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We pres ent this work for the spe cial vol ume of the Acta Physica is sued in hon our of our
friend and col league Pro fes sor Pe ter Pre�najder on the oc ca sion of his 75th Birth day. This
spe cific work we have se lected as our con tri bu tion ded i cated to him, since it has been first
Pe ter Pre�najder who has in tro duced us to the con cept of Noncommutative Ge om e try and in
par tic u lar to the sub ject of Quan tum Field The ory in Noncommutative Spacetime, as early as 
in 1998 when we started to work with him as our first com mon work on this sub ject [1]. Af ter
that, thanks to the ini tia tive at ti tude and the orig i nal ideas Pe ter had, we started to pro duced
a se ries of works on the sub ject, among them our joint works [2]�[4], ..., the last our joint
work with Pe ter on this sub ject be ing [5]. Of course Pe ter had pre vi ously been work ing on
di verse as pects of Noncommutative Ge om e try since the be gin ning of 1990�s.

Ab stract: Clas si cal re sults of the ax i om atic quan tum field the ory - irreducibility of the set of field
op er a tors, Reeh and Schlieder�s the o rems and gen er al ized Haag�s the o rem are proven in SO(1,1)
in vari ant quan tum field the ory, of which an im por tant ex am ple is noncommutative quan tum field the ory. 
In SO(1,3) in vari ant the ory new con se quences of gen er al ized Haag�s the o rem are ob tained. It has been
proven that the equal ity of four-point Wightman func tions in two the o ries leads to the equal ity of elas tic
scat ter ing am pli tudes and thus the to tal cross-sec tions in these the o ries.

 1. In tro duc tion

Quantum field theory (QFT) as a mathematically rigorous and consistent theory was
formulated in the framework of the axiomatic approach in the works of Wightman, Jost,
Bogoliubov, Haag and others ([6]�[10]).

Within the framework of this theory on the basis of most general principles such as
Poincaré invariance, local commutativity and spectrality, a number of fundamental
physical results, for example, the CPT-theorem and the spin-statistics theorem were
proven [6]�[9].

Noncommutative quan tum field the ory (NC QFT) be ing one of the gen er al iza tions
of stan dard QFT has been in ten sively de vel oped dur ing the past years (for re views, see
[11, 12]). The idea of such a gen er al iza tion of QFT as cends to Heisenberg and it was ini -
tially de vel oped in Snyder�s work [13]. The pres ent de vel op ment in this di rec tion is con -
nected with the con struc tion of noncommutative ge om e try [14] and new phys i cal
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ar gu ments in fa vour of such a gen er al iza tion of QFT [15]. Es sen tial in ter est in NC QFT is
also due the fact that in some cases it is a low-en ergy limit of string the ory [16]. The sim -
plest and at the same time most stud ied ver sion of noncommutative field the ory is based
on the fol low ing Heisenberg-like com mu ta tion re la tions be tween co or di nates:

[ , ]x x im n mnq= , (1)

where qmn  is a constant antisymmetric matrix.
It is known that the construction of NC QFT in a general case (q0 0i ¹ ) meets serious

difficulties with unitarity and causality [17]�[20]. For this reason the version with q0 0i =
(space-space noncommutativity), in which there do not appear such difficulties and which 
is a low-energy limit of the string theory, draws special attention. Then always there is a
system of coordinates, in which only q q12 21 0= - ¹   [21]. Thus, when q0 0i = , without loss 
of generality it is possible to choose coordinates x0 and x3 as commutative and coordinates
x1 and x2 as noncommutative.

The relation (1) breaks the Lorentz invariance of the theory, while the symmetry under 

the SO(1,1)ÄSO(2) subgroup of the Lorentz group survives [19]. Translational
invariance is still valid. Below we shall consider the theory to be SO(1,1) invariant with
respect to coordinates x0 and x3. Besides these classical groups of symmetry, in the paper
[22] it was shown, that the noncommutative field theory with the commutation relation (1) 
of the coordinates, and built according to the Weyl-Moyal correspondence, has also a
quantum symmetry, i.e. twisted Poincaré invariance.

In the works [23], [24] the Wightman approach was formulated for NC QFT. For
scalar fields the CPT theorem and the spin-statistics theorem were proven in the case 
q0 0i = .

In [23] it was proposed that Wightman functions in the noncommutative case can be
written down in the standard form

W x x x xn n( , , ) , ( ) ( )1 0 1 0K K= Y Yj j  , (2)

where y 0  is the vac uum state. How ever, un like the com mu ta tive case, these Wightman

func tions are only SO(1,1)ÄSO(2) in vari ant. In fact in [23] the CPT the o rem has been

proven in the com mu ta tive the ory, where Lorents invariance is bro ken up to SO(1,1)ÄSO(2)
sym me try, as in the noncommutative the ory it is nec es sary to use the *-prod uct at least in
co in cid ing points.

In [24] it was proposed that in the noncommutative case the usual product of operators
in the Wightman functions has to be replaced by the Moyal-type product both in
coinciding and different points:

j j( ) ( )x x n1 * *K   = exp
i
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Õ  j( )x1  K j( )x n  ,

a n= -1 2 1, ,K  . (3)

Such a product of operators is compatible with the twisted Poincaré invariance of the
theory [25] and also reflects the natural physical assumption, that noncommutativity
should change the product of operators not only in coinciding points, but also in different
ones. This follows also from another interpretation of NC QFT in terms of a quantum shift
operator [26].
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In [27] it was shown that in the derivation of axiomatic results, the concrete type of
product of operators in various points is insignificant. It is essential only that from the
appropriate spectral condition (see formula (10)), the analyticity of Wightman functions
with respect to the commutative variables x0 and x3 follows, while x1 and x2 remain real. In
accordance with Eq. (3) the Wightman functions can be written down as follows:

W
*
( , , ) , ( ) ( )x x x xn n1 0 1 0K K= * *Y Yj j  . (4)

Note that actually there is no field operator defined in a point [28], (see also [8]). Only
the smoothed operators written symbolically as

j jf x f x dxº ò ( ) ( )  , (5)

where f x( ) are test functions, can be rigorously defined.
In QFT the stan dard as sump tion is that all f x( ) are test func tions of tem pered dis tri bu -

tions. On the con trary, in the NC QFT the cor re spond ing gen er al ized func tions can not be
tem pered dis tri bu tions as the *-prod uct con tains in fi nite num ber of de riv a tives. It is
well-known (see, for ex am ple, [6]) that there could be only a fi nite num ber of de riv a tives
in any tem pered dis tri bu tion.

The formal expression (4) actually means that the scalar product of the vectors 
F Y

k f fk
= j jK

1
0  and  Y Yn f fk n

=
+

j j
1

0K  is the following:

F Y
k n nW x x f x, ( , , ) ( )= * *ò 1 1 1K K f x dx dx

k k n( ) 1K ;

W x x x xn n( , , ) , ( ) ( )1 0 1 0K K= Y Yj j  . (6)

In paper [29] it was shown that the series

f x( ) * f y
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converges if f x S( )Î b ,  b <1 2/ ,  S b is a Ge¾fand-Shilov space [30]. The similar result was

obtained also in [31].
The dif fer ence of noncommutative case from com mu ta tive one is that ac tion of the op -

er a tor j
f
 is de fined by the *-prod uct.

In [27] it was shown that, besides the above-mentioned theorems, in NC QFT (with  
q0 0i = ) a number of other classical results of the axiomatic theory remain valid. In [25] on 
the basis of the twisted Poincaré invariance of the theory the Haag�s theorem was obtained 
[33, 34] (see also [6] and references therein).

The present work deals with further development of the axiomatic approach in NC
QFT. In fact, our results are valid for the wide class of SO(1,1) invariant four-dimensional 
field theories.

At first we for mu late the ba sic prop er ties of Wightman func tions in spacespace NC QFT.
In the present work, analogues of some known results of the axiomatic approach in

quantum field theory are obtained for the SO(1,1) invariant field theory, of which an
important example is NC QFT. We prove that classical results, such as the irreducibility of 
the set of field operators, the theorems of Reeh and Schlieder [6]�[9] remain valid in the
noncommutative case. It should be emphasized that the results obtained in this paper do
not depend on the SO(2) invariance of the theory in the variables x1 and x2 and therefore
can be extended to more general cases. The irreducibility of the set of field operators
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remain valid in any theory, which is translation invariant in commutative variables, if only 
Eq. (27) is fulfilled. The first theorem of Reeh and Schlieder is valid, if the Wightman
functions are analytical in the variables x0 and x3 in the primitive domains of analyticity
(�tubes�).

In the SO(1,3) invariant theory new consequences of the generalized Haag�s theorem
are found, without analogues in NC QFT. At the same time it is proven that the basic
physical conclusion of Haag�s theorem is valid also in the SO(1,1) invariant theory, and it
is sufficient that spectrality, local commutativity condition and translational invariance be 
fulfilled only for the transformations concerning the commutating coordinates. The
analysis of Haag�s theorem reveals essential distinctions between commutative and
noncommutative cases, more precisely between the SO(1,3) and SO(1,1) invariant
theories. In the commutative case, the conditions (59) and (60), whose consequence is
generalized Haag�s theorem, lead to the equality of Wightman functions in two theories
up to four-point ones. In the present paper it is shown that in the SO(1,1) invariant theory,
unlike the commutative case, only two-point Wightman functions are equal and it is
shown that from the equality of two-point Wightman functions in two theories it follows
that if in one of them the current is equal to zero, it is equal to zero in the other as well and
under weaker conditions than the standard ones. It is also shown that for the derivation of
Eq. (60) it is sufficient to assume that the vacuum vector is a unique normalized vector,
invariant under translations along the axis x3. It is proven that from the equality of
four-point Wightman functions in two theories, the equality of their elastic scattering
amplitudes follows and, owing to the optical theorem, the equality of total cross sections
as well. In derivation of this result LCC is not used.

The study of Wightman functions leads still to new nontrivial consequences also in the 
commutative case1.

The paper is arranged as follows. In section 2 the basic properties of Wightman
functions in space-space NC QFT are formulated; in section 3 the irreducibility of the set
of field operators is proven; in section 4 generalizations of the theorems of Reeh and
Schlieder to NC QFT are obtained; section 5 is devoted to generalized Haag�s theorem;
in section 6 it is shown that in the commutative case, the conditions of weak local
commutativity (WLCC) and of local commutativity (LCC), which are valid in the
noncommutative case ((24) and (22)), appear to be equivalent to the usual WLCC and
LCC, respectively.

2. Ba sic Prop er ties of Wightman Func tions 
    in Space-space NC QFT

As in the commutative case, we assume that every vector of J can be approximated with
arbitrary accuracy by the vectors of the type

j jf fn1 0K Y  . (8)

In other words the vacuum vector Y0  is cyclic, i.e. the axiom of cyclicity of vacuum is
fulfilled.

Let us note that the vectors of the type (8) can be written formally as follows:

j j j jf f nn
x x f x

1 0 1 0 1 1K K KY Y= * *ò ( ) ( ) ( ) f x dx dxn n n( ) 1K  . (9)
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It is nat u rally to as sume that Wightman func tions are tem pered dis tri bu tions with re spect to 
com mu ta tive co or di nates as the *-prod uct con tains de riv a tives with re spect to non com-
mu ta tive co or di nates only. In ac cor dance with this as sump tion we can use the stan dard ar -
gu ments to prove Wightman func tions analyticity in �tubes� and ex tended �tubes�.

It is well known that in com mu ta tive case Wightman func tions analyticity in tubes is a
con se quence of the spec tral con di tion, which im plies that com plete sys tem of phys i cal
states (in gauge the o ries also non phys i cal ones) does not con tain tahyon states in mo men -
tum space. It means that mo men tum Pm  for ev ery state sat is fies the con di tion:  P Pn n

0 ³| |
r

. 

This con di tion is usu ally writ ten as P Vn Î
+

. As Wightman func tions in the noncommutative

case are an a lyt i cal func tion only in com mu ta tive vari ables, it is suf fi cient to as sume the
weaker con di tion of spec trali ty. Pre cisely, we as sume that any vec tor in p space, be long -
ing to the com plete sys tem of these vec tors, is time-like with re spect to mo men tum com -
po nents Pn

0  and Pn
3 , i.e. that

P Pn n
0 3³  . (10)

The condition (10) is conveniently written as P Vn Î
+
2 , where V 2

+
 is the set of the

four-dimensional vectors satisfying the condition P P0 3³ .

For the results obtained below, translational invariance only in commuting
coordinates is essential, therefore we write down the Wightman functions as: 

W x x W Xn n( , , ) ( , , , )1 1 1K K= -x x  , (11)

where X des ig nates the set of noncommutative vari ables x x i ni i
1 2 1, , ,= K , and { }x x xj j j= 0 3, ,

where x xj j j j j jx x x x0 0
1

0 3 3
1

3= - = -+ +, , j n= -1 1, ,K .
Thus at arbitrary X we can express scalar product (6) as follows: 

F Yk n n n nW X f X d d, ( , , , ) ( , , , )= - - -ò x x x x x x1 1 1 1 1 1K K K (12)

and use the completeness of the system of vectors YPm
, where P P Pm n n

t={ , }0  is the
two-dimensional momentum corresponding to the commutative coordinates, multiindex n
denotes all other characteristics of the state. So 

F Y F Y Y Y, , ,= òå dPm P P
n

m m
 . (13)

From the con di tion (10) and Eq. (13) it fol lows that 

da e U aipa-

ò =F Y, ( ) 0 ,   if p VÏ +

2  , (14)

where a a a={ , }0 3  is a two-dimensional vector, U a( ) is a translation in the plane x0, x3, and 

F and Y are arbitrary vectors. The equality (14) is similar to the corresponding equality in
the standard case ([6], Chap. 2.6). A direct consequence of the equality (14) is the spectral
property of Wightman functions: 

W P P X e W X d dn n

iP

n n
j j( , , )

( )
( , , , )1 1 1 1 1 1

1

2
K K K- - -= òp

x x x xx

- =1 0 , (15)

if P Vj Ï
+
2 . The proof of the equality (15) is similar to the proof of the spectral condition in

the commutative case [6], [9]. Recall that in the latter case the equality (15) is valid, if 

P Vj Ï
+

. Having written down W Xn( , , , )x x1 1K -  as
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W X e W P P X dP dPn n

iP

n
j j( , , )

( )
( , , , )x x

p

x

1 1 1 1 1 1

1

2
K K K- -

-

-= ò n- 1 , (16)

and taking into account that Wightman functions are tempered distributions with respect to
the commutative variables, we obtain that, due to the condition (15), W Xn( , , , )n n1 1K -  is
analytical in the �tube� Tn

- : 

n i nTÎ - ,  if n x hi i ii= -  ,  h i VÎ +

2  ,  h h hi i i= { , }0 3  . (17)

It should be stressed that the noncommutative coordinates x xi i
1 2,  remain always real.

Ow ing to SO(1,1) invariance and ac cord ing to the Bargmann-Hall-Wightman the o rem 
[6]�[9], W Xn( , , , )n n1 1K -  is an a lyt i cal in the do main Tn

T Tn c n= -U L , (18)

where Lc cSOÎ ( , )1 1  is the two-dimensional analogue of the complex Lorentz group. This
expansion is similar to the transition from tubes to expanded tubes in the commutative
case. Just as in the commutative case, the expanded domain of analyticity contains real
points x i, which are the noncommutative Jost points, satisfying the con di tion  x xi

j~ , "i j, ,
which means that 

( ) ( )x x x xi j i j

0 0 2 3 3 2 0- - - <  . (19)

It should be emphasized that the noncommutative Jost points are a subset of the set of Jost
points of the commutative case, when 

( )x xi

j- <2 0       " i j,  . (20)

Let us proceed to the LCC in noncommutative space-space QFT.
First let us recall this condition in commutative case. In the operator form this

condition is 

[ , ]j jf f1 2
0=  ,   if    O O1 2~  , (21)

where O
1
= supp  f

1
,  O

2
= supp  f

2
. The condition O

1

 ~ O
2 
means that (x � y)2 < 0 " x OÎ 1 and 

y OÎ 2 . The condition (21) is equivalent to the following property of Wightman func tions. 

W x x x x W x x x xi i n i i n( , , , , , ) ( , , , , , )1 1 1 1K K K K+ +=  , (22)

if supp f Oi iÎ , supp f Oi i+ +Î1 1 ,  O Oi i~ +1 .
In the noncommutative case we have the similar condition, but now O1 ~ O2 means that

( ) ( )x y x y0 0 2 3 3 2 0- - - < , " x OÎ 1 and y OÎ 2.

In terms of Wightman functions this condition means that 

W x x x x f xi i n( , , , , , ) ( )1 1 1K K K+ò * * f x i( ) * f x i( )+ * *1 K f x dx dxn n( ) 1K =

= * *+òW x x x x f xi i n( , , , , , ) ( )1 1 1K K K f xi( )+ 1  * f xi( ) * *K f x dx dxn n( ) 1K  , (23)

where W x x x xn n( , , ) , ( ) ( )1 0 1 0K Kº á ñY Yj j .
Let us point out that in the noncommutative case WLCC 

W x x W x xn n( , , ) ( , , )1 1K K=  ,   if  x xi j~    " i j,  . (24)

has the same form as in the local theory with the same difference as for LCC.
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3. Irreducibility of the set of field op er a tors j
f
 in NC QFT

The irreducibility of a set of field op er a tors j
f
 im plies that, from the condition 

A f f f fn n
j j j j

1 10 0K KY AY= (25)

where f f xi i i= ( ) are arbitrary test functions and A is a bounded operator, follows that 

A C= È    C Î  Â (26)

where È is the iden tity op er a tor.
In the noncommutative case the condition of irreducibility of the set of operators j

f
 is

valid as well as in commutative case. The point is that for this it is sufficient to have the
translational invariance in the variable x0 and the spectral condition, which can be
weakened up to the condition

Pn
0 0³  . (27)

Using condition (25) and the invariance of the vacuum vector with respect to the
translations U a( ) on the axis x0, we obtain the following chain of equalities 

A U a AU a
f f f f f x an n

*

( )
, ( ) , ( ) ,Y Y Y Y Y0 0 0 0 0

1 1 1 1
j j j j jK K K= =

+ f x an n
A

( )+
=Y0

= =
+ +

j j
f x a f x an n

A
( ) ( )

,K
1 1

0 0Y Y  U a U a A
f x a f x an n

( ) , ( )
( ) ( )

- - =
+ +

j jK
1 1

0 0Y Y

= -j j
f fn

U a AK
1

0 0Y Y, ( )  .                                                                                                                          (28)

So 

A U a U a Af f f fn n

* , ( ) , ( )Y Y Y Y0 0 0 01 1

j j j jK K= -  . (29)

In accordance with the Eq. (14)

da e A U aip a

f fn

-

ò ¹
0

1
0 0 0* , ( )Y Yj jK  ,

only if p 0 0³ . However, 

da e U a Aip a

f fn

-

ò - ¹
0

1
0 0 0j jK Y Y, ( )  ,

only if p 0 0£ . Hence, the equality (28) can be fulfilled only when p 0 0= . As we assume the 
absence of vectors noncollinear to the vacuum one and satisfying the condition p 0 0= ,
there is no vector distinct from the vacuum one, which contributes to both left and right
parts of Eq. (28) simultaneously. Taking into account the completeness of the system of
vectors y Pn

 we come to conclusion that

A CY Y0 0=  , (30)

as j j
f fn1

0K Y  is an arbitrary vector. Thus owing to (25) and (30) 

Aj j j jf f f fn n
C

1 10 0K KY Y=  . (31)

The required equality (26) follows from Eq. (31) in accordance with the boundedness of
the operator A and cyclicity of the vacuum vector.

4. Clus ter prop er ties and their con se quences

It is known [6, 8] that in commutative theory Wightman functions satisfy the following
cluster properties: 
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W x x x a x a W x x W x xk k n k k n( , , , ) ( , ) ( , )1 1 1 1K K K K+ ++ + ®l l  , (32)

if l ® ¥ and a 2 1= - . Let us show how classical proof (see [6]) can be extended to
space-space NC QFT.

First let us point out that in commutative case translation vector can be arbitrary, but in
noncommutative case this vector has to belong to commutative plane. Surely in
commutative case we also can chose translation vector in this plane. If we do this the proof 
in NC QFT is similar to the corresponding proof in usual QFT. As in [6] we give the proof
for theories with mass gap. In commutative case we use the following properties of
Wightman functions:

i     corresponding Wightman functions are tempered distributions; 
ii    LCC is valid.

But if in commutative case we make shift in the plane, which in noncommutative case is
commutative plane, then LCC coincide in commutative and noncommutative cases. Let us
stress that it is sufficient to do translation in only one direction as translation vector is not in 
the final result. Taking into account that corresponding test functions in noncommutative
case are tempered distributions in respect with commutative variables, we see that two
crucial points in derivation of cluster properties coincide in commutative and
non-commutative cases in above mentioned case of choosing translation vector.

Eq. (32) can be refined (see [6]). Namely, if we consider the theory, where only
massive particles exist, in addition to the Eq. (32) we have: 

W x x x a x a W x x W x x
C

k k n k k n n
( , , , ) ( , ) ( , )1 1 1 1K K K K+ ++ + - <l l

l
 , (33)

where n is arbitrary.
If the theory contains the particle with zero mass, then in inequality (33) n £ 2.

The first case corresponds to the theories with short-range interaction, the second - to
long-range ones. For Coulomb law n = 2 in inequality (33) [32].

Let us pass to the proof.
We consider two functions: 

F W x x x a x a W x x W x xk k n k k n1 1 1 1 1= + + -+ +( , , , ) ( , ) ( , )K K K Kl l (34)

and 

F W x a x a x x W x x W x xk n k k k n2 1 1 1 1= + + -+ +( , , , , ) ( , ) ( , )l lK K K K  . (35)

If l ® ¥ and a 2 1= -  and { }a x xÎ 0 3, , then owing LCC, in space-space NC QFT

F F1 2=  . (36)

The simplest choice is: a = {0, 1} and it would be our choice. It is easy to see that F F1 2= = 0 

at any l if P M2 2<  as we consider theories with mass gap. Indeed let us put the whole
system of vectors YP n,  between points  x

k
and x

k+1
. 

Then we have: 

dP x x x a x ak P n
n

P n k nY Y Y Y0 1 1 0, ( ) ( ) , ( ) ( ), ,j j j l j lK Kòå + + +  , (37)

where n denotes all other quantum numbers. Then we have

dP x x U a x xk P n
n

P n k nY Y Y Y0 1 1 0, ( ) ( ) , ( ) ( ) ( ), ,j j l j jK Kòå +  , (38)

U a( ) is a translation operator. Let us recall that  U a( )Y Y0 0= . Then

32      M. CHAICHIAN, M. N. MNATSAKANOVA, A. TUREANU, YU. S. VERNOV



dP x x U a x x
k P n

n
P n k nY Y Y Y0 1 1 0, ( ) ( ) ( ) ( ) ( ), ,j j l , j jK Kòå - =

+

= -òå +dP i ap x x x xk P n
n

P n kexp( ) , ( ) ( ) , ( ) (, ,l j j j jY Y Y0 1 1K K n )Y0  . (39)

Thus using as before translation along axis x 3we see that

F dP i P x x x
k P n

n
P n k1 3 0 1 1

= -òå +
exp( ) , ( ) ( ) , ( ), ,l j j j jY Y YK K ( )x n Y0 -

-
+

W x x W x x
k k n( , , ) ( , , )1 1

K K  .                                                                                                                      (40)

As P3 0=  for Y0 , we see that F1 0¹  only if P M2 2³ . The same is true for func tion F2 .
Now let us take into account that Wightman functions in space-space NC QFT are

tempered distributions in respect with commutative coordinates. It means that

F x x h x x dx dxn n n( , , ) ( , , )1 1 1K K Kò = 

= ò D G x x h x x dx dxm
n n n( , , , ) ( , , )l 1 1 1K K K  , (41)

where F F F= -1 2 . As  F F1 2 0- =  at l ® ¥, then Dm = 0  if l ® ¥. Let us show that actually

D G x xm
n( , , , )l 1 0K =  , (42)

if R R2
0
2< , where R x xj j

j

n
2 0 2 3 2

1

= +
=

å [( ) ( ) ] and R 0
1
4= l .                                              

Indeed,
( ) ( ) ( ) ( )x x a x x x x x xi k i k i k i k

- - = - - - - - - £l l l2 0 0 2 3 3 2 2 3 32

£ + + + - £ + - <2 2 2 2 00 2 0 2 3 3 2 2 2(( ) ( ) ) ( )x x x x R Ri k i k
l l l l

if, for example, R0
1
4

= l  at l ® ¥.  (43)

So

F D G x x h x x dx dxm

R

n n n= ò ( , , , ) ( , , )l 1 1 1

0

K K K  . (44)

As R 0 ® ¥  at l ® ¥ and integral in question converges, then F ® 0  at l ® ¥. In order to
see that also F1 0®  at l ® ¥ let us exchange  h x x n( , , )1 K  for  

~
( , , )h x x n1 K , where

~
( , , ) ( , , )h x x h x xn n1 1K K= J  . (45)

Here J is infinitely differentiable function of variable P p
k

j

k

=
=

å
1

 such that J =1 

if  P M2 2³ ,  P0 0> ;  J = 0,  if P0 0£ .
In order to make the last step it is sufficient to notice that in accordance with spectral

properties of Wightman functions in space-space NC QFT F1 0¹   only if P0 0>   and 
F2 0¹  only if P0 0£ . Indeed, 

W x x x a x ak k n( , , , , , )1 1K K+ + + =l l  Y Y0 1 1 0, ( ) ( ) ( ) ( ) ( )j j l j jx x U a x xk k nK K+ (46)

and
 W x a x a x x

k n k
( , , , , , )

+
+ + =

1 1l lK K  

= -+Y Y0 1 1 0, ( ) ( ) ( ) ( ) ( )j j l j jx x U a x xn k kK K  . (47)
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So

F x x h x x dx dxn n n2 1 1 1 0( , , )
~
( , , )K K Kò =  .

Thus equation (44) is valid also for F1  and cluster properties of Wightman functions in
space-space NC QFT are proved.

In order to obtain the stronger result (33) we have to do the calculations similar with
ones given in [6].

Let us recall that from cluster properties of Wightman functions important physical
consequences follow. One of them is the uniqueness of the vacuum state, that is the
uniqueness of a translation invariant state.

Let us show that this statement is valid also in space-space NC QFT. Precisely we
show that only one translation invariant state in respect with commutative coordinates can 
exist. In fact, if there exist two vacuum states Y0  and ¢Y0 , we can always put Y Y0 0 1, = , 

¢ ¢ =Y Y0 0 1, , Y Y0 0 0, ¢ = . Then using cluster properties in respect with commutative
coordinates, we have ¢ ¢ = ¢ ¢ = ¢ ¢ =

®¥
Y Y Y Y Y Y Y Y0 0 0 0 0 0 0 0 0, lim , ( ) , , ,

l
lU a , if a a0

2
3
2 1- = - .

The proof is completed if ¢Y0  is a finite linear combination of vectors j j
f fn1

0K Y .
If ¢Y0  is an infinite set of above mentioned vectors then:

¢ = +åY Y0
0

01
ck f

n

f nk
j j eK  ,     en ® 0 ,   if  n ® ¥ . (48)

As U a( )l ¢ = ¢Y Y0 0 , then Eq. (48) is valid also for U a( )l ¢Y0 . Owing to Eqs. (48) and (32) 
¢ ¢ = +Y Y0 0 1, ( )U a nl d  ,   dn ® 0 ,   if n ® ¥ .

Thus we come to the same contradiction as in the first case.
So we have proved that cluster properties in respect only with commutative

coordinates lead to the uniqueness of vacuum state just as cluster properties in respect
with all coordinates in com mu ta tive case. An other important consequence from cluster
properties of Wightman functions, which is valid in space-space NC QFT, is the statement 
that if j

f
  satisfies LCC, but 

{ , }*j jf f1 2
0=  ,   { , }x y xy yx= +  , (49)

then j
f

º 0 [8]. It gives us the possibility to extend the proof of spin-statistic theorem given 
in [24] on complex scalar fields.

In conclusion let us show how cluster properties can be obtained in the NC QFT if
LCC is absent. To demonstrate this let us repeat the proof of cluster properties in the book
of Strocchi [32]. The only remained problem is that this proof is valid for usual functions,
not for distributions. In order to overcome this difficulty we have first to consider cluster
properties in tubes. Then we use the possibility to go to zero in the imaginary parts of
corresponding variables, and thus extend cluster properties on real variables. Let us point
out that as before we have the above mentioned consequence of cluster properties.

5. The o rems of Reeh and Schlieder in NC QFT

In the following we shall prove the analogues of the theorems of Reeh and Schlieder [6, 7]
for the noncommutative case.
Theorem 1 Let supports of functions 

~
f i belong to  

~
O R´ 2 , where 

~
O is any open domain on

variables x i
0  and x i

3 .
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Then there is no vec tor dis tinct from zero, which is or thogo nal to all vec tors of the type 
j j~ ~

f fn1
0K Y , supp 

~ ~
f O Ri Î ´ 2 . First let us con sider two vec tors

~
~ ~F Yn f fn

= j j
1

0K  ,  supp 
~ ~
f O R ii Î ´ "2  , (50)

Y Ym f fm
= j jK

1 0 . (51)

On sup f i no restrictions are imposed. We shall prove that ym = 0,  if for any vector Fn

Y Fm n,
~

= 0 . (52)

For the proof it is sufficient to notice that the corresponding Wightman function
Y Y0 1 1 0 1 1, ( ) ( ) ( ) ( ) ( , , , , )j j j jy y x x W y y x xm n m nK K K Kº

is an analytical function in the variables  - -x i1
0

0
0h ,   - -x i1

3
0
3h ,  n x hi i ii= - ,  i n= -1 1, ,K ,  if 

h i VÎ +
2 . According to the condition (52), this function is equal to zero on the border, if 

x O Ri Î ´
~ 2 . As 

~
O is an open domain, W y y x xm n( , , , , , )1 1 0K K º . Thus the vector Y is

orthogonal to all vectors of the type (8) and, according to the cyclicity of the vacuum
vector, Ym = 0. Taking into account that space J is a span of these vectors we obtain that

Y Ym, = 0 , (53)

where Y is arbitrary. As space J is nondegenerate, this equality implies that Ym = 0.

To prove the absence of any vector Y orthogonal to all vectors of the type (50) it is
sufficient to notice that function Y Y, m  is analytical in Tn

- , and then use the arguments
given above.

Remark that for the proof of the Theorem 1 only the analyticity of the Wightman
functions in the domain Tn

- has been used.
Theorem 2  Let the support of f O RÎ ´ 2 , where O is such a domain of commutative

variables, for which domain 
~

~O O, satisfying the condition of the Theorem 1, exists. Then
the condition

j f Y0 0= (54)

implies that

j f º 0 , (55)

if the operator j
f
 satisfies the LCC.

In accordance with LCC

j f n

~
F = 0 , (56)

if vector 
~
Fn  is defined as in Eq. (50). Hence, for any vector Y belonging to the domain of

definition of the Hermitian operator j
f
,

j jf n f nY F Y F,
~

,
~

~= = 0 . (57)

According to the Theorem 1, the condition (57) means that j
f
Y = 0. As the domain of

definition of the operator j
f
 is dense in J, this equality means the validity of the equality (55).

Remark Theorem 2 remains true for any densely defined operator y
f
, mutually local

with j ~
f
, i.e. if 

y j j yf f f f~ ~F F=  , (58)
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if supp f O RÎ ´ 2 ,  supp 
~ ~
f O RÎ ´ 2 , O O~

~
, vec tor F be longs to the do main of def i ni tion of

op er a tors j ~
f
 and y

f
.

6. Gen er al ized Haag�s The o rem

Recall the formulation of the generalized Haag�s theorem in the commutative case ([6],
Theorem 4.17):

Let j
f

t1 ( ) and j
f

t2 ( ), supp f RÎ 3  be two ir re duc ible sets of op er a tors, for which the vac -

uum vec tors Y0
1  and Y0

2  are cy clic. Fur ther, let the cor re spond ing Wightman func tions be

an a lyt i cal in the do main Tn
2 .

Then the two-, three- and four-point Wightman functions coincide in the two theories if
there is a unitary operator V, such that

1)   j jf ft V t V2 1( ) ( ) *= , (59)

2)   Y Y
0 0

2 1= CV  ,   C Î  Â ,   C =1 . (60)

It should be emphasized that actually the condition 2) is a consequence of condition 1)
with rather general assumptions (see the Statement below). In the formulation of Haag�s
theorem it is assumed that the formal operators j i nt x( , )

r
 can be smeared only on the spatial 

variables. This assumption is natural also in noncommutative case if q0 0i = .
Let us consider Haag�s theorem in the SO(1,1) invariant field theory and show that the

corresponding equality is true only for two-point Wightman functions.
For the proof we first note that in the noncommutative case, just as in the commutative

one, from conditions 1) and 2) it follows that the Wightman functions in the two theories
coincide at equal times 

Y0

1

1 1, ( , )~j t x
r

*K
r

j 1 0
1( , )t xn Y = Y0

2
2 1, ( , )~j t x

r
*K

r
j 2 0

2( , ) .t xn Y (61)

Having written down the two-point Wightman functions W x x ii( , ), ,1 2 1 2=  as 
W u ui( , ; , )1 1 2 2n n , where u x xi i i={ , }0 3 , n i i ix x={ , }1 2  we can write for them equality (61) as: 

W W1

3

1 2 2

3

1 20 0( , ; , ) ( , ; , ) ,x n n x n n= (62)

where x = -u u1 2 , n1 and n2  are arbitrary vectors. Now we notice that, due to the SO(1,1)
invariance, 

W Wi i( , ; , ) (
~

; , )0 3

1 2 1 2x n n x n n=   (63)

hence,

W W1 1 2 2 1 2(
~

; , ) (
~

; , ) ,x n n x n n= (64)

where 
~
x is any Jost point. Due to the analyticity of the Wightman functions in the

commuting variables they are completely determined by their values at the Jost points.
Thus at any x from the equality (64), it follows that

W W1 1 2 2 1 2( ; , ) ( ; , ) .x n n x n n= (65)

As n1 and n2  are arbitrary, the formula (65) means the equality of two-point Wightman
functions at all values of arguments.
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Thus, for the equality of the two-point Wightman functions in two theories related by
the conditions (59) and (60), the SO(1,1) invariance of the theory and corresponding
spectral condition are sufficient.

It is impossible to extend this proof to three-point Wightman functions. Indeed, let us write 
down W x x xi( , , )1 2 3  as W u u ui( , , ; , , )1 2 3 1 2 3n n n , where vectors u i and n i are determined as
before. Equality (62) means that 

W W1 1

3

2

3

1 2 3 2 1

3

2

3

1 2 30 0 0 0( , , , ; , , ) ( , , , ; , , ) .x x n n n x x n n n= (66)

n n n1 2 3, ,  are arbitrary. In order to have equality of the three-point Wightman functions in
the two theories from the SO(1,1) invariance, the existence of transformations L Î  SO(1,1) 
connecting the points ( , )0 1

3x  and ( , )0 2
3x  with an open vicinity of Jost points is necessary.

That would be possible, if there ex ist two-dimensional vectors 
~
x1  and 

~
x2 , (

~
( , )x xi i= L 0 3 ),

satisfying the inequalities: 

(
~

) , (
~

) , (
~

,
~

) (
~

) (
~

) .x x x x x x1
2

2
2

1 2 1
2

2
20 0< < <

These inequalities are similar to the corresponding inequalities in the commutative case
(see equation (4.87) in [6]). However, it is easy to check that the last of these inequalities
can not be fulfilled, while the first two are fulfilled.

Let us show now that the condition (60) actually is a consequence of the condition (59).
Statement Condition (60) is fulfilled, if the vacuum vectors Y0

i are unique, normalized,

translationally invariant vectors with respect to translations U ai( ) along the axis x 3 .

It is easy to see that the operator U a V U a V1
1 1

2
- -( ) ( )  commutes with operators j

f
t1 ( ) and, 

owing to the irreducibility of the set of these operators, it is proportional to the identity
operator. Having considered the limit a = 0, we see that

U a V U a V1

1 1

2

- - =( ) ( )  È . (67)

From the equality (67) it follows directly that if 

U a1 0

1

0

1( )Y Y=  ,     then (68)

U a V V2 0

1

0

1( ) Y Y=  , (69)

i.e. the condition (60) is fulfilled. If the theory is translationally invariant in all variables,
the equality (69) is true, if the vacuum vector is unique, normalized, translationally
invariant in the spatial coordinates.

The most important consequence of the generalized Haag theorem is the following
statement: if one of the two fields related by conditions (59) and (60) is a free field, the
other is also free. In deriving this result the equality of the two-point Wightman functions
in the two theories and LCC are used. In [25] it is proved that this result is valid also in the
noncommutative theory, if q0 0i = .

Here we obtain the close result in the SO(1,1) symmetric theory using the spectral
conditions and translational invariance only with respect to the commutating coordinates.
In this case the equality of the two-point Wightman functions in the two theories leads to the
conclusion that if LCC (22) is fulfilled and the current in one of the theories is equal to zero,

for example, j
f

1 0= , then j
f

2 0=   as well; j
f

i = (ð+m2)j
f

i . Indeed as W x x W x x1
1 2

2
1 2( , ) ( , )=  ,

Y Y Y Y0

1 1 1

0

1

0

2 2 2

0

2 0, ,~ ~j j j j
f f f f= =  , (70)

since j
f

1 0=  . Hence, j
f

2
0
2 0Y =  .
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Here we as sume that J is a pos i tive met ric space. It is suf fi cient to take ad van tage of the
The o rem 2 from which fol lows that j

f

2 0=  (see the Re mark af ter The o rem 2), since LC

implies mu tual lo cal commutativity of a field op er a tor and the cor re spond ing cur rent.
Let us pro ceed now to the SO(1,3) sym met ric the ory. In this case we show that from

the equal ity of the four-point Wightman func tions for the fields j
f

t1 ( ) and j
f

t2 ( ), re lated by
the con di tions (59) and (60), which takes place in the com mu ta tive the ory, an es sen tial
phys i cal con se quence fol lows. Namely, for such fields the elas tic scat ter ing am pli tudes of 
the cor re spond ing the o ries co in cide, hence, due to the op ti cal the o rem, the to tal cross-sec -
tions co in cide as well. In par tic u lar, if one of these fields, for ex am ple, j

f

1  is a triv ial field,
i.e. the cor re spond ing S ma trix is equal to unity, also the field j

f

2 ,is free. In the der i va tion
of this re sult the lo cal commutativity con di tion is not used. The state ment fol lows di rectly
from the Lehmann-Symanzik-Zim mer mann re duc tion for mu las [36]. Here and be low
deal ing with the com mu ta tive case in or der not to com pli cate for mu las we con sider op er a -
tors j1 ( )x  and j2( )x  as they are given in a point.

Let p p p p
i3 4 1 2, , ,  i =1 2,  be an elas tic scat ter ing am pli tudes for the fields j1 ( )x  and 

j2( )x  re spec tively. Ow ing to the re duc tion for mu las, 

p p p p dx dx e
i

i p x p x p x p x
3 4 1 2 1 4

1 1 2 2 3 3 4 4, , ~ ( )

ò
- - + +K .

(
j =

Õ
1

4

~j +m T x xi i

2

1 40 0) | ( ) ( )|j jK  , (71)

where T x xi ij j( ) ( )1 4L  is the chronological product of operators. From the equality
W x x W x x2 1 4 1 1 4( , , ) ( , , )K K=

it follows that

p p p p p p p p3 4 1 2 2 3 4 1 2 1
, , , ,= (72)

for any p i. Having applied this equality for the forward elastic scattering amplitudes, we
obtain that, according to the optical theorem, the total cross-sections for the fields j1 ( )x  and 
j2( )x  coincide. If now the S-matrix for the field j1 ( )x  is unity, then it  is also unity for field 

j2( )x . We stress that the equality of the four-point Wightman functions in the two theories
related by the conditions (59) and (60) are valid only in the commutative field theory but
not in the noncommutative case.

7. Equiv a lence of var i ous con di tions 
    of lo cal commutativity in QFT

Let us show that in the commutative case, when Wightman functions are analytical ones in
the usual domain, the conditions (24) and (22) are equivalent to the standard conditions of
WLC and LC, i.e. the latter remain valid if the condition (20) is fulfilled. In effect, (24) is a
sufficient condition for the theory to be CPT invariant [23]. However, in the commutative
case, from CPT invariance the standard condition of WLC follows [6]�[9].

The equiv a lence of LCC (22) with the stan dard one fol lows from the fact that, for the
va lid ity of usual LCC its va lid ity on ar bi trary small spa tially di vided do mains is suf fi cient
(see [9], Pro posal 9.12). In deed, va lid ity of �noncommutative� LCC (22) in the com mu ta -
tive case means va lid ity of stan dard LCC in the do main ( ) ( )x y x y0 0 2 3 3 2 0- - - < , 
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x y kk k, , ,=1 2 are ar bi trary. This do main sat is fies the re quire ments of the above men -

tioned state ment.

Besides we can replace (22) with the formally weaker condition, requiring that it is
valid only when

( ) ( ) ,x x x x li j i j

0 0 2 3 3 2 2- - - < -   " i j, , (73)

where l is any fixed fundamental length. Indeed, in the commutative theory, according to
the results of Wightman, Petrina and Vladimirov (see [37], Chapter 5 and references
therein) the condition

[ ( ), ( )] ,j jx y = 0   ( ) ,x y l- < -2 2
(74)

for any finite l, is equivalent to standard LCC ( l = 0). Similarly if (22) is fulfilled at (73),
then it is fulfilled also at  l = 0.

Thus, the analysis of Wightman functions in NC QFT, carried out in this and our
previous works [24], [27], [25], shows that the basic axiomatic results are valid (or have
analogues) in NC QFT as well, at least in the case when q0 0i = .
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