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Abstract: I consider the compatibility of the equations of motion which follow from d�Alembert�s
principle in the case of a general autonomous non-holonomic mechanical system in N dimensions, with
those equations which follow for the same system by assuming the validity of a specific variational
action principle, in which the nonholonomic conditions are implemented by means of the multiplication
rule in the calculus of variations. The equations of motion which follow from the principle of d�Alembert 
are not identical in form to the equations which follow from the variational action principle. I describe a
recent proof, according to which the solutions to the equations of motion which follow from
d�Alembert�s principle do not in general satisfy the equations which follow from the action principle
with nonholonomic constraints. This means that the d�Alembertian and variational systems are not
compatible, except in the case of  N = 2. My interest in the compatibility of the d�Alembertian system and 
the variational systems in question has its origin in an analysis of Yang-Mills theory made ten years ago,
in which a gauge was used which is a natural generalisation of the Abelian Coulomb gauge for
non-Abelian Yang-Mills theory. 
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1. Introduction

Quite some time ago I was in tensely pre oc cu pied with for mu lat ing the dy nam ics of
semi-clas si cal Yang-Mills the ory [1] us ing un con ven tional gauge con di tions. One such
gauge con di tion was the fol low ing gen er al ised Cou lomb gauge con di tion, in volv ing both
the gauge po ten tial A xm ( ) as well as its time-de riv a tive  Âm ( )x ,
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The gauge po ten tial A xm ( ) takes val ues in an ap pro pri ate ma trix rep re sen ta tion of the Lie al -
ge bra of the cho sen semi-sim ple com pact gauge group. For fur ther ex pla na tions and no ta -
tion I re fer to the pa per [2], where it was shown that the con di tion (1) is in deed a gauge
con di tion, in the sense that there ex ists a gauge trans form by means of which a gen eral
gauge po ten tial which does not nec es sar ily sat isfy the con di tion (1), is trans formed into a
gauge po ten tial which sat is fies this con di tion. 

In the ter mi nol ogy of Clas si cal Me chan ics, the con di tion (1) is a nonholonomic con di -
tion. In im ple ment ing the nonholonomic gauge con di tion (1) in Yang-Mills the ory, I used
a pro ce dure which had been ad vo cated in a pa per by Berezin [3], en ti tled (in trans la tion
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into Eng lish) "Hamiltonian For mal ism in the Gen eral Lagrange Prob lem". In this pa per,
which was pro posed as an al ter na tive to the con straint the ory of Dirac [4] for cer tain types
of con strained sys tems, it was ad vo cated that the con straints should be im ple mented by a
variational pro ce dure in volv ing the mul ti pli ca tion rule in the Cal cu lus of Vari a tions [5],
both in the cases of holonomic and nonholonomic con straints.

When I followed the procedure advocated by Berezin in Yang-Mills theory with the
gauge condition (1), the results [6] were not very encouraging. It then occurred to me that
one ought to examine the validity of the variational procedure proposed by Berezin for
general systems with a finite number of degrees of freedom, and with nonholonomic
constraints.

In clas si cal me chan ics, there ex ists an al ter na tive to variational ar gu ments, namely the
fun da men tal Prin ci ple of d'Alembert. This prin ci ple leads to equa tions of mo tion for sys -
tems with both holonomic and nonholonomic con straints. I soon dis cov ered that the equa -
tions of mo tion for a gen eral au ton o mous sys tem with a fi nite num ber of de grees of
free dom, and with nonholonomic con straints lin ear in the gen er al ised ve loc i ties, were not
the same as those equa tions that fol lowed by an ap pli ca tion of the variational pro ce dure
ad vo cated by Berezin. For holonomic con straints both the prin ci ple of d'Alembert and the 
variational pro ce dure in ques tion gave iden ti cal equa tions of mo tion. I then con cluded
that one should not use the variational pro ce dure with nonholonomic con straints, and lost
gradually interest in the generalised Coulomb gauge (1).

In the years following the experience described above I noticed from time to time the
existence of papers in the field of classical mechanics, in which one advocated the use of
variational procedures involving the multiplication rule in the calculus of variations for
systems with nonholonomic constraints.

A fairly re cent pa per by Flannery [7] con sid ers anew the ques tion of ap ply ing the
variational prin ci ple in volv ing the mul ti pli ca tion rule to sys tems with a fi nite num ber of
de grees of free dom, and reaches the con clu sion that the equa tions of mo tion ob tained by
the variational prin ci ple are not iden ti cal to the equa tions which fol low from the prin ci ple
of d�Alembert in the case of nonholonomic con straints. The prob lems dis cussed by
Flannery are not new; they have been dis cussed in the lit er a ture at least since Hertz�s
text-book [8], in which the use of variational prin ci ples in me chan ics was ques tioned. We
re fer in par tic u lar to an early pa per by Hölder [9], in which es sen tial dif fer ences be tween
holonomic and non-holonomic sys tems were dis cussed. Two later pa pers pub lished by
Jeffreys [10] and Pars [11] con sid ered again the Ham il ton�s prin ci ple for non-holonomic
sys tems, and pro posed rec ti fi ca tion of pre vi ous pa pers in which the variational pro ce dure
(ac tion prin ci ple) in volv ing the mul ti pli ca tion rule had been pro posed for sys tems with
non-holonomic con straints. One should, in this con text, also re call the pa per by Berezin
[3], which has been men tioned pre vi ously.

Even though the equations of motion following from the principle of d�Alembert and
from the variational action principle with non-holonomic constraints are different in form, 
one may still argue that the equations in question may have the same solutions. It has only
very recently been proved [12] that this is not the case; the solutions to the d�Alembertian
equations of motion and the variational equations of motion referred to above, are in
general not coincident when the constraints are nonholonomic. The proof, which will be
briefly discussed below, is valid for a general autonomous system with a finite number of
degrees of freedom, restricted only by reasonable smoothness conditions. For simplicity
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only the case of one nonholonomic constraint is considered. This constraint is taken to be
linear and homogeneous in the generalised velocities.

2. The d�Alembertian and variational equations of motion

Con sider an au ton o mous me chan i cal sys tem with in de pend ent gen er al ised co-or di -
nates q q q N= ( , , )1 K , and ve loc i ties Á = Á Á( , , )1 K N . We de note the ki netic en ergy of
the sys tem by T, and the gen er al ised ap plied forces on the sys tem by QA,  A = 1, ..., N. It is
fur ther as sumed that the sys tem is con strained by one nonholonomic con di tion, which is
lin ear and ho mo ge neous in the gen er al ised ve loc i ties. Thus, the con straint is of the form

a qA
A

N
A( ) ,

=

å Á =
1

0     (2)

where the func tions a q A NA ( ), , ,=1 K  are ar bi trary func tions of the vari ables 
q q q N= ( , , )1 K , ex cept for the con di tion that not all of the quan ti ties a qA ( )  van ish iden ti -
cally. Nat u rally, it is also as sumed that the func tions a q A NA ( ), , ,=1 K   sat isfy ap pro pri -
ate smooth ness con di tions.

The principle of d�Alembert (see e.g. the classical texts by Goldstein [13] or Whittaker 
[14]) then gives the following equations of motion for the system in question,
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where l is a mul ti plier to be de ter mined.
The N equa tions of mo tion above, are con se quences of the prin ci ple of d�Alembert.

One should still add the equa tions of con straint (2) to the equa tions of mo tion above.
There are thus al to gether N + 1 equa tions for the de ter mi na tion of N quan ti ties q tA ( ), 

A N=1, ,K , and the mul ti plier l( )t , when ap pro pri ate bound ary con di tions for the quan ti -
ties q q N1 , ,K  and Á Á1 , ,K N  are given.

It is now as sumed that the ex ter nal ap plied forces can be de rived from a gen er al ised
po ten tial. In what fol lows we thus as sume the ex is tence of a po ten tial V such that
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Us ing the no ta tion

L q T V0( , ) ,Á º -      (5)

we re write the equa tions (3) as fol lows,
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The equa tions (6) are the d�Alembertian equa tions of mo tion, when it is as sumed that the
gen er al ised forces are ex press ible in terms of a gen er al ised po ten tial V , as in Eq. (4) above.

The quan tity L q0( , )Á  de fined above in Eq. (5) de pends on the ki netic en ergy and on the 
ex ter nal ap plied forces of the sys tem un der con sid er ation. In the ab sence of non -
holonomic con straints the quan tity L q0( , )Á  would be the Lagrangian of the  sys tem. Nat u -
rally, it is as sumed that the func tions T and V, re spec tively, sat isfy ap pro pri ate smooth ness 
con di tions.
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It should be ob served that the prin ci ple of d�Alembert is not a straight for ward
variational prin ci ple al though it in volves so-called vir tual dis place ments dq A ,  A N=1, ,K .
As a con se quence of the nonholonomic con straint (2) these vir tual dis place ments have to
sat isfy the con di tion

w d: ( ) .= =
=

åa q qA

A

A

N

0
1

    (7)

We then consider the variational action principle referred to previously for the system
defined above. This action principle involves the multiplication rule in the calculus of
vari a tion.

Consider the following action functional,

S dt L q0 0: ( , ) .= Áò      (8)

The ac tion prin ci ple in ques tion is sim ply the re quire ment that the ac tion func tional (8) be
sta tion ary when the non-holonomic con straint (2) is in force through out a suit able re gion D 
in con fig u ra tion space, i.e. when the con di tion
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is in force. Us ing the mul ti pli ca tion rule in the cal cu lus of vari a tions, the ac tion prin ci ple
for mu lated above be comes equiv a lent to the fol low ing free variational prob lem,
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which in volves the Lagrange mul ti plier m.
The variational equations following from Eq. (10) are,

( )
d

dt

L q L q

q
a q M

A A AB
B

N
B¶

¶

¶

¶
m0 0

1

( , ) ( , )
,

Á

Á

æ

è
ç

ö

ø
÷ -

Á
= À + Á

=

åA
A N=1, , .K   (11)

where

( )M q
a q

q

a q

q
A B NAB

A
B

B
A

:
( ) ( )

, , , , .= - =
¶

¶

¶

¶
1 K   (12)

The N equa tions (11) to gether with the con di tion (2) are sup posed to de ter mine the quan ti -
ties q q N1 , ,K  and the Lagrange mul ti plier m, when ap pro pri ate bound ary con di tions for 
q q N1 , ,K  and Á Á1 , ,K N are given. 

The variational equa tions (11) are not iden ti cal to the d'Alembertian equa tions of mo -
tion (6). The as sump tions un der ly ing the variational equa tions and the d'Alembertian
equa tions of mo tion, re spec tively, are also ba si cally dif fer ent. The non-holonomic con -
straint (2) is only sup posed to be valid for the ac tual mo tion when one ap plies the prin ci ple 
of d'Alembert to de rive the equa tions of mo tion, whereas the same non-holonomic con di -
tion is sup posed to be valid through out a whole ap pro pri ate re gion D when one con sid ers
the variational prob lem (10), as indicated in Eq. (9) above.

If the one-form w oc cur ring in Eq. (7) is integrable, then the system under considerat-
ion is holonomic. This is the case if the following conditions hold true,

M A B NAB = =0 1, , , , .K    (13)
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It is readily seen that the d'Alembertian equa tions of mo tion (6) and the variational equa -
tions of mo tion (11) be come iden ti cal in this case, upon a sim ple change of no ta tion:
À ® l .

One reaches the same con clu sion when the one-form w in Eq. (7) can be made
integrable by mul ti pli ca tion with an in te grat ing fac tor. In two space di men sions there al -
ways ex ists an in te grat ing fac tor. In what fol lows we thus con sider sys tems of di men sion 
N ³ 3. The nec es sary and suf fi cient con di tions for the ex is tence of an in te grat ing fac tor,
when N ³ 3, are as fol lows (see e.g. Ref. [15]),

a q M q a q M q a q M q A B C NA BC B CA C AB( ) ( ) ( ) ( ) ( ) ( ) , , , , , .+ + = =0 1 K    (14)

The con clu sion to be drawn from this dis cus sion is that the d'Alembertian and variational
equa tions of mo tion are al ways equiv a lent in two space di men sions. These equa tions are
equiv a lent when N ³ 3, if the con straint is (2) integrable, and there fore holonomic, or can
be made integrable by means of an in te grat ing fac tor.

It re mains to con sider the com pat i bil ity of the d'Alembertian equa tions of mo tion (6)
and the variational equa tions of mo tion (11) in the case when the con straint (2) is truly
nonholonomic, i.e. nei ther integrable nor re duc ible to the integrable case by means of an
in te grat ing factor.

3. Incompability of the d'Alembertian and variational equations
    of motion in the nonholonomic case

We are now con cerned with a truly nonholonomic con straint of the form (2), which means
that nei ther the Eqs. (13) nor the Eqs. (14) are in force.

We will prove that the d'Alembertian equations of motion (6) including the
nonholonomic constraint (2), and the variational equations of motion (11), with the same
constraint (2) included, do not in general have coincident solutions. To begin with, it will
be assumed that the equations in question in fact do have sufficiently smooth solutions,
e.g. C 2-so lu tions in some appropriate time interval.

The proof uses an ar gu ment of re duc tio in ab sur dum, i.e., it is as sumed that the equa -
tions of mo tion (6) and (11), re spec tively, do have co in ci dent so lu tions, which are spec i -
fied by ap pro pri ate gen eral bound ary con di tions. It is then shown that this as sump tion
leads to con tra dic tions.

Assume that the equations (6) and (11) have coincident solutions. By subtracting Eqs.
(11) from Eqs. (6), one obtains the following equations,

( ) ( ) , , , ,l m-À = Á =
=

åa M q A NA AB
B

N
B

1

1 K     (15)

which have to be satisfied by the general solutions ( , , )q q N1 K  of the d'Alembertian
equations (6).

Let us first note that one must necessarily have �m Ã 0 in the Equations (15) above, since
otherwise one would have

la A NA º =0 1, , , .K    (16)

The con di tion (16) above im plies that l º 0, which can not be true in the case of a gen eral
non-holonomic con straint. Hence, �m Ã 0. 
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We introduce the notation

G : .=
-Àl

m
  (17)

The con di tions (15) are then equiv a lent to the fol low ing equa tions,

M q a A NAB
B

N
B

A( ) , , , ,
=

å Á = =
1

1G K   (18)

which are in es cap able con se quences of the as sump tion that the equa tions (6) and (11) have
gen eral co in ci dent so lu tions. It should be noted that the matrix (MAB ) oc cur ring in Eqs. (18) 
is anti-sym met ric (skew) and has real-val ued ma trix el e ments,

M M A B NAB BA= - =, , , , , .1 2 K   (19)

The anal y sis of Eq. (18) is par tic u larly sim ple in the three-di men sional case N = 3. We
con sider this case sep a rately, and re turn to the cases N > 3 sub se quently.

The case N = 3:

The quantity G in the Eqs. (18 ) is un known, but ei ther zero or non zero. We con sider
first the case

G º 0 .  (20)

In this case Eqs. (18 ) are the fol low ing ho mo ge neous equa tions

M q z AAB
B

B( ) , , , ,
=

å = =
1

3

0 1 2 3   (21)

which (for M Ã 0) have the fol low ing gen eral non-triv ial so lu tions, 

( , , ) ( , , ) ,z z z1 2 3

23 31 12= a M M M   (22)

where a is a non-zero con stant. The so lu tion ( , , ) ( , , )Á Á Á =1 2 3 1 2 3z z z  must sat isfy the non -
holonomic con straint (2), i.e.

0 1

1
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2

3

3

1 23 2 31 3 12= + + º + +a z a z a z a a aa[ ] .M M M   (23)

However, the condition (23) is nothing but the three-dimensional version of the necessary
and sufficient conditions (14) for the existence of an integrating factor for the constraint (2).
But this is a contradiction, since the constraint (2) is supposed to be truly nonholonomic.

We then con sider the case

G Ã0 .  (24)

The equa tion to be con sid ered is then the fol low ing,

M q a AAB
B

B

A( ) , , , .
=

å Á = =
1

3

1 2 3G    (25)

In or der that Eqs. (25) be solvable, it is nec es sary that the vector ( , , )a a a1 2 3  be or thogo nal
to the so lu tions (22) of the ho mo ge neous equa tions (21). But this con di tion is noth ing but
the con di tion (23), which again con tra dicts the as sump tion that the con straint (2) is truly
nonholonomic.

It has thus been shown that the d'Alembertian equa tions of mo tion (6) to gether with
the nonholonomic con straint (2) are not in gen eral com pat i ble with the variational equa -
tions of mo tion (11) in clud ing the same nonholonomic con straint (2), in the case of N = 3.
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The same con clu sions are ob tained in the gen eral N-di men sional case, as was shown in a
re cent pa per1 made in col lab o ra tion with T. Raita [12], which was al ready re ferred to in
the In tro duc tion.

In some of the pa pers by Mi lan Noga and my self, such as Ref. [16] en ti tled "First-or der
Lagrangians and the Hamiltonian for mal ism" or Ref. [17] en ti tled "Multi- Hamiltonian
struc ture of Lotka-Volterra and quan tum Volterra mod els", we de vel oped and used tech -
niques which rely on prop er ties of anti-sym met ric ma tri ces. The ba sic prop er ties of
anti-sym met ric ma tri ces are well-known in the math e mat i cal lit er a ture, cf. e.g. the text-
book by W. H. Greub [18]. The tech niques in ques tion were also used in Ref. [12], in
which the gen eral proof in the N-di men sional cases was first given.

The proof in the gen eral N-di men sional cases of the in com pat i bil ity of the
d'Alembertian equa tions (6) and and the variational equa tions (11) re quires a dis cus sion
of the bound ary con di tions used for the so lu tions of the equa tions of mo tion. We will now
con sider Equa tions (6) and (11) as ini tial value prob lems, with so lu tions spec i fied by the
fol low ing ini tial val ues for the co-or di nates q A  and the ve loc i ties Á =A A N, , ,1 K ,

[ ( )] , [ ( )] , , , .q t q t A NA
t t

A A
t t

A
= == Á = Á =

0 00 0 1 K     (26)

The initial values q tA ( ) and Á A t( ) at  t t= 0  are free parameters within an appropriate region
of the configuration- and velocity space, except for the restriction

a qA
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N

( ) .0 0
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0Á =
=

å    (27)

The condition (27) is a consequence of the non-holonomic constraint (2).
We now re turn to the con di tions (18) in the gen eral N-di men sional cases. The so lu -

tions Á =A A N, , ,1 K ,  of the al ge braic equa tions (18) can be ob tained in a fairly ex plicit
form, by us ing known prop er ties of anti-sym met ric ma tri ces, cf. e.g. [16], [17] or [18]. In
par tic u lar, it is known that any anti-sym met ric ma trix M with real-val ued ma trix el e ments
is equiv a lent to a ma trix of the fol low ing nor mal form,
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where the quan ti ties k nn , , , ,=1 2 K p, are pos i tive, and where p is a cer tain in te ger (which

de pends on the ma trix M) in the range

2 2£ £p N .   (29)

The even integer 2p is the rank of the matrix M.
The matrix M has the normal form (28) in a ba sis { }b N

m 1 , which satisfies the following

equations,
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M b b M b bAB B
B

N

AB B
B

N

2 1
1

2 2
1

2 1n n n n n nk k n-
= =

-å å= = -, , , ,; ,A A =1, , ,K p   (30)

and, if 2p < N,

M b p NAB B
B

N

n n, , , , .
=

å = = +
1

0 2 1 K    (31)

The basis vectors are ortho-normalized in the following inner product,

( , ) : :
., ,b b b b

A

N

m n m n, A m nd
m n

= = =
=ì

í
î=

å A
1

1

0

if

otherwise
 (32)

We now re turn to the Equation (18), which was shown above to be a nec es sary con se -
quence of the as sump tion that Eqs. (6) and (11), re spec tively, have co in ci dent gen eral so -
lu tions. It is again con ve nient to con sider sep a rately the case G º 0 and G Ã 0.

The case G Ã 0:

When  G º 0, Eqs. (18) read as follows,

M q A NAB
B

N
B( ) , , , ,

=

å Á = =
1

0 1 K   (33)

We first con sider the case when the ma trix M is reg u lar, i.e. det( ( ))M qAB Ã 0. This can

hap pen only if the rank 2p of M equals N, in which case N is an even in te ger. The only so -
lu tions of Eqs. (33) are then the fol low ing,

Á º =A A N0 1, , , .K    (34)

However, the solutions (34) are not possible, since they are not consistent with the general
initial value conditions (26) and (27).

Let then the rank 2p of M be less than N. The gen eral so lu tion of Eqs. (33) is in this
case a lin ear com bi na tion of the N p- 2  ba sis vec tors bn ,  n = +2 1p N, ,K , i.e.,

Á = =
= +

åA

p

N

Ab A Ngn
n

n
2 1

1, , , ,K    (35)

where the quantities g n ,  n = +2 1p N, ,K , are free parameters.
It then fol lows from the orthogonality con di tions (32) that the so lu tions (35) are or -

thogo nal to the ba sis vec tors bm  when �m =1 2, ,K p,  i.e.,

( , ) , , , .b b pA

A

N

m m, A mÁ = Á = =
=

å
1

0 1 2K   (36)

The con di tions (36) must in par tic u lar also be sat is fied for the ini tial val ues of q A  and Á A , 
A N=1, ,K , at  t t= 0 , i.e.,

[ ] , , , .b pA
t t

A

N

m, A mÁ = ==
=

å
0

1

0 1 2K    (37)

Since the num ber 2p is in the range ( , , )2 1K N - , the num ber of con di tions in (37) is at

most N -1, but at least 2. Thus the so lu tions (35) are not pos si ble, since they in volve at least
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two spe cial con di tions of the form (37) on the 2N ini tial val ues q A
0  and Á 0

A ,  A N=1, ,K .

This is not con sis tent with the gen eral ini tial value con di tions (26) and (27).
We have now shown that the case G º 0 leads to contradictions in any N-dimensional

configuration space of dimension N ³ 3. It remains to consider the case G Ã 0.

The case G Ã 0:

We return to the Equations (18), where  G Ã 0,

M q a A NAB
B

N
B

A( ) , , , , .
=

å Á = Ã =
1

0 1G G K   (38)

The general so lu tion ( , , )Á Á1 K N  of Eqs. (38) can be written as a linear combination of the
basis vectors bm ,  m =1, , ,K N

Á = + + =-
= = = +

å å åA

A

p

A

p

A
p

N

b b b Aa b gn n
n

n n
n

n n
n

2 1
1

2
1 2 1

1, , , , , K, ,N    (39)

with the understanding that the last sum in Eq. (39) is absent if N = 2p, in which case the
matrix M is regular.

If 2p < N, it is nec es sary for the ex is tence of so lu tions of Eqs. (38) that the quan tity 
( , , )a a N1 K  be or thogo nal to all the so lu tions of the ho mo ge neous equa tions (31), i.e.,

( , ) , , , .b a p Nm m= = +0 2 1 K   (40)

The quantities a n  and bn ,  n =1, ,K p, are determined by multiplying the equations (38)
from the left with the basis vector components b

2m , A
, and b

2 1m - , A
, respectively, where m is

the fixed index in the range ( , , )1 K p , and then by summing over A in the range ( , , )1 K N .

Using the anti-symmetry of the matrix elements MAB  and Equations (30), one obtains

a k mm m m mº Á = =-

-( , ) ( , ), , , .b b a p2 1

1

2 1G K                   (41)

and

b k mm m m mº Á = - =-

-( , ) ( , ), , , .b b a p2

1

2 1 1G K   (42)

Inserting the expressions (41) for the quan ti ties am and the expressions (42) for the
quantities �bm in the expression (39) one obtains

Á = - +-

- -
= =

åA
p

b a b b a bG A Ak gn n n n n
n

n
n

1

2 2 1 2 1 2
1 2

[( , ) ( , ) ], ,
p

N

Ab A N
+

å =
1

1n , , , , .K   (43)

It has already been shown above that the d'Alembertian equations of motion (6),
together with the nonholonomic constraint (2), are not in general compatible with the
variational equations of motion (11) including the same nonholonomic constraint (2), in
the case of N = 3. Thus, we consider in what follows the cases N ³ 4. It is convenient to
consider the cases p =1 and p ³ 2 separately.

The cases N ³ 4, p ³ 2:

We con sider the ex pres sions (43), which in par tic u lar are also valid at the ini tial time 
t t= 0 ,
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[ ] ( ) [( , ) ( , ),Á = -=
-

=
- -åA

t t

p

t b a b b a b
0 0

1

1
2 2 1 2 1 2G Akn

n
n n n n n

n
ng, ,] [ ] , , , .A t t

p

N

A t tb A N=
= +

=+ =å
0 0

2 1

1 K   (44)

The quan ti ties [ ]km t t= 0
, the quan ti ties [ ]a A t t= 0

, and the quan ti ties [ ],b A t tn = 0
, are all de -

ter mined by the ini tial val ues q A
0  of the co-or di nates q t A NA ( ), , ,=1 K , at the time t t= 0 .

Thus there are N p- 2  free pa ram e ters g nm ( ), , ,t p N0 2 1= + K , and one free pa ram e ter 
G( )t 0 , in the ex pres sions (44), i.e. all in all N p- +2 1 free pa ram e ters. Since p ³ 2, there are 

at most N -3 free pa ram e ters in the ex pres sions (44), for the ini tial ve loc i ties Á A t( ),0  
A N=1, ,K . How ever, the ini tial ve loc i ties Á =A t A N( ), , ,0 1 K , are sup posed to be spec i fied
by N -1 freely cho sen initia val ues, i.e. the N ini tial ve loc ity com po nents Á A t( ),0  

A N=1, ,K , re stricted by one con di tion, namely the con di tion (27), which is a con se -
quence of the nonholonomic con straint (2). This is in con tra dic tion with the fact that there
are at most N - 3 free pa ram e ters avail able in the ex pres sion (44).

It has thus been shown that the d'Alembertian equa tions of mo tion (6) to gether with
the nonholonomic con straint (2) and the variational equa tions of mo tion (11) in clud ing
the same nonholonomic con straint (2), do not have co in ci dent so lu tions in gen eral in the
cases N ³ 4, p ³ 2. 

It remains to consider the situation, in which p = 1.

The ex cep tional cases N ³ 4, p =1:

For p = 1, the ex pres sions (44) be come as fol lows,

Á = - + =-

=

åA

A

N

b a b b a b b AG A Ak g1 n n
n

1

2 1 1 2
3

1[( , ) ( , ) ] , , ,, , , K N.  (45)

The so lu tions (45) are valid only if the fol low ing con di tions hold true, 

( , ) , , , .b a Nm m= =0 3 K                  (46)

Thus, in the basis bm ,  m =1, ,K N, there are only two non-vanishing components of the
quantity ( , , )a a N1 K , which defines the nonholonomic constraint (2). Likewise, for p =1,
the matrix M given by the matrix elements (MAB ) defined in Eqs. (12), becomes similar to

an essentially 2 2´  matrix,

M ~

0

0

0

0

1

1

k

k

K K K

K K K

M M M M

K K K O K

K K K K

-

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

 .  (47)

Thus, for p =1 the problem is essentially two-dimensional. Now the number of free
parameters in the expression (45) at  t t= 0  coincides with the number of freely available
initial conditions Á A t( )0 . Hence the expression (45) does not lead to any contradiction
concerning the choices of initial values for the velocity components Á A ,   A N=1, , .K

It has already been noted above, that the d�Alembertian equations of motion (6)
together with the nonholonomic constraint (2) are compatible with the variational
equations of motion (11) including the same nonholonomic constraint (2), in the strictly

34                                                    C. CRONSTRÖM



two-dimensional case N = 2. In the present case with p =1, the problem becomes
essentially two-dimensional, as indicated by Equations (46) and (47).

It is conjectured that the essentially two-dimensional cases with p = 1 and N ³ 4 can be
shown to be equivalent to the strictly two-dimensional case N = 2, for which the
d�Alembertian and variational equations under consideration always can be made
compatible, by using an appropriate integrating factor. Naturally, I will do my best to
verify this conjecture in the near future.

4. Summary and discussion

I have pre sented a some what sim pli fied and im proved ver sion of the proof in Ref. [12],
which dem on strates that the d�Alembertian equa tions of mo tion for fairly gen eral sys tems 
with non-holonomic con straints, in three or more di men sions, are not com pat i ble with the
cor re spond ing variational equa tions with the con straints im ple mented by the multi-
plication rule in the cal cu lus of vari a tions. The proof of in com pat i bil ity breaks down in
cer tain ex cep tional cases, which how ever, are es sen tially two-di men sional.

The incompatibility (or non-equivalence) means two things, namely that the equations 
of motion in question are not identical in form, and also that they do not have coincident
general solutions.

The variational action principle discussed here, which has been proposed several
times in the literature for systems with non-holonomic constraints, as an extension of the
similar action principle which is valid for systems with holonomic constraints, is thus not
in general consistent with the principle of d�Alembert, when the constraints are non-
holonomic.

The fact that the variational equations of motion discussed here, for a fairly general
system with unrestricted nonholonomic constraints, are not compatible with the
corresponding d�Alembertian equations of motion describing the same constrained
system, should hopefully put an end to any new attempts at proposing such variational
equations for nonholonomic systems which have been described above, in which the
constraints are implemented by means of the multiplication rule in the calculus of
variation.

The proof discussed here may still seem a bit involved, but at least the analysis of the
three-dimensional case is very transparent and simple, and as such suitable in any
undergraduate course on analytical mechanics, for instance on the level of the well known
classical text-book by Goldstein [13].
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