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Ab stract: In the pa per we pres ent sev eral notes which may be use ful for all who want to teach
un der grad u ate stu dents about pho tons at a phenomenological level, in par tic u lar to ex plain the black
body ra di a tion as a pho ton gas.

1. In tro duc tion

In the undergraduate courses of fundamentals of physics and of introductory statistical
physics students get familiar with the notion of photons on a phenomenological level well
before the advanced course of quantum electrodynamics. Photons are for the first time
mentioned in context of photoeffect, Compton scattering and black body radiation.
Explaining black body radiation in terms of a grand canonical photon gas in a box the
lecturer has to justify the fact that the chemical potential of photons is zero. In this paper we 
shall try to present several ways of argumentation, not starting with any fundamental
principles (or axioms). We shall rather present a set of non-hierarchical interrelated facts
which all together make the statement �chemical potential of photons is zero� plausible.

This is a Bab y lo nian way of rea son ing as de scribed by Feynman [1]: �What I have
called the Bab y lo nian idea is to say, I hap pen to know this, and I hap pen to know that, and
maybe I know that; and I work ev ery thing out from there. To mor row I may for get that this
is true, but re mem ber that some thing else is true, so I can re con struct it all again. I am
never quite sure of where I am sup posed to be gin or where I am sup posed to end. I just re -
mem ber enough all the time so that as the mem ory fades and some of the pieces fall out I
can put the thing back to gether again ev ery day.�

2. Ra di a tion as a pho ton gas

Maybe the fast est way how to de rive the black body ra di a tion for mula is to con sider the
grand ca non i cal dis tri bu tion for a pho ton gas in a cu bic box with the edge a. The one-par ti -
cle states are given by wave vec tors
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and the cor re spond ing fre quen cies are
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Thus the en ergy spec trum is
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The num ber of states with the en ergy less then e is given by the 1/8 of the vol ume of a
sphere in the ( , , )m n l  space
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The prefactor 2 is for the two pho ton po lar iza tions. The den sity of states is then given by
the de riv a tive of j
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To cal cu late the to tal en ergy of pho tons in the box we just take the mean oc cu pa tion num -
ber of each one-par ti cle state which is given by the Bose Ein stein dis tri bu tion for mula,
mul ti ply by the en ergy of the state and sum over all the states:
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Now co mes the cru cial mo ment: what is the cor rect value for the chem i cal po ten tial of pho -
tons m at tem per a ture T. We can say: it is to be de ter mined ex per i men tally. We com pare the

fi nal for mula with the ex per i men tal ra di a tion spec trum and fit the cor rect value of  m.

The result of such a fit would give m = 0 independently of the temperature.
Taking m = 0 we get
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The function below the integral is just the Planck formula for the frequency spectrum of the 
black body radiation. To get this agreement with experiment it was essential to put m = 0. At 
this level of reasoning the zero value of the photon chemical potential is just an
experimental fit. There is nothing wrong about it a priori. There are many situations like
this in physics. In electrodynamics we have a parameter, the charge of the electron. We are
(currently) not able to determine its value from �first principles�. We have to fit its value
using data from some particular experiment and then to use that fitted value to get �pure
predictions� for other experiments.

It is the value zero for the chem i cal po ten tial of pho tons which makes us a bit un easy to 
ac cept it as a fit ted value with out some �the o ret i cal rea son ing�. Zero is too spe cial a value.
In what fol lows we shall try to make this value plau si ble in the con text of other pieces of
the o ret i cal phys ics knowl edge within the Bab y lo nian ap proach. We shall not at tempt to
pres ent any hi er ar chi cal ax i om atic �first prin ci ple ap proach�.



Let us start first with rep e ti tion of how the no tion of chem i cal po ten tial is de fined for
�or di nary� par ti cles like at oms, pro tons, elec trons etc. and then ex plain what makes the
pho tons dif fer ent.

3. Chem i cal po ten tial for or di nary par ti cles

We consider two isolated systems, each of them being individually in equilibrium.
Their energies, volumes and particle numbers are E E V V N N1 2 1 2 1 2, , , , , . We bring them
into a contact enabling to redistribute particles between them through some hole. Of
course redistributing particles also redistributes energy. The new energies will be ¢ ¢E E1 2, ,
the new particle numbers will be ¢ ¢N N1 2, . The volumes will be unchanged. We shall
consider a case when the total number of particles is fixed (no chemical reactions), so 
N N N N1 2 1 2+ = ¢ + ¢ .

Fig. 1. Re dis trib ut ing par ti cles in equi lib rium.

Af ter the fi nal com mon equi lib rium is es tab lished the to tal en tropy will be

¢ = ¢ ¢ + ¢ ¢S S E V N S E V N1 1 1 1 2 2 2 2( , , ) ( , , ) ()

The fi nal val ues of en er gies will be the same as in the case when we have con sid ered just a ther -
mal con tact. The only un known value in this re la tion is ¢N1 , since ¢N2  is given by the to tal num -
ber of par ti cles con ser va tion. We get the fi nal value ¢N1  by max i miz ing the en tropy.
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What is the physical meaning of this equation? Entropy function S E V N( , , ) when
differentiated with respect to N gives some other function of the (macro)state variables 
E V N, , . So it is some state function of the macrostate, it is some physical quantity
characterizing the macrostate. The equation says that this state variable has the same value
for the two systems in contact. The problem is that in cases of energy and volume
redistributions we have an intuitive feeling what are the relevant physical quantities which
emerge to be the same after reaching common equilibrium (temperature and pressure).
Here we normally do not have everyday experience what is the particle redistribution-
controlling quantity. In lectures on statistical physics we just define the relevant quantity,
the chemical potential m, by the formula
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This definition of chemical potential requires that the total number of particles is conserved.
It means, that the number of particles N is �a good external quantity�. Practically it means,
that preparing a macrostate we start with an empty box and have a store of particles. We take
N particles out of the store, put them into the box and wait until the equilibrium is established. 
During the relaxation process the number of particles in the box is constant: it is one of the
external quantities defining the macrostate and its value can be chosen at will.

It has to be stressed that the grand ca non i cal en sem ble ma chin ery also re quires that the
num ber of par ti cles is con served. A macrostate with given m is achieved by bring ing the
sys tem con sid ered to a con tact with a very big res er voir of par ti cles which keeps the
chem i cal po ten tial con stant. For the der i va tion see for ex am ple Reif [2].

4. Chem i cal po ten tial of pho tons

Photons differ from �ordinary particles� by the fact that their number is not a conserved
quantity and cannot be chosen at will as an independent external parameter. We cannot
prepare a box with electromagnetic radiation by starting with an empty box and put N
photons into it taken out from a �photon store�. Even if we were able to start with the box
containing N photons, this number will not be conserved during some relaxation process
and a different equilibrium number of photons will be established during the relaxation. So
�a photon gas in a box� has just two free parameters T, V while ordinary particle gas has
three T, V, N. For example in our derivation of the Planck black body radiation formula in
Section 2 we did not fix the number of photons as some chosen parameter. Still the number
of photons in the equilibrium macrostate is a well defined quantity established during the
relaxation to equilibrium and can be calculated from the Planck formula as
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When we start with an empty box and heat it to tem per a ture T the pho tons ap pear in side.
How is it pos si ble? It is be cause the box is not just a �space lim it ing pas sive bound ary� as
we con sider it to be for a gas of or di nary par ti cles. The pho tons just do not �emerge of noth -
ing� in an empty box. The pho tos are con tin u ously emit ted and ab sorbed by the walls (by
charged par ti cles in the walls). So the box is an �ac tive player� in the game. The state ment
�ra di a tion is a gas of pho tons in a box� is just not true. Such a state ment has an on to log i cal
char ac ter, de scrib ing what the ra di a tion is. It is much safer to limit our selves to
gnoseological state ments like �we can con sider ra di a tion as if it were a gas of pho tons in a
box� and as if pho tons were able to ap pear or dis ap pear in side the vol ume of the box un til
the equi lib rium is es tab lished. So we can com pletely ab stract from the com pli cated ra di a -
tion and ab sorp tion pro cesses in the walls as sum ing some magic prop erty of pho tons to ap -
pear or dis ap pear in the in ter nal vol ume of the box. More com ments about as ifs in phys ics
see in the last sec tion.

Since the num ber of pho tons is not con served (it is not an in de pend ent ex ter nal pa ram -
e ter) it is de bat able what the no tion of chem i cal po ten tial means for pho tons. Or whether
the grand ca non i cal en sem ble has a well de fined mean ing for pho ton gas at all. Still, if one
is pru dent enough, one can use that ma chin ery with mu = 0 as if ev ery thing was well de -

fined.  
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5. Num ber of pho tons as a pa ram e ter of nonequilibrium

Let us in ves ti gate a non-equi lib rium pho ton gas in a box. We can imag ine for ex am ple that
we start with an equi lib rium macrostate at some tem per a ture and then very quickly dou ble
the tem per a ture of the walls. For such a rapid change of ex ter nal con di tions the num ber of
pho tons will be the same as in the orig i nal equi lib rium, but dif fer ent from the num ber of
pho tons that will be es tab lished in the new equi lib rium.

Dur ing the re lax ation the num ber of pho tons in the box will be at any time in stance a
well de fined num ber. Let us de note it as Nneq . We can con sider the num ber Nneq as an ad di -
tional ex ter nal pa ram e ter char ac ter iz ing the level of non-equi lib rium. Let us stress that a
non-equi lib rium macrostate must be char ac ter ized by a larger num ber of pa ram e ters than
the equi lib rium macrostate. So for ex am ple the equi lib rium free en ergy of pho ton gas in a
box is given by just two pa ram e ters T, V. The non-equi lib rium free en ergy can be charac-
terized for ex am ple by three pa ram e ters T, V, Nneq . For given ex ter nal T, V the non-equi -

lib rium free en ergy F T V Nneq neq( , , )  will be de creas ing dur ing the re lax ation un til it fi nally 
reaches its min i mum for Nneq  equal to its equi lib rium value Neq . So the equi lib rium free en -
ergy F T Veq ( , )  is equal to the non-equi lib rium free en ergy eval u ated for N Nneq eq= .

F T V N F T Vneq neq eq( , , ) ( , )® ()

                 N F T V Neq N neq neqneq
= argmin ( , , ) ()

So the fol low ing re la tion is true
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For or di nary par ti cles the equi lib rium free en ergy is a func tion of three in de pend ent
parameters T V N, ,  and the fol low ing re la tion holds
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Comparing the last two relations and assuming that we can calculate with the chemical
potential of photos as if for ordinary particles we can deduce that the chemical potential of
photons is zero. This is roughly the argument of Lan dau [3] why m = 0 for photons.

6. Pho tons as if cre ated in a dummy chem i cal re ac tion

Even for or di nary par ti cles their num ber is not al ways con served if there are chem i cal re ac -
tions. For ex am ple let us con sider the re ac tion

a b c+ « ()

If we ini tially put into an empty box N N Na b c, , par ti cles then af ter some re lax ation time the
num ber of par ti cles will be ¢ ¢ ¢N N Na b c, , . The fi nal par ti cle con cen tra tions can be cal cu lated
by min i miz ing the Gibbs po ten tial. The equi lib rium con di tion can be ex pressed through
the chem i cal po ten tials (see for ex am ple a sim ple in tro duc tory dis cus sion in Kittel [4]) 
m m ma b c, , as

m m ma b c+ = ()
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Now let us treat the equilibrium number of photos in a box as if it was an equilibrium for a
miraculous (dummy) chemical reaction taking place inside the volume of the box (no role
for walls here)

nothing « photon ()

The equilibrium condition for such a miraculous reaction would be

m mnothing photon= ()

From there we obviously get m
photon

= 0.

7. Der i va tion of the Planck for mula not men tion ing pho tons

We shall do here the sta tis ti cal phys ics of a free elec tro mag netic field in a box. We have to
learn how to write the ca non i cal en sem ble for a free elec tro mag netic field in a box. To do
that we have to learn how to write quan tum microstates of the elec tro mag netic field in a
box. The proper way how to do that would be do ing quan tum elec tro mag netic field the ory.
But we can guess the cor rect re sults just writ ing the sta tion ary elec tro mag netic waves in a
box, ob serve that the sys tem is math e mat i cally equiv a lent to a set of har monic os cil la tors
then use the for mula for the mean en ergy of a quan tum har monic os cil la tor and per form a
sum ma tion over the full set of field-equiv a lent os cil la tors.

The free elec tro mag netic field in a box has to sat isfy the wave equa tion. For the elec -
tric com po nent it reads
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A partial differential equation needs also boundary conditions. Skipping derivation details
we just write the result, that the electric field in a box with perfectly conducting walls can
be expressed through its Fourier components as
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The Fou rier co ef fi cient func tions are not in de pend ent, they have to sat isfy the con di -
tion of zero di ver gence of the elec tric field and we get
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So only two coefficient functions are arbitrary, the third one can be expressed through the
other two. This corresponds to the fact that the electromagnetic wave has two independent
polarizations.

In sert ing the ex pres sions (1), (2), (3) into the wave equa tion we get for the two in de -
pend ent co ef fi cient func tions equa tions
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Thus the electric field in a box is mathematically equivalent to two sets of independent
harmonic oscillators, labeled by integer triplets m n l, ,  with frequencies w

mnl
. More detailed

discussion shows that these two sets of independent oscillators fully describe the magnetic
field as well, so the two sets of oscillators describe a state of electromagnetic field in a box
completely.

We can now do the statistical physics of electromagnetic field in a box as if the
statistical physics of two sets of independent harmonic oscillators. The mean energy of
just one quantum harmonic oscillator at temperature T reads
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In what fol lows we shall omit the con tri bu tion from zero os cil la tions which would just add
a phys i cally ir rel e vant ad di tive con stant to the to tal en ergy. (Well, the ad di tive con stant will 
be in fi nite, but we can not dwell here on prob lems of in fin i ties in quantum field theory.)

Now we do a stan dard trick: we ap prox i mate the sum by an in te gral over w . To do this
we have to know how many os cil la tors have the fre quency less than some value w . We see
that the os cil la tors cor re spond to points in the ab stract m n l, ,  space with in te ger co or di -
nates. The trick is the same as we used when cal cu lat ing the num ber of one-par ti cle states
for pho tons. So we get (the fac tor 2 is for two states po lar iza tion states).
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The total energy of the field we get by summation over all the oscillators
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This is exactly the Planck formula.
We have not used any photons here, we just did the canonical distribution for the

harmonic oscillators. But now we understand why a grand canonical distribution of photons
lead to the same result. Just by lucky coincidence the mean energy of a harmonic oscillator
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is given by the same formula as the Bose Einstein mean occupation number with m = 0.
There is one-to-one correspondence between the language of harmonic oscillators and the
language of photons if we put m = 0 for photons. In both cases the states are given by a
triplet of integers  m n l, ,  the frequency w

mnl
 is given by the same formula in both cases. Even 

if we never heard about photons we could arrive at a conclusion that there are two
equivalent ways to do statistical physics either as if the electromagnetic field were sets of
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harmonic oscillators or as if the electromagnetic field were a gas of photons. So we have
invented here photons without the quantum field theory. Well, as if.

8. Bab y lo nian �as if� phys ics

Dur ing our dis cus sions we have used sev eral times an �as if� ap proach. This may sound
strange for many peo ple who con sider phys ics to be a rig or ous sci ence. Well, phys ics is cer -
tainly more rig or ous than many other branches of sci ence, but still we are not preach ing �ab -
so lute truth�. We of ten find in pop u lar text state ments like �mod ern sci ence has proved that
en ergy is con served and can not be de stroyed or cre ated�. No body re ally proved that with out
any as sumed un proved �first prin ci ples�. We do not say in phys ics that our state ments cor re -
spond to ab so lute truth, we say they are cur rently our best ad vice we can give you to be able
to sur vive in the jun gle of the world.

We have all learned in school that �light is waves� since it was proved by interference
experiments. This statement is of ontological character. Anybody formulating such
statements must be prepared to be �disproved� by photoelectric effect. It is much safer to
say �in interference experiments we can handle light as if light were waves�.

We have all learned at school that ev ery thing around us is made of mol e cules, which are
com posed of at oms which are com posed of pro tons, neu trons and elec trons. An other on to -
log i cal state ment. What would an av er age teacher say if some pu pil com plains: �I can eas ily
prove that this can not be true. I learned on Internet that neu trons are un sta ble par ti cles and
de cay within (sta tis ti cally) a quar ter of an hour. You are speak ing here al ready for lon ger
time with out any ob serv able de cay.� There are sto ries that young Ein stein and Mileva Mariæ 
(his fu ture first wife), used to ir ri tate their pro fes sors by point ing to in con sis ten cies be tween
the taught knowl edge and newer sci en tific find ings. My an swer to the com plain ing pu pil
will be some thing like �very of ten we can con sider the neu trons bound in atomic nu cleus as
if they were sta ble par ti cles. Who knows how many the to day�s �ab so lutely true sci en tific
state ments� will be for mu lated as �as if� statements in future.

Galileo refused to accept the as if game (proposed to him by the Inquisition) insisting
�Eppur si mouve�. Actually the Copernicus book was published (half a century before the
Galileo process) with an over-prudent as if preface added by Osiander. This was criticized 
by many. In fact no side  of the heliocentrism against geocentrism quarrel was rigorously
technically right even though psychologically the Copernicus theory was of absolute
importance. Just technically it is closer to truth to say that the Sun and the Earth both rotate 
around their common center of mass. Even this I would prefer to formulate as an �as if�
statement.
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56                                                      V. ÈERNÝ



Ref er ences
[ 1] R. P. Feynman: �The Char ac ter of Phys i cal Law�, (M.I.T. Press, Cam bridge, 1985), Ch. 2.
[ 2] F. Reif: �Fun da men tals of Sta tis ti cal and Ther mal Phys ics�, (McGraw-Hill, New York, 1965), Sect. 6.9.
[ 3] L. D. Lan dau, E. M. Lifshitz: �Sta tis ti cal Phys ics�, (Pergamon Press, Ox ford, 1980) par. 63.
[ 4] C. Kittel: �El e men tary Sta tis ti cal Phys ics�, (John Wiley & Sons, New York, 1958) Ch. 16.

CHEM I CAL PO TEN TIAL OF PHO TONS: ...                             57




