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We present this work for the special volume of the Acta Physica issued in honour of our
friend and colleague Professor Peter Presnajder on the occasion of his 75th Birthday. This
specific work we have selected as our contribution dedicated to him, since it has been first
Peter Presnajder who has introduced us to the concept of Noncommutative Geometry and in
particular to the subject of Quantum Field Theory in Noncommutative Spacetime, as early as
in 1998 when we started to work with him as our first common work on this subject [1]. After
that, thanks to the initiative attitude and the original ideas Peter had, we started to produced
a series of works on the subject, among them our joint works [2]-[4], ..., the last our joint
work with Peter on this subject being [5]. Of course Peter had previously been working on
diverse aspects of Noncommutative Geometry since the beginning of 1990’s.

Abstract: Classical results of the axiomatic quantum field theory - irreducibility of the set of field
operators, Reeh and Schlieder’s theorems and generalized Haag’s theorem are proven in SO(1,1)
invariant quantum field theory, of which an important example is noncommutative quantum field theory.
In SO(1,3) invariant theory new consequences of generalized Haag’s theorem are obtained. It has been
proven that the equality of four-point Wightman functions in two theories leads to the equality of elastic
scattering amplitudes and thus the total cross-sections in these theories.

1. Introduction

Quantum field theory (QFT) as a mathematically rigorous and consistent theory was
formulated in the framework of the axiomatic approach in the works of Wightman, Jost,
Bogoliubov, Haag and others ([6]-[10]).

Within the framework of this theory on the basis of most general principles such as
Poincaré invariance, local commutativity and spectrality, a number of fundamental
physical results, for example, the CPT-theorem and the spin-statistics theorem were
proven [6]-[9].

Noncommutative quantum field theory (NC QFT) being one of the generalizations
of standard QFT has been intensively developed during the past years (for reviews, see
[11, 12]). The idea of such a generalization of QFT ascends to Heisenberg and it was ini-
tially developed in Snyder’s work [13]. The present development in this direction is con-
nected with the construction of noncommutative geometry [14] and new physical
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26 M. CHAICHIAN, M. N. MNATSAKANOVA, A. TUREANU, YU. S. VERNOV

arguments in favour of such a generalization of QFT [15]. Essential interest in NC QFT is
also due the fact that in some cases it is a low-energy limit of string theory [16]. The sim-
plest and at the same time most studied version of noncommutative field theory is based
on the following Heisenberg-like commutation relations between coordinates:

[, x"] =07, M

where 0" is a constant antisymmetric matrix.

It is known that the construction of NC QFT in a general case (0°' # 0) meets serious
difficulties with unitarity and causality [17]-[20]. For this reason the version with 0°' =0
(space-space noncommutativity), in which there do not appear such difficulties and which
is a low-energy limit of the string theory, draws special attention. Then always there is a
system of coordinates, in which only 0'> =—0*' # 0 [21]. Thus, when 0°' = 0, without loss
of generality it is possible to choose coordinates x” and x* as commutative and coordinates
x" and x* as noncommutative.

The relation (1) breaks the Lorentz invariance of the theory, while the symmetry under
the SO(1,1)®SO(2) subgroup of the Lorentz group survives [19]. Translational
invariance is still valid. Below we shall consider the theory to be SO(1,1) invariant with
respect to coordinates x° and x°. Besides these classical groups of symmetry, in the paper
[22] it was shown, that the noncommutative field theory with the commutation relation (1)
of the coordinates, and built according to the Weyl-Moyal correspondence, has also a
quantum symmetry, i.e. twisted Poincaré invariance.

In the works [23], [24] the Wightman approach was formulated for NC QFT. For
scalar fields the CPT theorem and the spin-statistics theorem were proven in the case
0% =0.

In [23] it was proposed that Wightman functions in the noncommutative case can be
written down in the standard form

W(x,,..x) = (P00 (x)... 0 (x)¥,) , )

where vy, is the vacuum state. However, unlike the commutative case, these Wightman
functions are only SO(1,1)®SO(2) invariant. In fact in [23] the CPT theorem has been
proven in the commutative theory, where Lorents invariance is broken up to SO(1,1)®SO(2)
symmetry, as in the noncommutative theory it is necessary to use the *-product at least in
coinciding points.

In [24] it was proposed that in the noncommutative case the usual product of operators
in the Wightman functions has to be replaced by the Moyal-type product both in
coinciding and different points:

i o 0
(x, ) *. ok olx,) = exp| — 0" — ox,)...0(x,),

o o) = [1ex| 3 oxt oxy ) ol ®

a=12,...n—1. 3)
Such a product of operators is compatible with the twisted Poincaré invariance of the
theory [25] and also reflects the natural physical assumption, that noncommutativity
should change the product of operators not only in coinciding points, but also in different
ones. This follows also from another interpretation of NC QFT in terms of a quantum shift
operator [26].
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In [27] it was shown that in the derivation of axiomatic results, the concrete type of
product of operators in various points is insignificant. It is essential only that from the
appropriate spectral condition (see formula (10)), the analyticity of Wightman functions
with respect to the commutative variables x° and x° follows, while x' and x* remain real. In
accordance with Eq. (3) the Wightman functions can be written down as follows:

W, (x5.%) = (W00 (x)) % ..% @(x)¥,) . )

Note that actually there is no field operator defined in a point [28], (see also [8]). Only
the smoothed operators written symbolically as

0, = [o(fdx, ®)

where f(x) are test functions, can be rigorously defined.

In QFT the standard assumption is that all f{x)are test functions of tempered distribu-
tions. On the contrary, in the NC QFT the corresponding generalized functions can not be
tempered distributions as the #-product contains infinite number of derivatives. It is
well-known (see, for example, [6]) that there could be only a finite number of derivatives
in any tempered distribution.

The formal expression (4) actually means that the scalar product of the vectors
D, :(pﬂ"'(pflqlﬂ and ¥, =0, 0, is the following:

(@) = [ W oox ) &) % [0 dx,.dx,;
WX, %) = (W0 0(x,) .. 0(x)W) - (©6)

In paper [29] it was shown that the series

i 0 0
= exp| — 0" M
J) *(y) eXp[ze“ T 6vaf(X)f(y)

converges if f(x)eS", B<1/2, S’is a Gelfand-Shilov space [30]. The similar result was

obtained also in [31].

The difference of noncommutative case from commutative one is that action of the op-
erator @ , is defined by the *-product.

In [27] it was shown that, besides the above-mentioned theorems, in NC QFT (with
0°" = 0) a number of other classical results of the axiomatic theory remain valid. In [25] on
the basis of the twisted Poincaré invariance of the theory the Haag’s theorem was obtained
[33, 34] (see also [6] and references therein).

The present work deals with further development of the axiomatic approach in NC
QFT. In fact, our results are valid for the wide class of SO(1,1) invariant four-dimensional
field theories.

At first we formulate the basic properties of Wightman functions in spacespace NC QFT.

In the present work, analogues of some known results of the axiomatic approach in
quantum field theory are obtained for the SO(1,1) invariant field theory, of which an
important example is NC QFT. We prove that classical results, such as the irreducibility of
the set of field operators, the theorems of Reeh and Schlieder [6]-[9] remain valid in the
noncommutative case. It should be emphasized that the results obtained in this paper do
not depend on the SO(2) invariance of the theory in the variables x" and x* and therefore
can be extended to more general cases. The irreducibility of the set of field operators
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remain valid in any theory, which is translation invariant in commutative variables, if only
Eq. (27) is fulfilled. The first theorem of Reeh and Schlieder is valid, if the Wightman
functions are analytical in the variables x° and x° in the primitive domains of analyticity
("tubes”).

In the SO(1,3) invariant theory new consequences of the generalized Haag’s theorem
are found, without analogues in NC QFT. At the same time it is proven that the basic
physical conclusion of Haag’s theorem is valid also in the SO(1,1) invariant theory, and it
is sufficient that spectrality, local commutativity condition and translational invariance be
fulfilled only for the transformations concerning the commutating coordinates. The
analysis of Haag’s theorem reveals essential distinctions between commutative and
noncommutative cases, more precisely between the SO(1,3) and SO(1,1) invariant
theories. In the commutative case, the conditions (59) and (60), whose consequence is
generalized Haag’s theorem, lead to the equality of Wightman functions in two theories
up to four-point ones. In the present paper it is shown that in the SO(1,1) invariant theory,
unlike the commutative case, only two-point Wightman functions are equal and it is
shown that from the equality of two-point Wightman functions in two theories it follows
that if in one of them the current is equal to zero, it is equal to zero in the other as well and
under weaker conditions than the standard ones. It is also shown that for the derivation of
Eq. (60) it is sufficient to assume that the vacuum vector is a unique normalized vector,
invariant under translations along the axis x°. It is proven that from the equality of
four-point Wightman functions in two theories, the equality of their elastic scattering
amplitudes follows and, owing to the optical theorem, the equality of total cross sections
as well. In derivation of this result LCC is not used.

The study of Wightman functions leads still to new nontrivial consequences also in the
commutative case'.

The paper is arranged as follows. In section 2 the basic properties of Wightman
functions in space-space NC QFT are formulated; in section 3 the irreducibility of the set
of field operators is proven; in section 4 generalizations of the theorems of Reeh and
Schlieder to NC QFT are obtained; section 5 is devoted to generalized Haag’s theorem;
in section 6 it is shown that in the commutative case, the conditions of weak local
commutativity (WLCC) and of local commutativity (LCC), which are valid in the
noncommutative case ((24) and (22)), appear to be equivalent to the usual WLCC and
LCC, respectively.

2. Basic Properties of Wightman Functions

in Space-space NC QFT
As in the commutative case, we assume that every vector of J can be approximated with
arbitrary accuracy by the vectors of the type

QW 8)
In other words the vacuum vector ¥, is cyclic, i.e. the axiom of cyclicity of vacuum is

fulfilled.
Let us note that the vectors of the type (8) can be written formally as follows:

Q@ Wy = [ 006 @R )W fi(x) %% f(x)dlx, ..., ©)

1A partial result on the subject had been previously communicated in [35].
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It is naturally to assume that Wightman functions are tempered distributions with respect to
commutative coordinates as the #-product contains derivatives with respect to noncom-
mutative coordinates only. In accordance with this assumption we can use the standard ar-
guments to prove Wightman functions analyticity in "tubes” and extended “tubes”.

It is well known that in commutative case Wightman functions analyticity in tubes is a
consequence of the spectral condition, which implies that complete system of physical
states (in gauge theories also nonphysical ones) does not contain tahyon states in momen-
tum space. It means that momentum P, for every state satisfies the condition: P" >|P,|.

This condition is usually written as P, €V " . As Wightman functions in the noncommutative

case are analytical function only in commutative variables, it is sufficient to assume the
weaker condition of spectrality. Precisely, we assume that any vector in p space, belong-
ing to the complete system of these vectors, is time-like with respect to momentum com-
ponents P and P, i.e. that

PP (10)

The condition (10) is conveniently written as P, eV, where V> is the set of the

n

four-dimensional vectors satisfying the condition P° > ‘PS

For the results obtained below, translational invariance only in commuting
coordinates is essential, therefore we write down the Wightman functions as:

W(-xp---a)g,):W(E)p'“,E_»,‘,]aX)’ (11)

where X designates the set of noncommutative vaIiablesxll. X f , i=1...n,and § ;= {&?, ﬁj },

0 0 0 3 3 3 .
where & =x; —x ., & =x; —x,,,, j=L...,n—-1

Thus at arbitrary X we can express scalar product (6) as follows:
(@, 0) = [W(Epn & 00 f(Epnnly X ., (12)
where P, ={P’,P!} is the

n n

and use the completeness of the system of vectors ¥, ,
two-dimensional momentum corresponding to the commutative coordinates, multiindex n
denotes all other characteristics of the state. So

(@,%) =Y [ap,(@,%, ¥, ,¥). (13)

From the condition (10) and Eq. (13) it follows that
[dae ™ (@U(a)¥)=0, ifpeV; (14

where a ={a°,a"} is a two-dimensional vector, U(a)is a translation in the plane x°, x°, and
®and W are arbitrary vectors. The equality (14) is similar to the corresponding equality in
the standard case ([6], Chap. 2.6). A direct consequence of the equality (14) is the spectral
property of Wightman functions:

1 (o
[e" W (e, 6 0 dE, ... dE, , =0, (15)

W(P,...,P_,X)=
( 1 n—1 X) (zn)n—l

ifP, ¢ V3. The proof of the equality (15) is similar to the proof of the spectral condition in

the commutative case [6], [9]. Recall that in the latter case the equality (15) is valid, if
P, V" . Having written down W(&, ,...,&,,,X)as
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1

Q! J.ei e W(P,...,F_,X)dP,...dF,_,, (16)

W(,....§, ,X) =

and taking into account that Wightman functions are tempered distributions with respect to
the commutative variables, we obtain that, due to the condition (15), W(v,,...,v, ,,X)is
analytical in the "tube” T, :

v el ifv, =€ -, m,eVy, m =gt an
It should be stressed that the noncommutative coordinates x,x? remain always real.

Owing to SO(1,1) invariance and according to the Bargmann-Hall-Wightman theorem
[6]1-[9], W(v,,...,v, ,,X)is analytical in the domain 7

T, =UAT, 18)
where A, €SO, (1,1)is the two-dimensional analogue of the complex Lorentz group. This
expansion is similar to the transition from tubes to expanded tubes in the commutative
case. Just as in the commutative case, the expanded domain of analyticity contains real
pointsx ;, which are the noncommutative Jost points, satisfying the condition x ' ~x ;, Vi, j,
which means that

(] =x))* =(x} —x)* <0. 19)
It should be emphasized that the noncommutative Jost points are a subset of the set of Jost
points of the commutative case, when

(x'=x) <0 Vij. (20)
Let us proceed to the LCC in noncommutative space-space QFT.

First let us recall this condition in commutative case. In the operator form this
condition is

l¢,.¢,1=0, if O, ~O,, @n
where O =supp f,, O,=supp f,. The condition O ~ O, means that (x - y)?<0Vxe O, and
y €0,. The condition (21) is equivalent to the following property of Wightman functions.
%) = WX, 0X, 15X 0%, , (22)
if supp f; €0, supp f,., €0,,, 0,~0,.

In the noncommutative case we have the similar condition, but now O; ~ O, means that

* =y (' -y) <0, VxeO,andyeO,.
In terms of Wightman functions this condition means that

IW(xl,...,xi,xiH,...,xn)f(xl YR e )* f ) xx fix)dxy . dx, =

= W X A o f, )% ) %% (), b, 23)

where W(x,,....x,)=(¥,, 00, )...0 )¥,).

Let us point out that in the noncommutative case WLCC

W(x,....x)=W(x,....x), if x,~ x Vij. (24)
has the same form as in the local theory with the same difference as for LCC.

W(x,,...,x,x

PRERE
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3. Irreducibility of the set of field operators ¢, in NC QFT

The irreducibility of a set of field operators ¢ ; implies that, from the condition

AQ, ..o, ¥ =0, ..., AY, 25)
where f; = f,(x,) are arbitrary test functions and A is a bounded operator, follows that
A=Cl CeC (26)

where [ is the identity operator.

In the noncommutative case the condition of irreducibility of the set of operators ¢ , is
valid as well as in commutative case. The point is that for this it is sufficient to have the
translational invariance in the variable x° and the spectral condition, which can be
weakened up to the condition

P’>0. @7
Using condition (25) and the invariance of the vacuum vector with respect to the
translations U(a) on the axis x°, we obtain the following chain of equalities

(A", U@, .0, %) = (W0, AU@Q, .0, W) =(¥0 0, ooy A% ) =
=<(p}n(w)...<p;l (xl+a)\{f0,A\P0>=<U(—a)<pfn(x”+a)...go, v U(—a)A‘I’0> -

fi(x+a)” 0°

_ <(p}n -9, ‘PO,U(—a)A‘I’0> . 28)
So

<quglua)¢ﬂ”.@ﬂqg>:<¢ﬂ“.¢ﬂqg1u—a)445>. (29)
In accordance with the Eq. (14)

jda e 7 <A*\P0,U(a)<pf1 ...(pf”‘PO> £0,
only if p° >0. However,

I dae ™" <(p]fn"'(‘0f, ‘}’O,U(—a)A‘I’0> #0,

only if p° <0. Hence, the equality (28) can be fulfilled only when p° = 0. As we assume the
absence of vectors noncollinear to the vacuum one and satisfying the condition p° =0,
there is no vector distinct from the vacuum one, which contributes to both left and right
parts of Eq. (28) simultaneously. Taking into account the completeness of the system of
vectors y ,  we come to conclusion that

AY, =CY¥,, (30)
as Q. ..o, Y, is an arbitrary vector. Thus owing to (25) and (30)
Ag; .0, ¥ =Co,...0. V. 3D

The required equality (26) follows from Eq. (31) in accordance with the boundedness of
the operator A and cyclicity of the vacuum vector.

4. Cluster properties and their consequences

It is known [6, 8] that in commutative theory Wightman functions satisfy the following
cluster properties:
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W(x,...x,X, , +Aa,...x, +  a) => W(x,,..x )W(x, »...%,), (32)

if L >0 and a® =-1. Let us show how classical proof (see [6]) can be extended to
space-space NC QFT.

First let us point out that in commutative case translation vector can be arbitrary, but in
noncommutative case this vector has to belong to commutative plane. Surely in
commutative case we also can chose translation vector in this plane. If we do this the proof
in NC QFT is similar to the corresponding proof in usual QFT. As in [6] we give the proof
for theories with mass gap. In commutative case we use the following properties of
Wightman functions:

i corresponding Wightman functions are tempered distributions;

ii LCCis valid.

But if in commutative case we make shift in the plane, which in noncommutative case is
commutative plane, then LCC coincide in commutative and noncommutative cases. Let us
stress that it is sufficient to do translation in only one direction as translation vector is not in
the final result. Taking into account that corresponding test functions in noncommutative
case are tempered distributions in respect with commutative variables, we see that two
crucial points in derivation of cluster properties coincide in commutative and
non-commutative cases in above mentioned case of choosing translation vector.

Eq. (32) can be refined (see [6]). Namely, if we consider the theory, where only
massive particles exist, in addition to the Eq. (32) we have:

< < (33)

‘W(xl,...xk,xk+l +Aa,...x, + ha)—W(x,...x )W (x, 5...%,) k”

E)

where 7 is arbitrary.
If the theory contains the particle with zero mass, then in inequality (33)n <2.
The first case corresponds to the theories with short-range interaction, the second - to
long-range ones. For Coulomb law n = 2 in inequality (33) [32].
Let us pass to the proof.
We consider two functions:

F, =W(x,...x,X, | +Aa,...x, + ha) = W(x,..x)W(x, ,...x,) (34)
and
F, =W(x, , +Aa,...,x, + ha,x,,...x) = W(x,... x )W(x, ,...x). 35)

IfL—>wanda’=-landa e {xo,x } }, then owing LCC, in space-space NC QFT
F, =F,. (36)
The simplest choice is: a = {0, 1} and it would be our choice. It is easy to see that F;, = F,=0

at any A if P> <M’ as we consider theories with mass gap. Indeed let us put the whole
system of vectors ¥, , between points x,and x, .
Then we have:

2 aP(00(x,)... 00 )W, ) (¥, 005, , + Aa)...0(x, + Ra)¥, ) , 37

where n denotes all other quantum numbers. Then we have
2 [ aP(p0(x,)...00) ) (¥, U)o, )...0(x) %) (38)

U(a)1is a translation operator. Let us recall that U(a)¥, =¥,. Then
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D[ dP(Wo, 0, )0l Wy, ) (U(RaWY, o 90k, ) lx, Wy ) =
= Zj dP exp(—i?»ap)<‘1—’0,(p(xl )... (p(xk)‘l’,,ﬂ> (\P},ﬁ,q)(xk+ Do (x, )‘PO> . (39)
Thus using as before translation along axis x ;we see that
F, =Y [ dP exp(<iP)(Wo, 0x, ). 0 W5, ) (W5, 05 ., ) 0, )Wy ) -
—I;/(xl,...,xk)W(ka,...,xn). (40)

As P, =0 for ¥, we see that F, # 0 only if P? > M*. The same is true for function F,.
Now let us take into account that Wightman functions in space-space NC QFT are
tempered distributions in respect with commutative coordinates. It means that
I Fx,,...x, )h(x,,....x, ) dx,...dx,, =

:jD"’G(k,xl,...,)q,)h(xl,...,Jgj) dx,...dx,, 41
where F=F, —F,. As F, —F, =0atA — oo, then D" =0 if L — oo. Let us show that actually
D"G(x,5..5%) =0, 42)

if R* <R, where R* =) [(x?)* +(x})*]and R, =

Jj=1

A.

1
4

Indeed,
(x;—x, -a)’ =) —x,(:)2 —(x] —xz)2 —N =2Mx? —x]f)S

<2 + e+ 20

if, for example, R, =+ at L — oo. 43)
So

F = [ DGO 3 (.. 0%) . d, (44)

Ry

+M\)—7& <2R*+2)MR-} <0

As R, — o at A — coand integral in question converges, then F — 0 at A — co. In order to
see that also F;, — 0 at A — o let us exchange h(x,,...,x,)for A(x,,...,x ), where

h(x,,...,%,) = Sh(x,,...,x,) . (45)

k
Here S is infinitely differentiable function of variable P = Z p, such that § =1
j=1
if P>>M*, P,>0;, 9 =0, if P, <O0.
In order to make the last step it is sufficient to notice that in accordance with spectral
properties of Wightman functions in space-space NC QFT F, #0 only if P, >0 and
F, # 0only if P, <0. Indeed,

W(X,,.. XX, | + A, %, + ha) = (Y, 00x,)... 0(x U (Aa)p(x,, ))... o(x,)¥y) (46)
and
W, +ia,...x, +ka,x ,....x, )=

= (¥, 0(x,)... 0(x,, U (-Aa)(x,)... ()Y, - 7)
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So _
j E(x,,...x )h(x,,....x,)dx,...dx, =0.

Thus equation (44) is valid also for F, and cluster properties of Wightman functions in
space-space NC QFT are proved.

In order to obtain the stronger result (33) we have to do the calculations similar with
ones given in [6].

Let us recall that from cluster properties of Wightman functions important physical
consequences follow. One of them is the uniqueness of the vacuum state, that is the
uniqueness of a translation invariant state.

Let us show that this statement is valid also in space-space NC QFT. Precisely we
show that only one translation invariant state in respect with commutative coordinates can
exist. In fact, if there exist two vacuum states ¥, and ¥y, we can always put (‘¥,,¥,) =1,
(Wo, W5 ) =1, (¥,,%,)=0. Then using cluster properties in respect with commutative
coordinates, we have (g, ¥ ) = }gg(‘?é Ua)¥y) = (W, ¥y, ) (¥, ¥y) =0,if ag —a3 =1

The proof is completed if P is a finite linear combination of vectors ¢ o0, Yo
If ¥, is an infinite set of above mentioned vectors then:

‘P()':ZCk(pfl...mf“P0+sn, g, >0, if n>o0. (48)
0

AsU(alM)¥, =Y, then Eq. (48) is valid also for U(al)¥;. Owing to Eqgs. (48) and (32)
<‘I’(’),U(a7»)‘I’{,> =1+5,, 8, >0, ifn>oo.
Thus we come to the same contradiction as in the first case.

So we have proved that cluster properties in respect only with commutative
coordinates lead to the uniqueness of vacuum state just as cluster properties in respect
with all coordinates in commutative case. Another important consequence from cluster
properties of Wightman functions, which is valid in space-space NC QFT, is the statement
that if ¢ . satisfies LCC, but

{9,,0,1=0, {xyl=xy+yx, 49)
then ¢ ; =0[8].Itgivesus the possibility to extend the proof of spin-statistic theorem given
in [24] on complex scalar fields.

In conclusion let us show how cluster properties can be obtained in the NC QFT if
LCC s absent. To demonstrate this let us repeat the proof of cluster properties in the book
of Strocchi [32]. The only remained problem is that this proof is valid for usual functions,
not for distributions. In order to overcome this difficulty we have first to consider cluster
properties in tubes. Then we use the possibility to go to zero in the imaginary parts of
corresponding variables, and thus extend cluster properties on real variables. Let us point
out that as before we have the above mentioned consequence of cluster properties.

5. Theorems of Reeh and Schlieder in NC QFT

In the following we shall prove the analogues of the theorems of Reeh and Schlieder [6, 7]
for the noncommutative case. B ~ B
Theorem 1 Let supports of functions f, belong to Ox R*, where O is any open domain on

. 0 3
variables x| andx .
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Then there is no vector distinct from zero, which is orthogonal to all vectors of the type
PP W,, supp f, eOx R*. First let us consider two vectors
1 n

D, =0....0, %, supp f, €O xR Vi, (50)

Y,=¢, .0, ¥ . 1)
On sup f; no restrictions are imposed. We shall prove that y, =0, if for any vector @,

(¥,®,)=0. (52)

For the proof it is sufficient to notice that the corresponding Wightman function

<‘I‘0,(p(yl ). 0y, )0, )... o0, )\I’0> =W, YpsX e sX )
is an analytical function in the variables -, —ing, —; —ing, v, =&, —in,, i =1,....,n—1, if
M, €V, . According to the condition (52), this function is equal to zero on the border, if
X, €OxR*. As O is an open domain, W, 0¥, 5.-X, ) =0. Thus the vector ¥ is
orthogonal to all vectors of the type (8) and, according to the cyclicity of the vacuum
vector, ¥, =0. Taking into account that space J is a span of these vectors we obtain that

(W, %) =0, (53)
where WV is arbitrary. As space J is nondegenerate, this equality implies that ¥, =0.

To prove the absence of any vector ¥ orthogonal to all vectors of the type (50) it is
sufficient to notice that function (¥, ¥, ) is analytical in 7}, , and then use the arguments
given above.

Remark that for the proof of the Theorem 1 only the analyticity of the Wightman
functions in the domain 7, has been used.

Theorem 2 Let the support of f € Ox R*, where O is such a domain of commutative

variables, for which domain 0~0, satisfying the condition of the Theorem 1, exists. Then
the condition

(prPO =0 (54)
implies that
¢,=0, (55)

if the operator ¢, satisfies the LCC.

In accordance with LCC

0P, =0, (56)

if vector &)n is defined as in Eq. (50). Hence, for any vector ¥ belonging to the domain of
definition of the Hermitian operator ¢ ,

(0,9.8,) = <‘I’,(pf<f)n> = 0. 57)
According to the Theorem 1, the condition (57) means that ¢ 'Y =0. As the domain of
definition of the operator ¢ , is dense in J, this equality means the validity of the equality (55).

Remark Theorem 2 remains true for any densely defined operator v f, mutually local

with e i.e. if

V00 =0 y,0, (58)
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ifsupp f €Ox R*, supp } €Ox R?, 0~ O, vector ® belongs to the domain of definition of
operators @ ; and .

6. Generalized Haag’s Theorem

Recall the formulation of the generalized Haag’s theorem in the commutative case ([6],
Theorem 4.17):
Let (p_lf t)and q)i () supp f € R® be two irreducible sets of operators, for which the vac-

uum vectors W, and¥; are cyclic. Further, let the corresponding Wightman functions be
analytical in the domain T

Then the two-, three- and four-point Wightman functions coincide in the two theories if
there is a unitary operator V, such that

D ¢;0)=Ve,0)V, (59)

2) ¥2=Cw!, CcecC, [C|=1. (60)

It should be emphasized that actually the condition 2) is a consequence of condition 1)
with rather general assumptions (see the Statement below). In the formulation of Haag’s
theorem it is assumed that the formal operators ¢ (¢, X, ) can be smeared only on the spatial
variables. This assumption is natural also in noncommutative case if 6°' = 0.

Let us consider Haag’s theorem in the SO(1,1) invariant field theory and show that the
corresponding equality is true only for two-point Wightman functions.

For the proof we first note that in the noncommutative case, just as in the commutative
one, from conditions 1) and 2) it follows that the Wightman functions in the two theories
coincide at equal times

(W0,0,0.%)%...0,(15)¥, ) = (¥3,0,(65,)%... 0,(1%,)¥7). (61)

Having written down the two-point Wightman functions W,(x,,x,), i=12 as
W ,(u,,v,;u,,v,), whereu , ={x%,x>},v, ={x!,x?} we can write for them equality (61) as:

WI(O, E_,S;VI,VZ):WZ(O, E_>3;V17V2)a (62)

where E=u, —u,,v,and v, are arbitrary vectors. Now we notice that, due to the SO(1,1)
invariance,

W(0,8%v,,v,) =W (Ev,,v,) (63)
hence,
WI(E;VI’VZ) = VVZ(E;VI’VZ) > (64)

where E is any Jost point. Due to the analyticity of the Wightman functions in the
commuting variables they are completely determined by their values at the Jost points.
Thus at any & from the equality (64), it follows that

Wi(Ev,v,) = W(Ev,,vy) . (65)
As v and v, are arbitrary, the formula (65) means the equality of two-point Wightman
functions at all values of arguments.
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Thus, for the equality of the two-point Wightman functions in two theories related by
the conditions (59) and (60), the SO(1,1) invariance of the theory and corresponding
spectral condition are sufficient.

It is impossible to extend this proof to three-point Wightman functions. Indeed, let us write
down W ,(x,,x,,x;)as W.(u,,u,,u5;v,,v,,v;), Where vectors u , and v, are determined as
before. Equality (62) means that

W(0,£,0,635v,,v,,v,) = W,(0,61,0,E2 ;v ,v,,v,) . (66)
V,,V,,V, are arbitrary. In order to have equality of the three-point Wightman functions in
the two theories from the SO(1,1) invariance, the existence of transformations A € SO(1,1)
connecting the points (0,&’) and (0,&}) with an open vicinity of Jost points is necessary.
That would be possible, if there exist two-dimensional vectors El and Ez, (El. = A(0,&})),
satisfying the inequalities:

€)' <0, €)' <0, [E.E)}<ENE) .

These inequalities are similar to the corresponding inequalities in the commutative case
(see equation (4.87) in [6]). However, it is easy to check that the last of these inequalities
can not be fulfilled, while the first two are fulfilled.

Let us show now that the condition (60) actually is a consequence of the condition (59).
Statement Condition (60) is fulfilled, if the vacuum vectors ¥, are unique, normalized,

translationally invariant vectors with respect to translations U .(a) along the axis x°.

It is easy to see that the operator U, " (a)V "' U ,(a)V commutes with operators (p; ()and,
owing to the irreducibility of the set of these operators, it is proportional to the identity
operator. Having considered the limit a =0, we see that

U;l(a)Vfle(a)V:[I . 67)
From the equality (67) it follows directly that if

U,(a)¥! =W, then (68)

U(a)V¥! =V, (69)

i.e. the condition (60) is fulfilled. If the theory is translationally invariant in all variables,
the equality (69) is true, if the vacuum vector is unique, normalized, translationally
invariant in the spatial coordinates.

The most important consequence of the generalized Haag theorem is the following
statement: if one of the two fields related by conditions (59) and (60) is a free field, the
other is also free. In deriving this result the equality of the two-point Wightman functions
in the two theories and LCC are used. In [25] it is proved that this result is valid also in the
noncommutative theory, if 0% =0.

Here we obtain the close result in the SO(1,1) symmetric theory using the spectral
conditions and translational invariance only with respect to the commutating coordinates.
In this case the equality of the two-point Wightman functions in the two theories leads to the
conclusion that if LCC (22) is fulfilled and the current in one of the theories is equal to zero,
for example, j, =0, then j =0 aswell; j ; =(]+m2)(p}. Indeedas W, (x',x*) =W, (" ,x*),

<‘I’o’ s ‘PJ> = <‘P§ NE O > =0, (70)

since j, =0. Hence, j ;¥ =0.
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Here we assume that J is a positive metric space. It is sufficient to take advantage of the
Theorem 2 from which follows that j ; =0 (see the Remark after Theorem 2), since LC
implies mutual local commutativity of a field operator and the corresponding current.

Let us proceed now to the SO(1,3) symmetric theory. In this case we show that from
the equality of the four-point Wightman functions for the fields (plf (t)and (pf, (), related by
the conditions (59) and (60), which takes place in the commutative theory, an essential
physical consequence follows. Namely, for such fields the elastic scattering amplitudes of
the corresponding theories coincide, hence, due to the optical theorem, the total cross-sec-
tions coincide as well. In particular, if one of these fields, for example, (p‘f is a trivial field,
i.e. the corresponding S matrix is equal to unity, also the field (p; ,is free. In the derivation
of this result the local commutativity condition is not used. The statement follows directly
from the Lehmann-Symanzik-Zimmermann reduction formulas [36]. Here and below
dealing with the commutative case in order not to complicate formulas we consider opera-
tors @, (x) and @, (x) as they are given in a point.

Let(p,,p, |Py»p,),» i =1,2be an elastic scattering amplitudes for the fields ¢, (x)and
@, (x) respectively. Owing to the reduction formulas,

<p3’p4 ‘plap2>i ~.[dxl...dx4ei(fplxlfp2x2+p3x3+p4x4).

4
[1i+m) (01Tp (x)... 0 (x,)10) . (71)
j=1

where To ,(x, )--- ¢ ,(x, ) is the chronological product of operators. From the equality
W, s x, ) =W, (x5, x,)
it follows that

(Pso2y|PisPs), = (P3sDs | P1oD), (72)
for any p,. Having applied this equality for the forward elastic scattering amplitudes, we
obtain that, according to the optical theorem, the total cross-sections for the fields ¢, (x)and
@, (x) coincide. If now the S-matrix for the field ¢, (x)is unity, then it is also unity for field

¢, (x). We stress that the equality of the four-point Wightman functions in the two theories
related by the conditions (59) and (60) are valid only in the commutative field theory but
not in the noncommutative case.

7. Equivalence of various conditions
of local commutativity in QFT

Let us show that in the commutative case, when Wightman functions are analytical ones in
the usual domain, the conditions (24) and (22) are equivalent to the standard conditions of
WLC and LC, i.e. the latter remain valid if the condition (20) is fulfilled. In effect, (24) isa
sufficient condition for the theory to be CPT invariant [23]. However, in the commutative
case, from CPT invariance the standard condition of WLC follows [6]-[9].

The equivalence of LCC (22) with the standard one follows from the fact that, for the
validity of usual LCC its validity on arbitrary small spatially divided domains is sufficient
(see [9], Proposal 9.12). Indeed, validity of "noncommutative” LCC (22) in the commuta-
tive case means validity of standard LCC in the domain (x° -y°)* —(x’ —y’)* <0,
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x*,y*, k=1, 2 are arbitrary. This domain satisfies the requirements of the above men-
tioned statement.

Besides we can replace (22) with the formally weaker condition, requiring that it is
valid only when

(] =X —(x, —x)' <, Vi, (73)
where/ is any fixed fundamental length. Indeed, in the commutative theory, according to

the results of Wightman, Petrina and Vladimirov (see [37], Chapter 5 and references
therein) the condition

[9(0), eI =0, (x—y)* <%, 74)
for any finite/, is equivalent to standard LCC (/ = 0). Similarly if (22) is fulfilled at (73),
then it is fulfilled also at [ = 0.

Thus, the analysis of Wightman functions in NC QFT, carried out in this and our
previous works [24], [27], [25], shows that the basic axiomatic results are valid (or have
analogues) in NC QFT as well, at least in the case when 6°' =0.
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