodynamics we have a parameter, the charge of the electron. We are
(currently) not able to determine its value from “first principles”. We have to fit its value
using data from some particular experiment and then to use that fitted value to get “pure
predictions” for other experiments.

It is the value zero for the chemical potential of photons which makes us a bit uneasy to
accept it as a fitted value without some “theoretical reasoning”. Zero is too special a value.
In what follows we shall try to make this value plausible in the context of other pieces of
theoretical physics knowledge within the Babylonian approach. We shall not attempt to
present any hierarchical axiomatic “first principle approach”.
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Let us start first with repetition of how the notion of chemical potential is defined for
“ordinary” particles like atoms, protons, electrons etc. and then explain what makes the
photons different.

3. Chemical potential for ordinary particles

We consider two isolated systems, each of them being individually in equilibrium.
Their energies, volumes and particle numbers are E,, E,, V,, V,, N;, N, . We bring them
into a contact enabling to redistribute particles between them through some hole. Of
course redistributing particles also redistributes energy. The new energies will be E;, E},
the new particle numbers will be N;, N,. The volumes will be unchanged. We shall
consider a case when the total number of particles is fixed (no chemical reactions), so
N, +N, =N, +N,.
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Fig. 1. Redistributing particles in equilibrium.

After the final common equilibrium is established the total entropy will be

S'=S,(E,V,,N))+ 8,(E,V,, N,
The final values of energies will be the same as in the case when we have considered just a ther-
mal contact. The only unknown value in this relation is N} ,since N, is given by the total num-
ber of particles conservation. We get the final value N, by maximizing the entropy.
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What is the physical meaning of this equation? Entropy function S(E, V,N) when
differentiated with respect to N gives some other function of the (macro)state variables
E V,N. So it is some state function of the macrostate, it is some physical quantity
characterizing the macrostate. The equation says that this state variable has the same value
for the two systems in contact. The problem is that in cases of energy and volume
redistributions we have an intuitive feeling what are the relevant physical quantities which
emerge to be the same after reaching common equilibrium (temperature and pressure).
Here we normally do not have everyday experience what is the particle redistribution-
controlling quantity. In lectures on statistical physics we just define the relevant quantity,
the chemical potential p, by the formula
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This definition of chemical potential requires that the total number of particles is conserved.
It means, that the number of particles N is “a good external quantity”. Practically it means,
that preparing a macrostate we start with an empty box and have a store of particles. We take
N particles out of the store, put them into the box and wait until the equilibrium is established.
During the relaxation process the number of particles in the box is constant: it is one of the
external quantities defining the macrostate and its value can be chosen at will.

It has to be stressed that the grand canonical ensemble machinery also requires that the
number of particles is conserved. A macrostate with given p is achieved by bringing the
system considered to a contact with a very big reservoir of particles which keeps the
chemical potential constant. For the derivation see for example Reif [2].

4. Chemical potential of photons

Photons differ from “ordinary particles” by the fact that their number is not a conserved
quantity and cannot be chosen at will as an independent external parameter. We cannot
prepare a box with electromagnetic radiation by starting with an empty box and put N
photons into it taken out from a “photon store”. Even if we were able to start with the box
containing N photons, this number will not be conserved during some relaxation process
and a different equilibrium number of photons will be established during the relaxation. So
“a photon gas in a box” has just two free parameters 7, V while ordinary particle gas has
three 7, V, N. For example in our derivation of the Planck black body radiation formula in
Section 2 we did not fix the number of photons as some chosen parameter. Still the number
of photons in the equilibrium macrostate is a well defined quantity established during the
relaxation to equilibrium and can be calculated from the Planck formula as
1 g
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When we start with an empty box and heat it to temperature T the photons appear inside.
How is it possible? It is because the box is not just a “space limiting passive boundary” as
we consider it to be for a gas of ordinary particles. The photons just do not “emerge of noth-
ing” in an empty box. The photos are continuously emitted and absorbed by the walls (by
charged particles in the walls). So the box is an “active player” in the game. The statement
“radiation is a gas of photons in a box” is just not true. Such a statement has an ontological
character, describing what the radiation is. It is much safer to limit ourselves to
gnoseological statements like “we can consider radiation as if it were a gas of photons in a
box” and as if photons were able to appear or disappear inside the volume of the box until
the equilibrium is established. So we can completely abstract from the complicated radia-
tion and absorption processes in the walls assuming some magic property of photons to ap-
pear or disappear in the internal volume of the box. More comments about as ifs in physics
see in the last section.

Since the number of photons is not conserved (it is not an independent external param-
eter) it is debatable what the notion of chemical potential means for photons. Or whether
the grand canonical ensemble has a well defined meaning for photon gas at all. Still, if one
is prudent enough, one can use that machinery with mu = 0 as if everything was well de-

fined.
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5. Number of photons as a parameter of nonequilibrium

Let us investigate a non-equilibrium photon gas in a box. We can imagine for example that
we start with an equilibrium macrostate at some temperature and then very quickly double
the temperature of the walls. For such a rapid change of external conditions the number of
photons will be the same as in the original equilibrium, but different from the number of
photons that will be established in the new equilibrium.

During the relaxation the number of photons in the box will be at any time instance a
well defined number. Let us denote itas N, . We can consider the number N, as an addi-
tional external parameter characterizing the level of non-equilibrium. Let us stress that a
non-equilibrium macrostate must be characterized by a larger number of parameters than
the equilibrium macrostate. So for example the equilibrium free energy of photon gas in a
box is given by just two parameters 7, V. The non-equilibrium free energy can be charac-
terized for example by three parameters 7, V, N, . For given external 7, V the non-equi-

librium free energy F,,, (T, V, N,,, ) will be decreasing during the relaxation until it finally

reaches its minimum for N, ,, equal to its equilibrium value N, . So the equilibrium free en-
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So the following relation is true
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For ordinary particles the equilibrium free energy is a function of three independent
parameters 7, V, N and the following relation holds
OF(T,V, N)
oN "
Comparing the last two relations and assuming that we can calculate with the chemical
potential of photos as if for ordinary particles we can deduce that the chemical potential of
photons is zero. This is roughly the argument of Landau [3] why p =0 for photons.

6. Photons as if created in a dummy chemical reaction

Even for ordinary particles their number is not always conserved if there are chemical reac-
tions. For example let us consider the reaction

a+bec
If we initially put into an empty box N, N, , N particles then after some relaxation time the
number of particles will be N,,N,, N, . The final particle concentrations can be calculated
by minimizing the Gibbs potential. The equilibrium condition can be expressed through
the chemical potentials (see for example a simple introductory discussion in Kittel [4])

Ma’“b’p'cas
Mo TR, =H,
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Now let us treat the equilibrium number of photos in a box as if it was an equilibrium for a
miraculous (dummy) chemical reaction taking place inside the volume of the box (no role
for walls here)

nothing <> photon

The equilibrium condition for such a miraculous reaction would be

H nothing =H photon

From there we obviously getp . =0.

7. Derivation of the Planck formula not mentioning photons

We shall do here the statistical physics of a free electromagnetic field in a box. We have to
learn how to write the canonical ensemble for a free electromagnetic field in a box. To do
that we have to learn how to write quantum microstates of the electromagnetic field in a
box. The proper way how to do that would be doing quantum electromagnetic field theory.
But we can guess the correct results just writing the stationary electromagnetic waves in a
box, observe that the system is mathematically equivalent to a set of harmonic oscillators
then use the formula for the mean energy of a quantum harmonic oscillator and perform a
summation over the full set of field-equivalent oscillators.

The free electromagnetic field in a box has to satisfy the wave equation. For the elec-

tric component it reads
2
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A partial differential equation needs also boundary conditions. Skipping derivation details
we just write the result, that the electric field in a box with perfectly conducting walls can
be expressed through its Fourier components as

E(xyzt)=)E,. WOS(%) Sin(?j Sin(l%z) v
mnl
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The Fourier coefficient functions are not independent, they have to satisfy the condi-
tion of zero divergence of the electric field and we get

mn nm In
Ex ;mnl(t) + Ey;mnl(t) + 7Ez;mnl(t) = 0
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So only two coefficient functions are arbitrary, the third one can be expressed through the
other two. This corresponds to the fact that the electromagnetic wave has two independent
polarizations.
Inserting the expressions (1), (2), (3) into the wave equation we get for the two inde-
pendent coefficient functions equations
2
%Ex ;nml(t) = _(Dfrm[Ex ;mnl(t )
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Thus the electric field in a box is mathematically equivalent to two sets of independent
harmonic oscillators, labeled by integer triplets m, n, [ with frequencies o, ,. More detailed
discussion shows that these two sets of independent oscillators fully describe the magnetic
field as well, so the two sets of oscillators describe a state of electromagnetic field in a box
completely.

We can now do the statistical physics of electromagnetic field in a box as if the
statistical physics of two sets of independent harmonic oscillators. The mean energy of
just one quantum harmonic oscillator at temperature T reads

h,y + L ho

Tmnl 2 ‘mnl
exp 7 -1

In what follows we shall omit the contribution from zero oscillations which would just add
a physically irrelevant additive constant to the total energy. (Well, the additive constant will
be infinite, but we cannot dwell here on problems of infinities in quantum field theory.)

Now we do a standard trick: we approximate the sum by an integral over . To do this
we have to know how many oscillators have the frequency less than some value ®. We see
that the oscillators correspond to points in the abstract m, n, [ space with integer coordi-
nates. The trick is the same as we used when calculating the number of one-particle states
for photons. So we get (the factor 2 is for two states polarization states).
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The total energy of the field we get by summation over all the oscillators
1 ho'
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This is exactly the Planck formula.

We have not used any photons here, we just did the canonical distribution for the
harmonic oscillators. But now we understand why a grand canonical distribution of photons
lead to the same result. Just by lucky coincidence the mean energy of a harmonic oscillator
ho

ho
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is given by the same formula as the Bose Einstein mean occupation number with p = 0.
There is one-to-one correspondence between the language of harmonic oscillators and the
language of photons if we put p =0 for photons. In both cases the states are given by a
triplet of integers m, n, [ the frequency w, , is given by the same formula in both cases. Even
if we never heard about photons we could arrive at a conclusion that there are two
equivalent ways to do statistical physics either as if the electromagnetic field were sets of
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harmonic oscillators or as if the electromagnetic field were a gas of photons. So we have
invented here photons without the quantum field theory. Well, as if.

8. Babylonian “as if” physics

During our discussions we have used several times an “as if” approach. This may sound
strange for many people who consider physics to be a rigorous science. Well, physics is cer-
tainly more rigorous than many other branches of science, but still we are not preaching “ab-
solute truth”. We often find in popular text statements like “modern science has proved that
energy is conserved and cannot be destroyed or created”. Nobody really proved that without
any assumed unproved “first principles”. We do not say in physics that our statements corre-
spond to absolute truth, we say they are currently our best advice we can give you to be able
to survive in the jungle of the world.

We have all learned in school that “light is waves” since it was proved by interference
experiments. This statement is of ontological character. Anybody formulating such
statements must be prepared to be “disproved” by photoelectric effect. It is much safer to
say “in interference experiments we can handle light as if light were waves”.

We have all learned at school that everything around us is made of molecules, which are
composed of atoms which are composed of protons, neutrons and electrons. Another onto-
logical statement. What would an average teacher say if some pupil complains: “I can easily
prove that this cannot be true. I learned on Internet that neutrons are unstable particles and
decay within (statistically) a quarter of an hour. You are speaking here already for longer
time without any observable decay.” There are stories that young Einstein and Mileva Mari¢
(his future first wife), used to irritate their professors by pointing to inconsistencies between
the taught knowledge and newer scientific findings. My answer to the complaining pupil
will be something like “very often we can consider the neutrons bound in atomic nucleus as
if they were stable particles. Who knows how many the today’s “absolutely true scientific
statements” will be formulated as “as if” statements in future.

Galileo refused to accept the as if game (proposed to him by the Inquisition) insisting
“Eppur si mouve”. Actually the Copernicus book was published (half a century before the
Galileo process) with an over-prudent as if preface added by Osiander. This was criticized
by many. In fact no side of the heliocentrism against geocentrism quarrel was rigorously
technically right even though psychologically the Copernicus theory was of absolute
importance. Just technically it is closer to truth to say that the Sun and the Earth both rotate
around their common center of mass. Even this I would prefer to formulate as an “as if”
statement.
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