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Abstract: In nonrelatistic quantum mechanics, Born�s principle of localistion is as follows: For a single
particle, if a wave function yK  vanishes outside a spatial region K , it is said to be localised in K . In

particular if a spatial region K ¢ is disjoint from  K , a wave function y ¢K  localised in  K ¢is orthogonal to yK .

 xxSuch a principle of localisation does not exist compatibly with relativity and causality in quantum
field theory (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is
replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and
others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and 
shows how to construct quantum fields for anyons and for massless particles with �continuous� spin. 
xxThis review outlines the basic principles underlying symplectic localisation and shows or mentions its
deep implications. In particular, it has the potential to affect relativistic quantum information theory and
black hole physics.
xxThis article is a brief review of work done by Brunetti, Guido and Longo [1, 2], Schroer and
Fassarella and Schroer [3], Mund, Schroer and Yngvaso [4] and others on localisation problems in
relativistic quantum field theories and their deep implications. The review is informal in that
mathematical rigour is not attempted. It is at a level accessible to most quantum field theorists. It is
dedicated to Peter Presnajder, wonderful friend and close collaborator.

1. Introduction

Locality in quantum field theory is often used in the sense that test functions have support
in a localised region of a spatial slice or in spacetime. This interpretation is suggested by

Born�s interpretation of wave functions psi of a particle: y( )x d x
2 3  is the probabilty of

finding the particle in a voume d x3  around x.
While this interpretation is adequate for a first approach, it becomes incomplete when

the requirements of relativistic invariance and causality are brought in. A more sophisticated
approach becomes necessary.

In theories with mass gap and no gauge invariance, the full set of axioms for local
relativistic quantum physics has been developed by Haag and Kastler and discussed in
Haag�s book [1]. The notes that follow will not discuss the Haag-Kastler approach, but
will borrow ideas therefrom to describe this more refined approach.

As we explain below, the idea of localisation of wave functions requires the existence
of a position operator. That is problematic in relativistic quantum physics. Instead, for
relativistic free fields, a new concept of localisation, which localises observables instead
of states, has been formulated by Brunetti, Guido and Longo [2] and by Schroer and
colleagues [3, 4]. It gives new insights about particles obeying braid statistics, and those
transforming by massless �continuous spin� representations.
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2. On Position Operators

In quantum physics, just as in classical physics, observables A determine the
measurements available on the system. They form an algebra. That is, if a b,  are
observables, we have a multiplication map m from A Ä A to A:

m m: (a b a b) := abÄ ® Ä  , (2.1)

which is linear in each entry. The algebra A in quantum physics is non-commutative,
whereas the corresponding algebra A

c
 is commutative in classical physics.

The classical algebra Ac can be realised as real functions f on the phase space T Q*

with (local) coordinates ( , , ; , , ) : ( , )q q p p q pN N1 1K K = :

f T Q: * ® Ñ ()

f q p f q p( , ) ( , )=  . (2.2)

The property which corresponds to reality in quantum physics is that there is a star
operation or �hermitean conjugation� * defined on A:

a Î   A    ®   a * Î   A . (2.3)

The outcome of experiments in classical physics is given by a probability distribution 
r c on Ac. It has the following basic properties:

� r c q p( , ) ³ 0 .

� dò =m r( , ) ( , )q p q pc 1 .
 

� Mean value of a c Î  Ac  : = =a c  dò Îm r( , ) ( , ) ( , )q p q p a q pc c   Ñ .

Here dm is the Liouville volume form on T Q d q p dq dq dp dpN N* : ( , )m = Ù Ù Ù Ù1 1K K .
Correspondingly, in quantum physics, we have a state w  on A. It is a linear map with 

w( )a  giving the mean value of a Î A. It has the properties:
� w( )*a a ³ 0 .
� w (I) = 1.
� w w( ) ( )*a a=  .

Here, the first two properties adapt all the properties of r c before, while the last property
preserves the * of A as complex conjugation on Â.

It is a theorem of Gelfan�d, Naimark and Segal (GNS) that, given a state w on A, there
exists a Hilbert space H on which A is realised as an algebra of operators, still denoted by
A by us. Also, the *-operator becomes the hermitean adjoint �. Finally, w can be
represented by a density matrix r:

r y y= å i i   ,      y i Î H ,      Tr r =1 . (2.4)

From this ab stract for mu la tion, the wave func tion y in non-rel a tiv is tic quan tum me -
chan ics is re cov ered as fol lows. The al ge bra A has an op er a tor 

)
x, called the po si tion op er -

a tor, with com mut ing com po nents. If 
r
x  is the eigenstate of 

)
x,

) r r
x x x xi i=   ,     

r r
¢ = ¢ -x x x xdd ( )  , (2.5)

where the spatial dimension d is 3 for Ñ3, we can write

y y( )
r r
x x= (2.6)

for a vector y Î  H of norm 1: y y =1, associated with the rank 1 (pure) state r y y= . 
Then, y gives the wave function of non-relativistic physics, subject to Born�s inter-
pretation: y( )

r
x

2
 is the probability density for finding the system at 

r
x.
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It is important that 
)
x transforms correctly under the Galilei group which is the

governing group of non-relativistic physics. Thus, it is a rotational vector and under a
spatial translation 

r
a, it changes to 

) r
x a+ .

For a special relativistic particle, the Galilei group is changed to the Poincaré group P,
which has the Lorentz group L as a subgroup. The Lorentz group L transforms the
spacetime point x x x= ( , )0

r
  to L Lx x= ( )m

n
n . It transforms time and the new time ( )Lx 0

depends on the old spatial coordinate 
r
x. This fact leads to the disturbing result that a

covariant position operator 
) ) r)
x x x= ( , )0  does not exist for interacting relativistic particles.

This basic result is due to Curry, Jordan and Sudarshan [5]. The requirement of a covariant 
position operator is also called the world line condition and discussed in Sudarshan and
Mukunda [5].

In relativistic quantum field theory, a similar situation prevails. The NewtonWigner
position operator [6] is not covariant and unsuitable for discussion of, say, causality.

The conclusion is that Bohr�s interpretation of quantum mechanics cannot be adapted
to relativistic systems.

But we need the notion of spacetime localisation. It is a central element in formulating
causality: this is the requirement that if spacetime regions K1 and K2are spacelike separated,
the corresponding observables commute. It is also needed to interpret the statement that
measurements are done on observables localised in a spacetime region K. Such a notion,
called �modular localisation�, will be described below.

We now informally indicate the reason why the covariant position operator does not
exist in a relativistic theory in the presence of interactions.

2.1. On Covariant Position Operators

We illustrate the problem by considering the case of N point particles with masses m i.

If Z Z( ) ( )( ) ( )t ti i= Îm  Ñ4 are the trajectories of the particles labelled by the parameters 
t ( ) ( , )i Î -¥ ¥  and if the particles are non-interacting, we can describe them by the
following Lagrangian:

� = å
i

�(i),     �(i)=
æ

è
çç

ö

ø
÷÷m

dZ

d
i

( )( )

( )

t

t

i

i

2

 . (2.7)

The corresponding action is

S S i

i

= å ( ) ,      S di( ) ( )= ò t i �(i) . (2.8)

This action is perfectly compatible with Poincaré invariance. It can be quantised [7].
Each S i( )  gives the unitary irreducible representation (UIRR) of the Poincaré group for
mass m i and spin 0. If H(i) is the Hilbert space carrying the UIRR for the i-th particle, the

full Hilbert space is H = Ä i H
(i). Thus we get the tensor product of N UIRR�s.

Now suppose that we wish to put in interactions. They will couple different Z( )( )t i �s.
That will involve the identification of different t ( )i �s, that is, effectively of different time
coordinates, in some fashion. 

But there is no consistent manner to do so since, as remarked above, Lorentz trans-
formations change time in a manner which involves spatial coordinates.
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In the literature, there are many attempts to overcome this �no-interaction theorem�,
but none of them have led to a satisfactory approach, compatible with causality and
Poincaré invariance.

In a quantum field theory (QFT), the position operator has to be constructed using the
quantum field j, so that it is covariant. Early attempts to construct a position operator by
Newton and Wigner [6] and others did not succeed in finding such a four-vector.

References from which literature after [5, 6] can be traced are [8] and recent papers
involving Schroer.

2.2. The Two Concepts of Localisation

Earlier, it was emphasised that both classical and quantum physics are formulated
using the concepts of both states and observables. Thus, we can study the localisation of
either states or observables (or perhaps both).

In non-relativistic physics, it so happens that either localisation implies the other. We
can informally explain why that is so. If K is a bounded spatial region and

P d x x xK

d

K
= ò

r r (2.9)

is the projection operator which projects vectors y in the Hilbert space H to vectors with
support in K,

y y y( )K K

d

K
P d x x x= = ò

r r
  , (2.10)

then, for two such vectors y cK K, , 

c y c yK K Ka d x d y P aPK = ò
3 3  . (2.11)

This shows that we can restrict wave functions to K, or equivalently restrict obsservables a
to K  by considering P aPK K .

But this reciprocity between localised states and localised observables fails in
relativistic theories. We cannot localise states as discussed above. But we can localise
observables. It is this localisation that we discuss below.

3. Localisation in QFT

3.1. Pre lim i nar ies

We consider only free fields. We also restrict attention for now to a relativistic free
field j of spin zero so that

( )j
p

( )
( )

x
d k

k
a e a ek

ik x

k

ik x= +ò
- × ×

3

0

32 2
�  ,

()

[ , ] ( ) ( )a a k k kk k¢
= - ¢� 2 20

3 3p d  ,       k k m0

2
2= +

r
 . (3.1)

(The metric is (1, �1, �1, �1)
diagonal

 .)
The associated Hilbert space carries a (anti-)unitary irreducible representation r of the

Poincaré group including total spacetime reflection (which is here identified with CPT).
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The commutator D of j at x and y is the causal function D:

j j( ), ( ) ( )x y = -D x y  , (3.2)

D x
d k

k
e eik x ik x( )

( )
( )= -ò

- × ×
3

0

32 2p
 . (3.3)

3.2. The Weyl algebra W

Let f  be a real test function for j. That means that if  f  has support in a spacetime region K,

j j( ) ( ) ( )f d x f x x= ò
4 (3.4)

is the field j localised in K.
In the absence of a good notion yet of localisation, this remark needs clarification. It

will emerge later. For now, we use it to derive the Weyl algebra.
Following Weyl, we replace the unbounded operator j( )f  by the unitary operator

W f e i f( ) ( / ) ( )= 2 j  . (3.5)

As a con se quence of (3.3), W�s ful fill

W f W g W f g e
i f g

( ) ( ) ( )
( , )

= +
-

4
s

 ,       s( , ) Im ( ) ( ) ( )f g d x d y f x D x y g y= -ò
4 4  . (3.6)

Here, s s( , ) ( , )f g g f= - . Also, since

(� + m2)D(x) = 0 , (3.7)

we have

s((� + m2)a, g) = 0 (3.8)

for functions a of compact support (say). Modulo such functions, s can be shown to be a
symplectic form on test functions.

Let us introduce a scalar product on f 's using Fourier transform:
~
( ) ( )f k d x f x e ik x= ò

×4 ,       k k m0

2 2= +
r

 . (3.9)

( , )
( )

~
( )~( )f g

d k

k
f k g k= ò

3

0

32 2p
 . (3.10)

Then, we can write

W f W g W f g e
i f g

( ) ( ) ( )
Im( , )

= +
-

2  , (3.11)

In addition, we have the *-relation

W f W f( ) ( )* = -  . (3.12)

Equations (3.11) and (3.12) are the defining relations for the Weyl algebra W.
The quantisation of the free field can be recovered from the quantisation of .W..

3.3. Quantisation of .W: the Fock Space

We now specialise to a real scalar field so that, from the vacuum, it creates an irreducible 
representation space of the Poincaré group. So the field j in (3.2) is �hermitean�.
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The quantisation of W as it emerges from the Fock space quantisation of j is the
following. Let .H. be the Hilbert space with the scalar product introduced above. Then, the 
bosonic Fock space F(H ) is

exp(H) := Âe0 Å.H.Å.H.ÅS.H.Å ... , (3.13)

where e0  is the vac uum state with norm 1 and ÅS de notes symmetrised ten sor prod uct.

Then,

W f e e ef fi

( ) /

0

4
2

2= Î-    F(H ) . (3.14)

3.4. An Abstract Definition of Weyl Algebra

We can now state this result for a real scalar eld in a more convenient and abstract
manner. Let H be a complex Hilbert space. Let Re H  be a �real� subspace of H so that it is 
closed only for real linear combination of its vectors. Then, consider operators W(h)
labelled by h ÎRe H and fullling the algebraic relations

W h W h W h h e
i h h

( ) ( ) ( )
Im( , )

1 2 1 2
2 1 2= +

-
 ,       W h W h* ( ) ( )= -  . (3.15)

The algebra generated by the W's is the Weyl algebra W(Re H ).
We can find a representation of WRe H  following (3.13) and (3.14).

3.5. Re marks

The way we pick Re H  in further developments is by constructing an anti-linear
in vo lu tion S:

S2 = I. (3.16)

Then, 

Sz z=      if   z Î  Re H .  (3.17)

The subspace Re H  is said to be �standard� if

Re H Å i Re H  = H ,       Re H  I  i Re H  = {0}. (3.18)

The bar means closure in the Hilbert space norm.
In this case we can unambiguously decompose a vector h Î H into its �real� and

�imag i nary� parts Re h  and Imh:

Re h :=  1
2

(I+ S)h ,         Im h := -  
2
i (I� S)h , ()

h h h= +Re Imi  ,            Sh h h= -Re Imi  . (3.19)

If an anti-linear involution S gives a �standard� decomposition of H  into Re H  Å  i Re H
on using (3.17), S is said to be the Tomita-Takesaki operator (in its real version).

4. Quantum Field Theory: Requirements on Localisation

As alluded to before, we will localise the algebra of observables, that is the Weyl
algebra. The localised algebras will be presented abstractly in terms of real subspaces
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defined using Tomita-Takesaki involutions. Their interpretation as algebras localised in
spacetime regions will subsequently emerge.

We will not try to local ise states. We can not do that.
Consider a spacetime region K. Then, let ¢K  denote its causal complement, so that if 

x KÎ ,  ¢ Î ¢x K , then x and ¢x  are spacelike separated.

The given region K is said to be causally complete if ¢¢ =K K.
We will index a family of Weyl algebras by causally complete K, writing W(K)for the

indexed algebra. But to physically interpret W(K) as the algebra of observables localised
in K, it must have the following properties, which are physically well motivated:

· Covariance: Let P
+
 de note the Poincaré group in clud ing the to tal re flec tion R:

        R x x x x x x> K K( , , , ) ( , , , )0 1 2 0 1 2= - - -  . Let g Î  P
+
.  It acts on K: K gK® . We re quire

      that there is a rep re sen ta tion r of  P
+
 on H  where r( )g  is uni tary if  g Î  P +

­  and

      anti-uni tary if  g Î R P +
­  , such that 

W ( ) ( )gK g= r  W( ) ( )K gr-1  . (4.1)

The operator r( )R  will be de noted by Q. It is anti-uni tary.
· Haag duality which implies causality: Let ¢W ( )K  denote the commutant of W( )K . 
      Then W( )¢ =K   ¢W ( )K  .
· Isotony: If K K1 2Í , then W( )K1 Í W ( )K2 .

5. The Con struc tion of W(K)

As stated above, we can assume that we are given a representation  of r of P+on H. We
assume it to be (anti-)unitary, irreducible (UIRR) and of positive energy, p0 > 0. For now,
we consider the spin zero representation.

The net of local algebras emerges just from the UIRR's of P+, that is from Wigner's
original research. It does not appeal to classical concepts like Lagrangians and actions.
This is a remarkable fact.

Fix a wedge W, say

W x M x x= Î >{ : }4

1 0  . (5.1)

It is used as a de vice to la bel the Weyl al ge bras, even the ex is tence of spacetime need not
en ter in its con cep tion. We clas sify them be low.

Then, the Lo rentz boosts

LW t( ) =

æ

è

ç
ç
ç
ç

cosh -sinh 0 0

-sinh cosh 0 0

0 0 1 0

0 0 0 1

 t  t

 t  t

ç

ö

ø

÷
÷
÷
÷÷

(5.2)

leave W in vari ant:

LW t W W( ) = . (5.3)

It is con tained in the sta bil ity group of W. The full sta bil ity group is gen er ated by these Lo -
rentz boosts and ro ta tions and trans la tions of the x x2 3-  plane.
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Consider the x x0 1-  reflection j W :

j x x x x x xW r r> ( , , ) ( , , )0 1 0 1= - -  , (5.4)

where xr  denotes the remaining spatial coordinates. It maps W to its causal complement ¢W . 

The Figure 1 shows W, ¢W  and j W for (1 + 1) spacetime.

Fig. 1. W, ¢W   and jW  in (1 + 1)-di men sional spacetime.

An important property of j W is that it commutes with LW t( ): 

j t t jW W W WL L( ) ( )=  . (5.5)

Un der the rep re sen ta tion map r, LW t( )  be comes 

rLW

itKt e W( ) = , (5.6)

while 

J jW W: ( )= = ´r rQ  (p - ro ta tion around 1-axis). (5.7)

The ex pres sion for J
W

 in terms of Q  as sumes that the spacetime is four-di men sional and
fol lows from

(R o p - ro ta tion around 1-axis) > ( , , )x x xr0 1 =

= - = - - =R x x x x x x j x x xr r W r> >( , , ) ( , , ) ( , , )0 1 0 1 0 1  . (5.8)

By (5.5),

J e e JW

itK itK

W
W W=  . (5.9)

But J
W

 is anti-uni tary. Hence, 

J K K JW W W W= -  . (5.10)

We now come to the anti-linear involutions SW  and S J S J J S JW W W W W W W¢

-= =1 . They

pick out the real subspaces HW,W ¢
 and the associated Weyl algebras W(W), W( ¢W ). They

commute, as required by causality, and as shown below.
Con sider  

e K

W
W- =p D1 2/  . (5.11)

This op er a tor is de fined by the an a lytic con tin u a tion of  e itKW to the strip 

0 < <Imt p . (5.12)

We will see that this con tin u a tion is pos si ble. 
The op er a tor SW, the Tomita-Takesaki op er a tor, is given by 

S JW W W= D1 2/  . (5.13)
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Since 

J JW W W WD D1 2 1 2/ /= - (5.14)

by (5.10), 

S S J J JW W W W W W W= = =D D1 2 1 2 2/ /  I , (5.15)

so that S
W

 is an anti-lin ear in vo lu tion. But it is not anti-uni tary, since 

S SW WW

* = D  . (5.16)

DW is self-adjoint, but not uni tary. The op er a tor K
W

 has nei ther up per nor lower bound.

Hence, DW is not bounded above, just like the Hamiltonian.
The real subspace Re H for W, which we denote by Re H(W), is determined by SW : 

z z zW W W WW SÎ Û =Re ( )H  . (5.17)

As for ¢W , by covariance, 

S J S J J JW W W W W W W W¢

-= = =D D1 2 1 2/ /  , (5.18)

so that 

h h h
¢ ¢ ¢ ¢
Î ¢ Û =W W W WW SRe ( )H  . (5.19)

We now come to the cru cial re sult.

5.1. Cau sal ity

This requires the proof that the Weyl algebras WW W, ¢
 are commutants of each other: 

W W
¢
= ¢

W W  , (5.20)

the su per script prime de not ing commutant. There is also a change of no ta tion: the
spacetime re gion la bel ing the Weyl al ge bra is be ing put as a sub script.

Here, we will only prove that 

W( )h
¢W W( )zW  = W( )zW W( )h

¢W  . (5.21)

Since 

W( )h
¢W W( )zW  = W( )

Im( )
h z

h z

¢
+

¢

W W e
i

W W2  , (5.22)

we must ver ify that 

( , )h z
¢

ÎW W   Ñ . (5.23)

For this pur pose, we need the iden tity 

( ,J JW Wa b) = (b, a) ,     a b, Î  H , (5.24)

since J
W

  is anti-uni tary.
Now 

( , ) ( , ) ( , )/ /h z h h h z
¢ ¢ ¢

-

¢
= =W W W W W W W W W W W WS S J JD D1 2 1 2  . (5.25)

By (5.13) and (5.18), 

( , ) ( , )/ /h z z h
¢

-

¢
=W W W W W WD D1 2 1 2  . (5.26)

By (5.24), 

( , ) ( )h z z , h
¢ ¢

=W W W W  , (5.27)

since DW
±1 2/  are self-adjoint.

Hence, ( , )h z
¢W W  is real and cau sal ity is es tab lished.
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It is important to note that the causal complement W
¢W  of WW  is its �symplectic

complement�. Also, nowhere have we tried to localise states.

5.2. On the Tomita-Takesaki Op er a tor

Let us denote the representation of the Weyl algebra WW  by the same symbol.
The Fock space representation of WW  is built from the vacuum state e

0
. It has the following

important properties: it is cyclic and separating.
�Cyclic� means that the Weyl algebra (complex linear combinations of all W )( )h )

acting on e0 gives the full Hilbert space H on closure.
�Separating� means that if a Î WW  annihilates e0, then a = 0: 

a ae0 0 0= ÜÞ =  . (5.28)

The implications of the remarkable results of Tomita-Takesaki theory are as follows.
Since e0 is cyclic and separating for the C*� al ge bra WW there exists a unique anti-linear

involution 
~
S W , 

~
SW

2 =  I (5.29)

with the property 
~ *S e eW a a0 0=  . (5.30)

Our S W  ful fills (5.30) since by (3.14), 

SW W( ) / / / /h e S e e e e e eW

h ih h ih

0

4 2

0

4 4

0

2 2

= = =- -  W*( )h e0 , (5.31)

where we used S e eW 0 0= .
Hence, 
~
S SW W=  . (5.32)

The po lar de com po si tion of S W  is just 

S JW W W= D1 2/  . (5.33)

The uni tary group 

U t W

it( ) = D  ,  (5.34)

which leaves the vacuum invariant, generates the �modular automorphism� of WW .
Since

DW

it itKe W= , (5.35)

where W is a wedge in this case, the boost group is the mod u lar automorphism group and
K

W 
can be called the mod u lar Hamiltonian.
But below, when we sharpen the localisation from wedges to smaller regions ·, the

corresponding operators S J· · ·= D1 / 2  with S · I2 =  and D·
it  all exist, but in general do not

have geometric interpretation.

5.3. Re marks on the Real Subspaces of S·

As before, we can define the real subspace Re H(·) of H using S · . It is also standard:
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Re H(·)  + iRe H(·)  =  H . (5.36)

The converse is also true: if S · leads to a standard real subspace Re H(·) of H, it fulfills
(5.31).

6. Op er a tors local ised in W

We need a simple definition of operators WW (h) when  h ÎRe H(W). We can obtain it
by first recalling an elementary result in Fourier transforms.

Con sider the Fou rier trans form smooth com pactly supported f of a func tion 
~
( )f x   which 

is sup ported on the half-line: 

f dx f x e i x( )
~
( )w w=

¥

ò0
 . (6.1)

This in te gral con verges if w is con tin ued into a com plex vari able with Im w > 0. It is holo-

morphic if Im w > 0.

The elements a of the real subspace Re H(W) can be constructed in a similar manner.
We can find them by starting with 

a aW W

i p x p xp dx dx x x e( ) ~ ( , ) ( )= + -

¥

+ -
+

ò0

0
0

1
1  ,     x x x

±
= ±1 0 (6.2)

where we have suppressed the variables  x rr ( , )= 2 3 . In W x,
±

³ 0  so that the integral is

over W. The representation r of  P
+ 

can clearly be realised using the complex function a W

of momentum p. We now argue that for positive energy representations, 

p p0 1 0³ >  , (6.3)

S
W

 can be ap plied on a W . The re quire ment 

SW W Wa a= (6.4)

then im plies that 
~ ( , )aW x x+ - Î  Ñ . (6.5)

The real subspace ReH(W) is thus spanned by functions a W with real Fourier

transforms which are supported in W.
Let us show this re sult. With p p p

±
= ± >0 1 0, as is the case in pos i tive en ergy rep re -

sen ta tions,  

a aW W

i p x p xp dx dx x x e( ) ~ ( , ) ( )/= + -

¥

+ -
-

ò + + - -

0

2 . (6.6)

Un der the boost trans for ma tion

LW t( ) =

æ

è

ç
ç
ç
ç

cosh -sinh 0 0

-sinh cosh 0 0

0 0 1 0

0 0 0 1

 t  t

 t  t

ç

ö

ø

÷
÷
÷
÷÷

 , (6.7)

we have 

r( ( ))LW

itKt e W= (6.8)

and 
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( )( ) ( ( ) ) ~ ( , ) (e p t p dx dx x x eitK

W W W W

i eW
t

a a a= =-

+ -

¥

+ -òL 1

0

p x e p xt
+ +

-
- -- ) . (6.9)

For 

t i= <m m < p, 0  , (6.10)

we get 

( )( ) ~ ( , ) cos ( )e p dx dx x x e eK

W W

i p x p xW-

+ -

¥

+ -
-= ò + + - -m ma a

0

- ++ + - -sin ( )m p x p x  . (6.11)

The first ex po nen tial has modulus 1, while the sec ond is a damp ing fac tor in the in ter val
(6.10), since p x

± ±
>, 0 . Thus, (6.9) is the bound ary value m ¯ 0  of a holomorphic func tion 

in the strip 

0 < <Im t p . (6.12)

When 

Im t ­ p , (6.13)

we get 

( )( ) ( )( ) ~ ( , )/ (e p p dx dx x x eK

W W W W

iW- -

+ -

¥

+ -
-= = ò

p a a aL 1 2

0

p x p x+ + - -+ ) . (6.14)

Hence, 

( )( ) ( )( ) ~ ( , )/ (S p J p dx dx x x eW W W W W

i p xa a a= = + -

¥

+ -ò + +L1 2

0

+ - -ip x )
(6.15)

and the condition S W W Wa a=  implies that ~ ( , )a W x x+ - Î  Ñ, as claimed.

Fig. 2. D w
1 2/  is seen to re verse the sign of en ergy.

6.1. Re marks

· The above analyticity and hence the existence of SW  and localisation can be

            established  only for �positive energy representations�, where ( )p p0 0- ³
r

.
· From (6.14), Dw

1 2/  is seen to reverse the sign of energy. In Feynman's language,
            it converts an outgoing particle line into an incoming anti-particle line in a scat-
            tering diagram. We illustrate this interpretation in Figure 2.
                Thus, as Fassarella and Schroer [3] have emphasised, Dw

1 2/ seems related to cros-
            sing symmetry.

All this means in particular that localisation requires anti-particles (which may be the
same as par ti cles).
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7. Sharp en ing Lo cal isa tion

Wedge localisation is rather weak as a wedge is not even compact. One would like
localisation in spacetime regions · of arbitrary small size.

For this pur pose, first con sider the in ter sec tion of two wedges W1 and W2 pro duc ing
the �causal di a mond� (shown in Figure 3). We can then con sider the as so ci ated real
Hilbert space: 

Re H ( ) : ReW W1 2I =  H ( ) ReW1 I  H ( )W2  . (7.1)

Fig. 3. Causal Di a mond.

One then shows that Re H ( )W W1 2I  is stan dard:
H H H= ÅRe ( ) Re ( )W W i W W1 2 1 2I I  ,

Re ( ) Re ( ) { }H HW W i W W1 2 1 2 0I I I = (7.2)

(where tak ing clo sure is un der stood).
Now (7.2) is enough to de fine the mod u lar op er a tor and show cau sal ity.
Thus, if zÎ H, we have the unique de com po si tion

z z z= +Ç ÇRe ImW W W W1 2 1 2
i  , (7.3)

where the first term is in Re HW W1 2Ç  and the sec ond in iRe HW W1 2Ç .
The mod u lar in vo lu tion S W W1 2Ç  is then de fined by

S iW W W W W W1 2 1 2 1 2Ç Ç Ç-z = z zRe  Im  . (7.4)

The def i ni tion of po lar de com po si tion of S W W1 2Ç ,

S JW W W W W W1 2 1 2 1 2Ç Ç Ç= D1 2/  , (7.5)

shows that

DW W W W W= S
1 2 1 2Ç Ç

� S (7.6)

where the RHS can be cal cu lated from (7.4). Then, from (7.5), we have J W W1 2Ç .
Just as be fore as in the case of S W ¢

, one shows that the mod u lar in vo lu tion

J S J JW W W W W W W W W W1 2 1 2 1 2 1 2 1 2Ç Ç Ç Ç Ç= D1 2/ (7.7)

determines the causal complement ¢
ÇWW W1 2

of WW W1 2Ç .
In this way, we have the algebra WW W1 2Ç localised in W W1 2I .
We can even char ac ter ise the el e ments a W W1 2Ç  in Re HW W1 2Ç : we use (6.2), but with

real func tions ~a W W1 2Ç  sup ported in W W1 2I .
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7.1. Fur ther Sharp en ing of Lo cal isa tion

A spacetime re gion · is said to be caus ally com plete if the fol low ing con di tion is sat is -
fied: Let ¢·  de note the causal com ple ment of · so that points of ¢·  are spacelike sep a rated 
from  ·. Let ¢¢·  be the causal com ple ment of  ¢· . Then, · is caus ally com plete if  ¢¢· = ·= .
The di a mond in the last Fig ure above is causally complete.

A causally complete region · is known to be the intersection of wedges. As wedges
are mutually related by the action of P+ + , causally complete regions are invariant under the 
action of P+ +. They form a covariant net.

Given this net, we can localise the Weyl algebra to ·, to obtain W· .
We now show how to explicitly construct W· . It involves the construction of the

standard real subspace Re H H· Ì .
We can describe the elements of Re H·  using (6.2), but with the real functions ~a ·  now 

supported in ·.
The Weyl al ge bra is then con structed from its el e ments as de scribed ear lier.
It is important to know also the modular involution S ·  and the causal complement of  W· .
As for S · , we follow (7.3)�(7.5), but with W W1 2I  replaced by ·. That gives us J ·

and D·
1 2/  in S J W· ·= D1 2/ .

The causal complement ¢W·  of W·  is then

 J J J J· · · · · ·W W- =1  . (7.8)

7.2. Re marks

We can show that the vacuum state 0 0: = e  restricted to the observables in the
Rindler wedge W is mixed: it is a thermal or KMS state. This is Unruh's result.The proof is 
as follows.

First re call the KMS con di tion. In terms of a den sity matrix r b= -exp( )H , it is

w r r w b b wr r r b( ) : ( ) / ( ) ( exp( ) exp( ) (AB Tr AB Tr B H A H BU i= = - = ( ))A (7.9)

where U A A
ib

( ) =  evolved for imag i nary time ib.
A state w

b
 is KMS if it ful fills

w wb b b( ) ( ( ))AB BU Ai= (7.10)

even if this state does not come from a den sity ma trix.
It is not dificult to show that

S V h e V h eW ( ) ( )*

0 0=  . (7.11)

Hence

e AB A e Be J Ae J B eW W0 0 0 0 00 = = =* *D DW W
(7.12)

e AB0 0  = =D DW WB e Ae*

0 0    (as JW is anti-unitary)  (7.13)

e AB0 0  = =e B A e0 0DW             (is DW  is self-adjoint)    (7.14)

e AB0 0  = -e B A e0

1

0D DW W           (as e0  is invariant under DW

-1) .  (7.15)

Thus e e0 0  is a mixed KMS state for the algebra WW  and for the `Hamiltonian' 
H KW= 2p b/ .
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But since the spec trum of KW is un bounded above and below, DW is not of trace class

and we can not con struct a den sity ma trix like r above for this state.
· It is known that

Re ReH H·
·

=
ÉW

I W , (7.16)

W W·
·

=
ÉW

I W  . (7.17)

· We can show as before that the vacuum defines a KMS state for the Hamiltonian
      2p bK· / , where D·

·= -e K2p .
      But when · is not a wedge, not even when it is a causal diamond, K·  has no known
      geometrical meaning. It is a boost generator of P+ +

 only when · is a wedge.
· The theory shows that D·e e0 0=  or that

e e eitK·

0 0= (7.18)

for ev ery caus ally com plete ·.. Thus we get an in fi nite num ber of local ised boost groups    
L·

·={ }e itK  la belled by the caus ally com plete net, all of which leave the vac uum in vari ant,
just like LW . Their lo cal isa tion re minds us of gauge groups, but the lat ter ei ther act triv i ally on
all quan tum states or de fine superselection sec tors. Nei ther is the case with L· .
The phys i cal mean ing of L· 's has not been un der stood.

8. In tro duc ing Spin

In these notes, we have not treated the con struc tion of the UIRR's of P+ us ing Wigner's
ap proach. For this rea son, we will treat only the spin 1/2 case, assumming fa mil iar ity with
the con struc tion of its UIRR. We re fer to [9] for ex am ple for fur ther de tails.

For rel a tiv is tic par ti cles with spin, the trans for ma tion prop er ties of a state vec tor with
def i nite mo men tum in volves the Wigner boost and Wigner ro ta tion. Their pres ence spoils 
the analyticity prop erty of e itKW  in the strip 0 < <Imt p . Lo cal isa tion for such rep re sen ta -
tions in volves ad di tional con sid er ations.

We il lus trate the sit u a tion for a UIRR of P+ with spin 1/2 and mass m > 0.

8.1. Mas sive Par ti cle of Spin 1/2

8.1.1. Pre lim i nar ies

Let
) r
p m= ( , )0 (8.1)

be the stan dard mo men tum. A ba sic in gre di ent in set ting up the UIRR is the choice of the

Wigner boost Lp Î ­P+  which trans forms 
)
p to mo men tum p (see [9]):

L p pp

)
=  . (8.2)

A con ve nient choice of Lp uses the 2´2 rep re sen ta tion of p:

p p p® × = × +s s( ) ,      s s s= = =( ,0 I i  Pauli ma tri ces). (8.3)
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In this rep re sen ta tion, P+
­ acts by el e ments g SLÎ ( ,2  Â):

s s× ® ×p g pg� . (8.4)

For ro ta tions, g SUÎ ( )2 , so that g g� = -1 . For boosts, g g= � . Thus, since

s× =
)
p mI (8.5)

and

s× >p 0 , (8.6)

that is, its eigenvalues are pos i tive, as may be ver i fied, we can choose for the boosts,

g p
p

m
SL( ) ( ,

/

=
×æ

è
ç

ö

ø
÷ Î

s
1 2

2  Â) , (8.7)

where the square root is the pos i tive one. Thus,

s s× = ×( ) ( )( ) ( )L p g p p g pp

) ) �  . (8.8)

Here g p( ) is self-adjoint.

The transformations in P+
­ leaving 

)
p invariant is SO(3). In the 2´2 SL(2, Â ) represent-

ation, it becomes the UIRR D1/2 of SU(2) for angular momentum 1/2. In the Wigner approach,
we first introduce the vectors 

)
p, l . If the UIRR is U and  h SUÎ ( )2 , we set

U h p p D h( ) , , ( )/) )
l r rl= 1 2  ,     U L p pp( ) , ,

)
l l=  . (8.9)

Us ing the 2´2 ma trix ro ta tion, we can change no ta tion as fol lows:
) )
p p, ,l s l® ×  ,

U h p p D h( ) , , ( )/s l s r
rl

× = ×
) ) 1 2  ,

U L p p pp
p

m
p

m( ) , ( ) ( ) , ,/ /s l s l s ls s× = × = ×× ×) )1 2 1 2  . (8.10)

It is a consequence of (8.10) that if  g Î SL(2, Â ),

U g p g p D h p g( ) , ( ) , ( ( , ))/s l s r rl× = × L 1 2  , (8.11)

where L( )g  the Lo rentz trans for ma tion as so ci ated with g,

g pgs s× = ×� L(g)p (8.12)

and  h p g SU( , ) ( )Î 2  is called the Wigner ro ta tion:

h p g
g p

m
g

p

m
( , )

( )
/ /

=
×æ

è
ç

ö

ø
÷

×æ

è
ç

ö

ø
÷

-
s sL

1 2 1 2

. (8.13)

For further details, see [9].

Thus, if g is the boost  e itKW- , which becomes  e t s1 2/  in the 2´2 SL(2, Â ) representation,

h p e
e p

m
e

p

m
t

itK
t

W

( , )/

/

/s ss s
1 12

1 2

2
1

=
×æ

è
çç

ö

ø
÷÷

×æ

è
ç

ö

ø
÷

- / 2

. (8.14)

8.1.2. Analyticity

We need the analyticity of (8.14) in the strip 0 < <Imt p ( See (6.12)). But for 
p rr ( )³ ¹2 0, this requirement is not met, leading to an obstruction to localisation.
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The way around it is as fol lows. Let us imbed the D1/2 UIRR of SU(2) in the D(1/2,0) IRR
of SL(2, Â). Then, we can write

D h p g D D( / , ) ( / , )
/

( , ))1 2 0 1 2 0
1 2 1

=
×æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

-

s L(g)p

m
( / , ) ( / , )

/

( )1 2 0 1 2 0
1 2

g D
s×æ

è
ç

ö

ø
÷

p

m
. (8.15)

Us ing this de com po si tion, let us de fine.       

s l s r
s

rl× = ×
×æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

-

p p D, ,
* ( / , )

/
1 2 0

1 2 1

p

m
(8.16)

It fol lows from (8.11) and (8.15) that

U g p g p D g( ) , ( ) , ( )
* * ( / , )s l s r rl× = × L 1 2 0  . (8.17)

Thus, by work ing with func tions f
l
of p (or s× p) with the trans for ma tion (8.17), we

can re move the ob struc tion to analyticity en coun tered above.

8.1.3. Cau sal ity

For the spin 0 case we treated above, the quantum field which emerges commutes for
spacelike separations. We can see this as follows.

In the no ta tion of (6.2), let

j a a a(~ ) *( ) ( )W W W Wa a S= +  , (8.18)

where ~a W is sup ported in W and is real, as be fore. So S W W Wa a= , but we put in S
W

 for

later con ve nience. We also set

[ ( ), *( )] ( , )a S a SW W W W W Wa b a b=  , (8.19)

where 
~
bW  also has sup port W. All other com mu ta tors in volv ing a and  a* van ish as usual.

Sim i larly,

j a a a(~ ) *( ) ( )
¢ ¢ ¢ ¢

= +W W W Wa a S  , (8.20)

where

S J S J JW W W W W W¢
= = D1 2/  . (8.21)

Hence,
[ (~ ), *(

~
)] ( , ) ( , )j a j b a b b aW W W W W W W WS S

¢ ¢ ¢ ¢
= - =

= - =
¢ ¢ ¢

( , ) ( , )/S JW W W W Wa b b aW WD1 2 0 , (8.22)

where the anti-unitarity of J
W

 has been used.
Thus, spacelike sep a rated j's com mute.
We now ex tend this anal y sis to spin 1/2. Fields of spin 1/2 must anti-com mute for

spacelike sep a ra tion, whereas the mod u lar in vo lu tion SW leads to a com mu ta tion re la tion.
There fore, in the def i ni tion of a spin 1/2 field y, we change SW to

)
S iSW W= (8.23)

It too has the prop erty
)
SW

2 = I. (8.24)

Then, for a spin 1/2 field y,
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y a a a(~ ) : ( ) ( )*

W W W Wa a S= +
)

 , (8.25)

where we set

[ ( ), ( )] ( , )*a S a SW W W W W W

) )
a b a b+ =  , (8.26)

with zero for the other anti-com mu ta tors.
For ¢W , by covariance,
) )
S J S J iJ J J i JW W W W W W W W W W¢

= = - = -( )/ /D D1 2 1 2  . (8.27)

There fore,
[y a y b ] a b b a+(~ ), (

~
) ( , ) ( , )W W W W W W W WS S

¢ ¢ ¢ ¢
= + =

) )

                                  = - + =
¢ ¢

i J i JW W W W W W W W( , ) ( )/ /D D1 2 1 2 0a b b , a  , (8.28)

where the last line fol lows from anti-lin ear ity of J
W

.
The i is the �sta tis ti cal� fac tor which cor rects the com mu ta tor to anti-com mu ta tor. Its

square be ing �1, which cor re sponds to 2p ro ta tion be ing �1, it ac counts for the spin-
statistics the o rem.

8.2. Fi nal Re marks

The Poincaré group has two �exceptional� classes of positive energy UIRR's.
One oc curs in 3 + 1 di men sions for mass less par ti cles where the lit tle or sta bil ity group 

in gen eral is E( )2 , the two-fold cov er ing group of the Eu clid ean group. For par ti cles like
pho tons with two helicities, the trans la tion part of E( )2  is rep re sented triv i ally, by iden tity
op er a tors.

But there are UIRR's where the trans la tions of E( )2  are rep re sented non-triv i ally. In
these UIRR's, helicity takes on all half-in te gral val ues for fer mions and all in te gral val ues
for bos ons. Par ti cles char ac ter ised by such UIRR's are said to have con tin u ous spin.

The sec ond class of �ex cep tional� UIRR's oc curs in 2 + 1 di men sional spacetime.

They are the anyons. For anyons, 2p-ro ta tion is nei ther (+1) nor (�1). Fur ther, they obey
braid sta tis tics. The lat ter is based on the braid group [10] and not on the per mu ta tion
group. Such par ti cles, which can oc cur as ex ci ta tions in two-di men sional lat tices of spins,
are thought to be im por tant for �top o log i cal quan tum com pu ta tions�.

If we exclude these exceptional UIRR's, for all other UIRR's of the Poincaré group,
localisation in the manner we have described works. Familiar local fields can also be
constructed, as in [3, 4].

But that is not the case for the ex cep tional UIRR's [3, 4]. For such UIRR's, stan dard
lo cal fields, such as j or y above, do not ex ist. The best-local ised fields are local ised on

�strings�. Thus, such a field c in te gral helicity say, is la belled by a spacetime po si tion x
and a spacelike di rec tion e:

e e× = -1 . (8.29)

Both x and e trans form un der Lo rentz trans for ma tions:

L L L: ( , ) ( , )c cx e x e® - -1 1  . (8.30)

As for causality, the condition is novel. Let  Ñ

x + Ñ+e { }: := + £ ¥x el l <0  . (8.31)
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Thus, x + Ñ+e is a spacelike string from x to ¥. Then, causality is expressed by

[ ( , ), ( , )]c c1 2 0x e x e¢ ¢ = (8.32)

if x + Ñ+e is spacelike to  ¢x + Ñ+ ¢e , that is, each point p of the former, p xÎ + Ñ+e is space-

like to each point ¢p  of the latter, ¢ Î ¢ +p x  Ñ+ ¢e .
The two-point func tion for such fields has been worked out.
In ci den tally, such string-local ised fields ex ist even for non-ex cep tional UIRR's [3, 4].

They have better ul tra-vi o let be hav iour.

8.3. Re marks

· Dirac [11] had  long  ago con sid ered  fields de pend ent on a spacelike di rec tion in the
con text of gauge the o ries. Thus, for a U(1) gauge the ory with a charged field y and elec tro- 

mag netic con nec tion A, he had de fined the field

)
y ym

m(x,e)= P i A
x

exp ò ¢ ¢æ
è
ç ö

ø
÷

é

ëê
ù

ûú
( ) ( )x dx x  , (8.33)

where the integral is along the line x e+ t  as t increases from (-¥) to 0. 
The field 

)
y is invariant under the gauge transformation

y y( ) ( )( )x e xi x® L  ,      A x e A x e x em m m¶( ) ( ) ( )( )+ ® + + +t t tL  , (8.34)

with the usual condition ( )( )¶m L x e+ ®t 0 as t ® -¥.
The field 

)
y of Dirac does not seem to be the string-localised field considered above.

The latter is a free field and not coupled to a gauge field.
· It is a strik ing and im por tant re sult that string-local ised fields do not ad mit a Lagrangian
de scrip tion. They seem to have no clas si cal coun ter part of a fa mil iar sort.
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