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Abstract: We demonstrate, by solving numerically the time-dependent Schrödinger equation, the physical

character of electron localization in a disordered two-dimensional lattice. We show, in agreement with the

prediction of P. W. Anderson, that the disorder prevents electron diffusion. The electron becomes spatially localized

in a specic area of the system. Our numerical analysis confirms that the electron localization is a quantum effect

caused by the wave character of electron propagation and has no analogy in classical mechanics.

PACS numbers: 73.23.-b, 71.30.+h, 72.10.-d

1. Introduction

The electron localization in disordered systems [1] is responsible for a broad variety of
transport phenomena experimentally observed in mesoscopic systems: the non-Ohmic
behavior of electron conductivity, weak localization, universal conductance fluctuations,

and strong electron localization [2, 3].
The localization arises in systems with a random potential. Following the original

work of Anderson [1], we consider a time evolution of a quantum particle located at a time  
t = 0 in a certain small area of the sample. For t > 0, the electron wave function scatters
spatial inhomogeneities (spatial fluctuation of the potential). Multiple reflected components
of the wave function interfere with each other. Anderson proved that if the strength of the
disorder increases over the critical value, the wave function will be non-zero only within a
specific area, and decays exponentially as a function of the distance from the center of
localization. The probability to find an electron in its initial position is non-zero for any

time t, even when time increases to infity,  t ® ¥.
It is important to note that the localized state differs from the quantum bound state. The 

bound quantum particle is trapped in a potential well, if its energy is negative. Contrary,
the localized quantum particle can be localized in any region of the disordered lattice.
Also, there is no restriction to the eigenenergy of the localized state, which can exceed the
highest potential barrier inside the sample. Another difference between the bound and
localized state is that the spatial distribution of the localized state is highly sensitive to the
realization of the random disorder. The localized state therefore represents, besides the
extended and bound states, the third possible eigenstate of quantum Hamiltonian.
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Localized electrons cannot conduct electric current [4-7]. Consequently, the probability 
of electron transmission T through a disordered system decreases exponentially as a
function of the system length L : T Lµ -exp /2 x . The length x is the localization length.
Materials that do not conduct electric current due to the electron localization are called

Anderson insulators.
In spite of significant theoretical efforts, our understanding of electron transport in

disordered systems is still not complete. Rigorous analytical results were obtained only in

the limit of weak randomness, where perturbation theories are applicable [8-11]. In the
localized regime, we do not have any small parameter in the theory, so no perturbation
analysis is possible. Also, the transmission of electrons is extremely sensitive to the
change of sample properties. In particular, a small local change of random potential might

cause a change of the transmission amplitude in many orders of magnitude [12-15].
Analytical description of localized systems is therefore extremely difficult. Fortunately, it 
is rather easy to simulate the transport properties numerically. In fact, many quantitative

data about the electron localization was obtained numerically [7, 16-20]. 
In this paper we describe simple numerical experiments which demonstrate the key

features of quantum localization. We solve the time-dependent Schrödinger equation for
the electron in two-dimensional disordered lattice and investigate the time evolution of
the spatial distribution of the electron wave function. This reproduces the Anderson�s
original problem [1] and proves that, indeed, the electron becomes spatially localized in a

certain part of the disordered sample.

2. The model

We consider the two-dimensional tight binding Anderson model [6, 21]. The time

evolution of the electron wave function is given by the Schrödinger equation

i
r t

t
W r r t V r t

r

h

r
r r r

r

¶

¶
e

Y
Y Y

( , )
( ) ( , ) ( , ) .= + ¢

¢

å      (1)

The electron propagates via hopping from the site 
r
r  into the nearest neighbor site ¢

r
r . Since

sites are arranged on the two-dimensional lattice, we have 
r r
r r a- ¢ = , where a is the lattice

spacing. The energies e( )
r
r  mimic random potential: we assume that e( )

r
r  are randomly

distributed with the Box probability distribution, P( )e =1 if - £ <1 2 1 2/ /e , and P( )e = 0
otherwise. Also, random energies on different sites are statistically independent. The case
of zero disorder, W = 0, corresponds to the tight binding Hamiltonian which describes the
propagation of electron on the two-dimensional lattice. The eigenenergies create the
conductance band, - £ £ +4 4V E V [21].

The problem defined by Eq. (1) has two parameters: the hopping amplitude V and
disorder strength W . The last determines the maximal amplitude of the fluctuations of
random energies e. Since V just defines the energy scale, we have in fact only one
parameter: the ratio W V/ , which we use as a measure of the strength of the disorder. We

see from Eq. (1) that the time is measured in units of h /V.

Consider first the zero disorder case, W = 0. The electron, located at time t = 0 in a

certain lattice site, 
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will diffuse to the neighboring sites. In the limit of infinite time,  t ® ¥, the electron will
occupy the entire lattice � it will be "everywhere". Consequently, the probability to find it
at the original site is zero (or, more accurate, of the order of 1/volume). We ask, whether the 
diffusion of the electron is possible also in the case of non-zero disorder. Intuitively, one
expects that a very weak disorder will not afect the diffusion, while a suficiently strong
disorder stops the diffusion. Then, there should be a critical disorder W c  such that difusion
stops when W W c> , and continues infinitely long when W W c< . In the original paper [1]

Anderson derived the equation for the critical disorder,

W

V
eK eKc = 2 ln( ) .    (3)

According to Eq. (3), the critical disorder depends only on the connectivity (the
number of the nearest neighbor) of the lattice, K. Today, we know that the critical disorder
depends on the dimension d  of the lattice [22, 23]. In the absence of magnetic field and
electron spin, all states are localized in the disordered systems with dimension d d c£ = 2. 
Therefore, the critical disorder W c = 0  for  d = 2 and is non-zero in systems with higher

dimensionality  d > 2.

3. Diffusion

For the numerical solution of the Schrödinger equation (1) we consider the finite size
of the system L L´ , where L a= 2048  for weakly disordered samples and L a=1024  for

systems with a stronger disorder W V/ > 4.

First, we need to define the initial wave function Y( , )
r
r t = 0 . A more suitable candidate 

than the d-function (2) is any eigenfunction of the Hamiltonian defined on a small sub
lattice (typically the size of 24 24a a´ ) located in the center of the sample [24]. Usually we 
chose the eigenfunction which corresponds to the eigenenergy closest to  E = 0 (the middle 

of the conductance band).
We solve the Schrödinger equation (1) numerically and find the time evolution of the

wave function Y( , )
r
r t . The numerical program is based on the alternating-direction

implicit method [25, 26] used for the solution of elliptic partial differential equations.
The ability of an electron to diffuse through the sample is measured by a quadratic

displacement, defined as 

r t dr r r t2 2
2
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Y       (4)

Figs. 1 and 2 show that, in weak disorders, W V/ =1 and 2, r t2( )  is a linear function of time  t,

r t Dt2 2( ) .=     (5)

The parameter D is the diffusive constant which enters the Einstein formula for electric

conductivity s,

s r= e D2 .     (6)
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Here e is the electron charge and r is the density of states [7].

Since we analyze only a lattice of a finite size, we have to take into account that the 
t-dependence of the electron wave function might be affected by the finiteness of our
sample. In this case, we not only observe the diffusion, but also the reection of the electron
from the edges. The diffusion (5) is observable only when r t r2 2( )

max
<< , where

r 2
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corresponds to the homogeneously distributed wave function, Y( ) /
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It might seem that the diffusion of electrons shown in Figs. 1 and 2 contradicts the
localization theory [23] which predicts that all electronic states must be localized in two-
dimensional systems. However, this is not the case. The prediction of the localization
theory concerns the limit of an infinite system size. Physically, localization occurs only
when the size of the sample exceeds the localization length, L > x. Since x is very large in
weak disorder (x~10 6 a when W =1) [18], we observe metallic behavior and diffusion of
electrons in Fig. 1. Of course, even in the case of W V/ =1, we would observe localization,
if much larger systems are taken into account [7]. In general, we can observe the
localization, if we either increase the size of the system or reduce the localization length.
The latter is easier, as it requires only to increase the disorder strength W . We will do this

in the next Section.
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Fig. 1. The quadratic displacement r t2( )  (in units a2 ) as a function of time t. Time is measured in h /V. 

The size of the system is L L´ , where L a= 2048  (L a= 1024  for W V/ = 6). Note the logarithmic scale of
both axes. For weak disorder, we expect the electron to diffuse, so that  r t Dt2 2( ) = , in accordance
with Eq. (5). Numerically, we find that  r Dt2 2= a  with a = 1004.  for disorder W V/ = 1 and a = 0 98.  for 
W V/ = 2. The corresponding diffusive constants are D = 25.7 and 9.1 (in units a V2 / h). Only the data
for time t V< 4000h /  were used for W V/ = 1, the electron could reach the edge of the sample in longer
time. The dashed line represents the limit r L2 2 6

max
/= , given by Eq. (7). For stronger disorders, the

time evolution of the wave function is not diffusive. We find the exponent a » =0 82 4. ( / )W V  and 
a » =0 39 6. ( / )W V .
Fig. 2.  The same data as in Fig. 1, but on a linear scale. Only the data for small disorder is shown. Note
that for W V/ = 1, r t2( )  is linear only when t V< 4000h / . This is because the electron already reaches
the edge of the sample.

Fig. 1 Fig. 2



4. Absence of diffusion - localization

The data in Fig. 1 indicate that the time evolution of the wave function is not diffusive
when the disorder W  increases. The linear increase of r t2( )  is observable only for short

initial time interval. For longer time, the increase of the spatial extent of the electron is

slower and finally ceases (Fig. 3).
To demonstrate the electron localization more explicitly, we repeat the experiment in

Section 3 with a stronger disorder W V/ = 6. Similarly to the previous experiment, the
initial wave function is non-zero in the small area 24 24a a´  located at the center of the
sample. For shorter times, we observe that the spatial extent of the wave function increases.

Then, after a while, r t2( )  saturates:

lim ( )
maxt

r t R r
®¥

= <<2 2 2 . (8)

Although the spatial distribution of the electron varies in time,  r t2( )  does not increase

any more even if the time t increases ten and more times.

Figs. 4 and 5 show the spatial distribution of the wave function, Y( , )
r
r t . They

represent the lattice sites with Y( )
r
r > -10 4 . This means that the probability to find the

electron in any other lattice site is less than 10 8- .
Note that there is no potential well in the center of the sample where the electron is

localized. The only reason why the electron is localized in the lattice center is that the initial
wave function, Y( , )

r
r t = 0 , was non- zero only in the center of the lattice. Starting with the

initial wave function localized in any other area of the sample, we would observe electron
localization in that area. This is demonstrated in Fig. 6 showing the time  development
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Fig. 3. Quadratic displacement r t2( )  as a function of time t t/ 0, t V0 1000= h /  for three systems of the

size L a= 1024  and disorder W V/ = 6 (triangles). Although r 2  does not increase when time increases, 
it fluctuates as a function of time. The limiting value, R2 (Eq. 8) depends on the actual realization of the
random disorder e( )

r
r  in the given sample. The dashed line shows r L a2 2 26 174762

max
/= =  which is 

50  ́larger than actual values of r 2 . For comparison, we also show the quadratic displacement for a
system with stronger disorder, W V/ = 8, which is typically 130 2a .
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Fig. 5. The same as in Fig. 4 only the time is 
t t= 500 0 and 900 0t  (t V0 1000= h / ).

Fig. 4. Spatial distribution of an electron in sample
with disorder W V/ = 6. The size of the lattice is 
1024 1024a a´ . Time is given in units of 
t V0 1000= h / . The different colors show sites
where y( )r > -10 4  (gray), > ´ -5 10 4 (brown), 10 3-

(blue), 5 10 3´ -  (red), and > ´ -5 10 3 (black). The
probability to find an electron on any other site is
less than 10 8- .

of the wave functions of four electrons in
the same lattice. The initial position of the
electrons is centered around four points

x L L y L L
± ±

= ± = ±/ / , / / .2 4 2 4    (9)

We see that each electron is localized
around its initial position in time t > 0. This
proves that localization is indeed the result
of interference of wave functions. The
electron is not trapped in any potential well.

The localized state is not a bound state.
Fig. 6 also shows that the localized

states are very sensitive to the realization of
the random potential. The spatial distribut-
ion  of each electron  reects the local distri-



bution of random energies e( )
r
r . This was already shown in Fig. 3, where we plot r t2( )  as a 

function of time for three different realizations of the random disorder. We see that
although all three samples have the same macroscopic parameter W V/ = 6, the limiting
value R r t

t

2 2=
®¥
lim ( )  is not universal but depends on the actual distribution of random

energies in the given sample. Moreover, r t2( )  fluctuates as a function of time.

5. Conclusion

We demonstrated numerically that the diffusion of the quantum particle through
randomly fluctuating potential ceases after certain time. Owing to the scattering of the
wave function on randomly distributed impurities (fluctuations of the random potential),

the particle becomes spatially localized.
The key condition for the electron localization is the quantum coherence of the wave

function. This is generally not fulfilled in the experiment, where the incoherent scattering
- for instance the scattering of electrons with phonons - plays a crucial role. As any
incoherent scattering destroys quantum coherence, the electron localization can be
observed experimentally only if the mean free path of incoherent scattering is larger or
comparable than the size of the sample. This happens at a very low temperature. Of
course, localization can affect the electron transport also at higher temperatures [27].

These effects are, however, above the scope of present discussion.
With localization being a wave phenomenon, we expect similarity of quantum propagat- 

ion with classical wave phenomena [28]. That enables us to observe localization in many
other instances. In particular, classical waves - electromagnetic or acoustic - can also be
localized in a disordered medium [29]. The localization of microwave electromagnetic
waves [30], ultrasound waves [32] and weak localization of seismic waves [31] were

recently observed experimentally.
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Fig. 6. The time development of four electrons located in time t = 0 in four different areas of the same
lattice. The electrons do not leave the initial areas. The size of the sample is L a= 1024 . Disorder 
W V/ = 8. Again, time is measured in units of t V0 1000= h / .
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