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Abstract: We study a phenomenological model of a superconducting vortex whose core is assumed to
be made of a non-superconducting phase of unspecified origin. If the core state is competitive in energy
with the superconducting state, the vortex energy is lowered with respect to the usual case with a
normal-state core. Such vortices have been called "cheap" in the literature on the pseudogap state of the
cuprates. Within the London theory, we present a variational argument which shows that sufficiently
cheap vortices generically exhibit a broken rotational symmetry. We argue that, within the generalized
Ginzburg-Landau theory, the stability of asymmetric vortices depends on the precise form of the energy
functional.

1. Introduction

One of the interpretations of the pseudogap state in the high-temperature superconductors
postulates the presence of an incoherent liquid of singlet electron pairs on the bonds of the
square lattice [1]. A more conventional picture views the pseudogap state as a disordered
superconducting state with destroyed phase coherence. The major open problem in the
latter line of thinking is to explain the very large difference between the small
superconducting transition temperature and the large pseudogap temperature. It has been
argued that, in order to destroy the phase ordering and to stabilize the pseudogap state, the
presence of the so-called cheap vortices, i.e. of vortices with low energy, is required [2, 3].
In this paper we study a simple phenomenological model of a superconducting vortex
with a vortex core made of a non-superconducting phase of unspecified origin. We assume 
that the non-superconducting core state is competitive in energy with the superconducting
state. Several candidate states for the vortex core have been considered in the literature,
such as the antiferromagnetic state [4], the stripe phase [5], and the staggered flux state [6].

In Section 2 we discuss the vortex energetics within the London theory. First we
discuss the usual rotationally symmetric vortex and we show that the vortex core size of a
cheap vortex is larger than the coherence length x. Then we present a variational argument
which shows that sufficiently cheap vortices generically do not have a rotationally
symmetric shape.

In Section 3 we construct generalized Ginzburg-Landau theories, in which both the
superconducting order parameter and a scalar order parameter m describing the vortex
core state are taken into account. We study how the stability of asymmetric vortex
solutions depends on the form of the Ginzburg-Landau functional.
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2. The London Theory

A. Symmetric solution

Let us start by con sid er ing a usual vor tex along the z axis. We as sume that the mag -
netic field is B = (0, 0, B(x, y)), which triv i ally solves the Maxwell equa tion Ñ ×B = 0. The
usual vor tex so lu tion of the Lon don equa tion Ñ =2 2B B / l , where l is the pen e tra tion

depth read as B r B K
r
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, where K0  is the mod i fied Bessel func tion of imag i nary ar -

gu ment. We shall as sume that the above so lu tion holds for dis tances  r a>  from the vor tex
cen ter, whereas in the re gion  r a<  there ex ists the non-super con duct ing vor tex core of un -
spec i fied or i gin, pierced by the mag netic field B B a< = ( ). We shall as sume that the vor tex
core size sat is fies the in equal i ties x l<< <<a . One can show eas ily that the flux

quantization con di tion d B2
0rò = F  im plies that the mag netic field am pli tude for a << l

sim ply reads B0 0
22= F / ( )pl .

The op ti mal vor tex core size will be de ter mined by minimization of the vor tex en ergy
e( )a   per unit length of the vor tex with re spect to a. To this end, let us split e, to be called in

what fol lows the vor tex line en ergy, into two parts e e e= +< > , cor re spond ing to  r a<  and 
r a> , re spec tively. For  r a> , we ob tain 
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Sim ple trans for ma tions show that

 d d d2 2 2r B S B B rB B( ) ( ) [ ( )]Ñ ´ = × ´ Ñ ´ + × Ñ ´ Ñ ´òò ò , 

where the first in te gral on the right side is taken over the sur face of the super con duct ing re -
gion and dS is the sur face el e ment point ing out the su per con duc tor in the nor mal di rec tion.
Mak ing use of Ñ ´ Ñ ´ = -( )B B / 2l  we thus find
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2 . On the other hand, the con tri bu tion of the vor tex core reads 

e p m d< <= +a B Bc
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0
2 22/( )[ ] , where the first term is due to the fi nite field in side the core

and the sec ond term de scribes the con den sa tion en ergy loss. Within the Ginzburg-Lan dau
the ory, the mag ni tude of the ther mo dy namic crit i cal field Bc  is re lated to x and l as follows:
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The dimensionless fac tor d in the ex pres sion for e<  de scribes the renormalization of the
con den sa tion en ergy. In a BCS su per con duc tor d =1, but in a su per con duc tor with a com -
pet ing phase in the vor tex core we can have d <<1. In the limit a << l we can ne glect the
con tri bu tion of B<

2  to e<  with re spect to e>  and the to tal vor tex line en ergy reads
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where k l x= /  and we have used the asymptotics of the func tion K x0( ) for x ® 0.
Minimizing the func tion e( )a , we find that the optimal vortex core is a = x d2 / . In the

BCS case this yields the usual es ti mate a ~ x , whereas for d <<1 we ob tain a >> x . The
vortex line en ergy eS of the optimal symmetric vortex is therefore
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Note that for d <<1 the vortex line energy is substantially diminished with respect to its
BCS value for d =1 and the vortex becomes cheap.

B. Asymmetric solution

We assume again solution of the London equation in the form B = (0, 0, B(x, y)), but
instead of a circular vortex core with radius a we assume a rectangular vortex core with
dimensions 2 2a ´ x and a >> x . The magnetic field in the non-superconducting core
region has to be constant. Since x is the smallest length scale, we shall neglect its finite
value and we shall seek the magnetic field outside the core by replacing the core region
with a line between the endpoints ( , )-a 0  and ( , )a 0 . We will require that B = const along

the "core line". We seek the solution in the form
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which ob vi ously sat is fies the Lon don equa tion. The func tion f( )r  has to be found from the
in te gral equa tion B(x, 0) = const valid for x in the in ter val -a a, . Re plac ing the Bessel

func tion by its small-ar gu ment asymptotics, which is a good ap prox i ma tion as long as 
a << l which we as sume, the in te gral equa tion is rec og nized as Carleman's equa tion [7]
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which can be solved ex actly. The fi nal so lu tion, which sat is fies also the flux quantization
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Note that, if the di men sions are mea sured in units of l , the mag netic field dis tri bu tion is up
to a multi pli ca tive fac tor de ter mined by the dimensionless ra tio a / l . Mak ing use of
Eq. (4) and of the Maxwell equa tion Ñ ´ =B jm 0 , the cur rent den sity j can be eas ily cal cu -

lated. Thus, we obtain
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In the limit a << l the integrals can be ex plic itly eval u ated along the line y = 0 and we ob tain
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and zero oth er wise. The dis tri bu tion of the mag netic field B(x, y) and of the mag ni tude of
the supercurrent |j|(x, y) is plot ted in Fig. 1.

Let us turn now to the eval u a tion of the vor tex line en ergy of the asym met ric vor tex.
The con tri bu tion e>  to the line en ergy of the asym met ric vor tex can be writ ten as
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Note that since the magnetic field in the asymmetric vortex is finite and the current exhibits
only a weak divergence j rµ -1 2/ , where r is the distance from the endpoints ( , )±a 0  of the

cut, the dimensionless function F a( / )l  is finite for finite values of a and no cut-offs need to 

be introduced by hand. We have calculated the function F x( ) numerically and the result is
plotted in Fig. 2, together with the function K x0( ). Note that F x K x( ) ( )> 0  for all values of x.

In other words, for a given radius a, the energy e>  is smaller in the symmetric solution. Fig. 2

shows that the function F x( ) can be fitted quite well by the simple formula f x x( ) ln( / ) . .= +1 08
The contribution of the core to the line energy of the vortex reads

e x m< <= +( / )[ ]2 0
2 2a B Bc  , 

where B<  is the field inside the core. The first term on the right hand side can be neglected
for ax l<< 2  and the total line energy of an asymmetric vortex can be therefore written as  
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Fig. 1. Mag netic field (left panel) and the mag ni tude of the supercurrent (right panel) in an asym met ric
vor tex with a / .l = 01.



Note that the core en ergy scales only lin early with a / x , whereas in the sym met ric so lu tion
it scales with a 2 2/ x . Min i miz ing the func tion e( )a  we find the op ti mal core size a = pz d/
which is, for a given d <<1, much larger than the core size in the sym met ric case. There fore
the vor tex line en ergy of the op ti mal asym met ric vor tex is 
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A » + -ln . ln066

1
 .     (6)

Note that in the BCS case d =1 the asym met ric vor tex has a higher en ergy than the sym met -
ric vor tex. How ever, with de creas ing d the en ergy of the asym met ric vor tex de creases
faster than that of the sym met ric vor tex and for d d< c  the asym met ric vor tex be comes en -
er get i cally fa vour able. The crit i cal value dc  can be de ter mined from the equa tion 
e d e dS c A c( ) ( )= . We find dc » 0 46. .

Our results are further illustrated by Fig. 3, where we plot the functions Eq. 2 and Eq. 5 
for k =100, which is of the correct order of magnitude for the cuprates, and for several
representative values of d.

3. The Ginzburg-Landau approach

Within the usual Ginzburg-Landau approach, the dif fer ence dF between the free
energy densities of the normal and of the superconducting states can be written as
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where we have de fined the com plex or der pa ram e ter func tion f f e i= q nor mal ized in such 

a way that in a ho mo ge neous piece of a su per con duc tor in the equi lib rium we have f =1. 
Bc is the ther mo dy namic crit i cal field and x is the co her ence length. The super con duct ing
cur rent density is given by

j A= - + Ñæ

è
ç

ö

ø
÷

1

20
2

2

m l
qf

e

h
 .

SHAPE OF CHEAP SUPERCONDUCTING VORTICES                   41

Fig. 2. Plot of the func tions F x( ) and K x0( ). Note that F x( ) can be fit ted well by the sim ple form 

f x x( ) ln( / ) . .= +1 0 8 



Within the usual Ginzburg-Lan dau ap proach, the pen e tra tion depth l is not an in de pend ent
quan tity, but it rather de pends on Bc  and x , as can be seen from Eq. 1. How ever, it should
be pointed out that in a su per con duc tor with strong fluc tu a tions, the true pen e tra tion depth
might be much larger than can be es ti mated from Eq. 1. In other words, the renormalization 
of x and l due to fluc tu a tions can be very dif fer ent. It is usu ally as sumed that the stiff ness of 
phase fluc tu a tions l is renormalized much more than the am pli tude stiff ness x . In any case, 
it can be shown that the renormalization of l  does not change our con clu sions and it there -
fore shall not be con sid ered.

Within the Lon don the ory, we have as sumed that f =1 out side the vor tex core and we
have as sumed that f = 0 in side the core. In ab sence of a com pet ing or der pa ram e ter in the
core, the con den sa tion en ergy den sity loss would be Bc

2
02/( )m . In pres ence of a com pet -

ing or der pa ram e ter, we need to gen er al ize the sec ond term in dF = dFmag+ dFcond by as -
sum ing the fi nite value of the vor tex core or der pa ram e ter m. For the sake of sim plic ity,
we will as sume that m is a sca lar quan tity. In what fol lows we con struct gen er al ized
Ginzburg-Lan dau the o ries, in which both the uperconducting or der pa ram e ter and a sca lar 
or der pa ram e ter m de scrib ing the vor tex core state are taken into ac count.

If, in anal ogy with the SO(5) the ory of su per con duc tiv ity [8], we as sume that the real
and imag i nary parts f1 and f2 of the com plex super con duct ing field f f if= +1 2 , to gether
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Fig. 3. The en er gies per unit length of the sym met ric and asym met ric vor ti ces as func tions of a / l for 

d = 0.1, 0.3, 0.5, and 1.0. All re sults were cal cu lated us ing k = 100, as ap pro pri ate for the cuprates.



with the or der pa ram e ter m, form three com po nents of a vec tor or der pa ram e ter 
X f f m= ( , , )1 2 , then it is nat u ral to write
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2 2= + +  and we have as sumed a small (of the or der d) ani so tropy in the X

space, slightly fa vor ing the super con duct ing so lu tion. In this case we can choose 
f m= =1 02,  out side and f m= = -0 1 22, /d  in side the vor tex core. In other words, as

one moves to wards the vor tex core, the or der pa ram e ter X slightly con tracts and ro tates
from the xy plane out side to the z di rec tion in side the core. Note that for d <<1 and if X is
smooth on the scale x , the gra di ent term can be safely ne glected and the con den sa tion en -
ergy den sity loss is only dF

cond
+ =B Bc c

2
0

2
02 2/( ) / ( )m d m , and our Lon don-type anal y sis is

qual i ta tively cor rect.
In the gen eral case dFcond de pends on many more pa ram e ters and lacks the sym me try

of Eq. 8. In or der to keep the num ber of in de pend ent co ef fi cients as small as pos si ble we
as sume that the only dif fer ence with re spect to Eq. 8 has to do with the gra di ent terms. If
we study the opposite extreme case
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then the con clu sions of our Lon don-type anal y sis are not valid any more. In fact, let us con -
sider the rect an gu lar vor tex core and let us as sume that its di men sions are 2 2a b´  where 
b a<< . The op ti mal size b in the y di rec tion has to be de ter mined by minimization of e< . As

an or der of mag ni tude es ti mate we then ob tain
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The core en ergy is seen to be min i mized for  b ~ /x d, much larger than  b ~ x as sumed in

the Lon don the ory. If this cor rec tion is taken into ac count, then the asym met ric so lu tion
never be comes sta ble.

4. Conclusions

In conclusion, we have studied the shape of a superconducting vortex. We have
assumed that the energy difference between the superconducting state and the
non-superconducting state inside the vortex core is renormalized by a parameter d. Within
the London theory, we have shown that for d d< »c 0 46. , i.e. for sufficiently cheap
vortices, the optimal superconducting vortex cores spontaneously break the rotational
symmetry. It is worth pointing out that asymmetric vortices may have already been
observed in STM studies of the vortex cores in the cuprates by the Geneva group [9, 10].

We have fur ther stud ied the asym met ric vor ti ces within the gen er al ized Ginzburg-
Lan dau the ory, in which both the super con duct ing or der pa ram e ter and a sca lar or der pa -
ram e ter m de scrib ing the vor tex core state have been taken into ac count. We have shown
that the sta bil ity of asym met ric vor ti ces de pends on the form of the gra di ent term: they are
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sta ble for the Ginzburg-Lan dau the ory Eq. 8, whereas they are un sta ble for the Ginzburg-
Lan dau the ory Eq. 9 and the ro ta tional sym me try of the vor ti ces is re stored.
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