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Ab stract: It is shown how to sim plify a com plex pipe line net work at nu mer i cal cal cu la tions of a steady
gas flow. Even a net work which can not be an a lyzed in terms of se ries and par al lel com bi na tions can be
re placed by a sin gle pipe. The heat ex change with the sur round ing soil, the Joule-Thomson ef fect and the 
in flu ence of the pipe line al ti tude pro file have been taken into ac count.

1. In tro duc tion

A com plex ity of a gas trans port cal cu la tion is pro por tional to a num ber of pipes in
a pipe line net work. A com pu ta tional time could be de creased by a re duc tion of the pipe
num ber. The time re duc tion is very im por tant at op ti miz ing an in ter na tional gas trans port
since in this case a mul ti ple re peat ing of the net work cal cu la tion for dif fer ent trans port
con di tions is nec es sary. For ex am ple, the Slo vak pipe line net work for a nat u ral gas trans -
port from the Ukraine to Bo he mia and Aus tria con sists of four parallel pipe lines (ap prox i -
mately, 400 km length, 1200 and 1400 mm di am e ter) mu tu ally in ter con nected (af ter about 
each 20 km) with shorter pipes. (There is also a loop ing of an un fin ished fifth par al lel
pipe line of 1400 mm). It is rea son able to sim plify the net work by a sub sti tu tion of sev eral
pipes con nected in par al lel or se rial for one substitutional tube, sim i larly as it is done in
elec tri cal circuites.

Un for tu nately, the sim i lar ity to the elec tri cal an a logue is im per fect as the equa tions of
a tur bu lent gas flow are non lin ear. As a con se quence, the usu ally ap plied sub sti tu tion of
pipes used to be too sim pli fied [1]:
· A gas flow is sup posed to be iso ther mal. (To jus tify the sim pli fi ca tion, the pipes are sup -
posed to be deep in a soil, 90 cm at least. The tem per a ture in the depth changes in sig nif i -
cantly dur ing a year.)
· Par al lel pipes are sup posed to be hor i zon tal.
· The sub sti tu tion is only lim ited to par al lel and se rial con nec tions of pipes. (An an a lyt i cal
for mula for a sub sti tu tion of a gen eral pipe line di pole, such as bridged par al lel pipes, could
not be de rived due to the nonlinearity of a pipe line model.) 

The aim of this ar ti cle is:
· to de rive a pipe line model tak ing into ac count: the heat ex change be tween the pipe and a
sur round ing soil; the tem per a ture changes of the trans ported gas due to the Joule-Thomson
ef fect; the in flu ence of the pipe line al ti tude pro file.
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· to sub sti tute only one pipe for a gen eral pipe line di pole at nu mer i cal cal cu la tions of
a steady gas flow in a com plex pipe line net work.

2. The Model of a Tur bu lent Real Gas Flow in an In clined Pipe

A tur bu lent real gas flow in an el e ment of an in clined pipe is de scribed by the con ser -
va tion laws of mass, mo men tum and en ergy [2–6]. The laws have the fol low ing one-di -
men sional form.

Con ser va tion of mass (con ti nu ity equa tion)
 

(r)t + (G/S)x =  0. (1)

r is the den sity; G = rv S is the mass flow across the pipe cross-sec tion area S at the gas ve -
loc ity v; sub scripts t and x de note the par tial de riv a tive with re spect to time t or to the co or -
di nate x which de ter mines po si tion (along the pipe axis) of the ob served part of gas.

Con ser va tion of mo men tum 

(G/S)t + [(G/S)2/r]x = –(P)x – l(G/S)|G/S| / (2Dr) – rg (z)x              (2)

P is the gas pres sure, z is the al ti tude of the ob served pipe line part; l is the fric tion co ef fi cient
(hy drau lic re sis tance of th pipe) de pend ing on the Reynolds num ber of the tur bu lent gas flow
and on the rough ness and di am e ter D of the pipe; g is the grav i ta tional accelleration.

Con ser va tion of en ergy

r{[(G/S)2 /(2r2)] + h + gz}t + (G/S){[(G/S)2/(2r2)] + h + (gz)]}x – (P)t = 

= –aef (T – Tw) pD/S              (3)

where h is the spe cific entalpy (enthalpy of 1 kg of gas); aef  » 1,4 J m–2s–1K–1 is the ef fec -
tive heat trans port co ef fi cient; T and Tw are the tem per a tures of the gas and the pipe wall.

The sys tem of three con ser va tion laws for five un known vari ables P, r, T, h and G has
to be com pleted by two termodynamical equa tions for a real gas [5–9] (To over come fric -
tion, dur ing a long dis tance trans port span ning hun dreds of ki lo me ters, it is nec es sary to
ap ply high pres sure gra di ents – sev eral MPa across the pipe length. The trans port re gime:
3–6 MPa, 10–30 °C, 40–50 kg m–3 are far from the ideal gas con di tions.) 

State equa tion of a real gas

P = ZrRT              (4)
or
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 [(1/P) – (Z)P/Z)] dP = dr/r + [(1/T) + (Z)T/Z] dT
 

where pa ram e ter Z(P,T) is the gas com press ibil ity; the gas con stant for the meth ane
R = 519,6 J K–1kg–1.

 
Change of a real gas enthalpy
 
dh = (h)T dT + (h)P dP = cp dT – cp m dP           (5)

where cp(P,T) = hT is the spe cific heat ca pac ity at a con stant pres sure. The tem per a ture
change (in an isoentalpic flow due to a unit pres sure drop) is de ter mined by the Joule-
Thomson co ef fi cient

m(P,T) = RT2 (Z)T /(cpP)              (6)
 
In steady-state con di tions ac cord ing to equa tions (1)-(5), the mass flow, pres sure and

tem per a ture changes are de ter mined by re la tions

(G)x = 0               (7)
 
(P2)x + [2g (z)x/(ZRT)] P2 = – lG|G| ZRT/ (DS2) – (2PG2/S2) (r–1)x           (8)
(T)x + T/d = Tw /d + m (P)x – (g/cp) (z)x – [G2/(2cpS2)] (r–2)x                       (9)

 where the length pa ram e ter 

d = (cpG)/(aef pD) » 100 km             (10)

char ac ter izes cool ing of the flow ing gas due to the heat losses to a sur round ing soil. 

As the in flu ence of the ki netic en ergy (the last terms pro por tional to a con stant G2) in
the equa tions (8), (9) is small, the inhomogenious sys tem of the lin ear equa tions (for P2

and T) can be solved iteratively. 

Tem per a ture and pres sure pro file

For a pipe of a length L and a con stant in cli na tion; with ini tial pres sure, tem per a ture,
den sity, al ti tude (Pb, Tb, rb, zb) at the be gin ning of the pipe (x = 0) and the sim i lar end pa -
ram e ters (Pe, Te, re, ze) at the end of the pipe (x = L), the fol low ing pro files of tem per a ture
and pres sure along the pipe are ob tained from the con ser va tion laws (7)-(9)

G = Gb = Ge = con stant

T(x) = Tb – [Tb – Tw + (v2/2 + gz)x (d/cp) + m d(Pb
2 – Pe

2)/(2L P)] (1 – e–x/d) (11)

P(x)2 = [Pb
2 + B(x)] exp{– g(z – zb) }             (12)
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where func tion B(x) is de ter mined as

B(x) = –F L [exp{g(ze – zb)x/L}– 1]/[g(ze – zb)]            (13)

with pa ram e ter F, con nected to the right side of the equa tion (8)

F = lG|G| ZRT/(DS2) + (2PG|G|/S2) |re
–1– rb

–1| /L            (14)

and pa ram e ter g is given by the re la tion

g = 2 g /(ZRT)              (15)

The un der lined pa ram e ters P, T cor re spond to the mean val ues of these pa ram e ters ob -
tained by av er ag ing along the whole length L of the pipe. Values of the pres sure and tem -
per a ture de pend ent pa ram e ters cp, m, Z  can be es ti mated as the val ues at the mean pres sure
and tem per a ture: cp = cp(P, T); m = m(P, T); Z = Z(P, T).

The mean val ues of tem per a ture and pres sure

The mean tem per a ture in an in clined pipe of length L, cal cu lated from the tem per a ture
pro file (11), is de ter mined by the for mula

T = Tb –              (16)
 
 – [Tb – Tw + (v2/2 + gz)x (d/cp) + m d(Pb

2 – Pe
2)/(2L P)] [1 – (d/L)(1 – e–L/d)]

The mean value is in flu enced by the soil cool ing and by the work of the intermolecular
forces de scribed by the Joule-Thomson ef fect. More over, the mean tem per a ture is also af -
fected by changes of the ki netic and grav i ta tional en ergy. The mean gra di ents of  both en -
er gies can be as sessed as 

(v2/2 + gz)x = G2(rk
–2 – rp

–2)/(2LS2) + g (zk – zp)/L           (17)

Ac cord ing to equa tion (8), a value of the pa ram e ter g = 2 g /(ZRT) in the pres sure pro -
file is de ter mined by the mean value of the vari able (T–1). (A change of com press ibil ity
Z along the pipe is much smaller than that of the tem per a ture there fore it does not in flu -
ence the value of the pa ram e ter g sig nif i cantly.)

As it fol lows from the tem per a ture pro file (11), the mean value of the vari able 1/T(x) is 
given by the for mula [12]

L / T(x) = {(L/b) – (ab)–1ln[b + c exp(aL)] + (ab)–1ln[b + c]}           (18)

where 
a = –1/d

b = Tw – (v2/2 + gz)x (d/cp) – m d(Pb
2 – Pe

2)/(2L P)]
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c = Tb – Tw + (v2/2 + gz)x (d/cp) + m d(Pb
2 – Pe

2)/(2L P)

The mean value of the pres sure for an as cend ing gas flow (ze – zb > 0) can be cal cu -
lated from the pres sure pro file (12)–(15) as [12]

P = [2C1/2 /(LB)] arctg {(A e–BL – C)/C }1/2 – [2/(LB)] (A e–BL – C)1/2 +

+ [2C1/2 /(LB)] arctg {(A – C)/C }1/2 + [2/(LB)] (A – C)1/2           (19)

where con stants A, B, C are given by the fol low ing re la tions

A = Pb
2 + F L /[g(ze – zb)]

B = g(ze – zb)/L              (20)

C = F L /[g(ze – zb)] = F/B = A – Pb
2

while F and g are de ter mined by (14), (15). 

The mean pres sure for a de scend ing gas flow (ze – zb < 0) can be also cal cu lated from
the pres sure pro file (12)–(15) but in this case the con stants (20) have neg a tive val ues and
there fore the mean pres sure is de ter mined by the for mula [12]

P = (C1/2/(LB)) ln{[C1/2 + (C – A e–BL)1/2] / [C1/2 – (C – A e–BL)1/2]} –

– (C1/2/(LB)) ln{[C1/2 + (C – A)1/2 ] / [C1/2 – (C – A)1/2]} –

– (2/(LB))[(C – A e–BL)1/2 – (C – A )1/2]            (21)

In the case of a hor i zon tal pipe (ze – zb = 0; B ® 0) both re la tions (21) and (19) change
to the well known mean value of the pres sure [10,11]

 
 P » (2/3) (Pp

3 – Pk
3) /(FL) = (2/3) (Pp

3 – Pk
3) /( Pp

2 – Pk
2)                        (22)

The limit for mula (22) can be ob tained from the re la tion (19) by the ap prox i ma tion of [12, 6]

arctg x » x – x3/3

and from the re la tion (21) by 

2 Arth x = ln{(1 + x ) / (1 – x)} » 2x + (2/3)x3

Ob taining the for mula (22) for a mean pres sure of a hor i zon tal pipe as a limit of the re -
la tions for the as cend ing and de scend ing pipes is a par tial proof of the cor rect ness of the
re la tions (19) and (22).
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The end pres sures and mass flow in a pipe with a con stant slope 

Ac cord ing to (12), (13) the end pres sures Pe and Pb in a pipe with a con stant slope are
re lated as

Pe
2 = [Pb

2 + B(L)] exp{–g(ze – zb)}  
where (23)

B(L) = –F L [exp{g(ze – zb)}– 1]/[g(ze – zb)]

while pa ram e ters F and g are de ter mined by (14) and (15). 

The re la tion (23) be tween the end pres sures can be ar ranged to a sim ple form, used to
solve the prob lems of a steady-state gas flow

Pb
2 = Pe

2 a + G|G| b             (24)

with the con stants 

a = exp{g(ze – zb) }                            (25)

b = {[l ZRT L/(DS2)] + [(2P/S2) |re
–1– rb

–1|]} [exp{g(ze – zb)} –
– 1]/[g(ze – zb)]              (26)

where the pa ram e ter g is given by the for mula (15); the mean val ues of tem per a ture T and
in verse tem per a ture (1/T) are de ter mined by the equa tions (16), (18); de pend ing on the
pipe in cli na tion, the mean pres sure P can be cal cu lated from the re la tions (19)–(22).

From the end pres sure re la tion (24) at a suf fi ciently high pres sure dif fer ence
(Pb

2 > Pe
2 a), a mass flow G can be cal cu lated as

G = (Pb
2 – Pe

2 a)1/2 b–1/2             (27a)

In the op po site case, (Pb
2 – Pe

2 a), the mass flow changes its di rec tion and sign. Then it 
is de ter mined as

G = (Pb
2a – Pe

2)1/2 b–1/2                            (27b)

Ac cord ing to re la tions (25) and (15), for an as cen dent pipe with a dif fer ence of 100 m
in the pipe end al ti tudes, the value of the pa ram e ter a can be es ti mated as

a = exp{ 2 g(ze – zb) /(ZRT)} » exp (2.10.100/(1.520.300)) = 1 + 0,012

The value a dif fers lit tle from the num ber 1. In con se quence, the pa ram e ter a = 1 + x can be
ex pressed by the small num ber x. Then a mass flow can be es ti mated from (27a) as

G = (Pb
2 – Pe

2 a)1/2 b–1/2 = (Pb
2 – Pe

2 (1 + x))1/2 b–1/2 = 
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= {(Pb
2 – Pe

2)[1 – xPe
2/(Pb

2 – Pe
2)]}1/2 b–1/2 »

» (Pb
2 – Pe

2 )1/2 b–1/2 – 0,5 x b–1/2 Pe
2(Pb

2 – Pe
2)–1/2                          (28)

3. Sim pli fi ca tion of a pipe line net work

Set of dif fer ent pipes in se rial

Two pipes in a se rial, char ac ter ized by con stants a1, b1; a2, b2, have the same gas flow
G but the dif fer ent end pres sures de ter mined by the equa tion (24)

Pb1
2 = Pe1

2 a1 + G|G| b1

Pb2
2 = Pe2

2 a2 + G|G| b2

Due to a joint node, the pres sures Pe1= Pb2. Then
 
Pb1

2 = Pe1
2 a1 + G|G| b1 = (Pe2

2 a2 + G|G| b2) a1 + G|G| b1
 
Pb1

2 = Pe2
2 (a2a1) + G|G| b2(b2 a1 + b1)            (29)

 Com paring the equa tions (24) and (29), it is ev i dent that the last equa tion rep re sents
a substitutional pipe with the same gas flow G and the same end pres sure dif fer ence

Pb1 – Pe2 = (Pb1 – Pe1) + (Pb2 – Pe2)

as there is across the ends of these two se rial pipes. The substitutional pipe is char ac ter ized
by the pa ram e ters 

a = a2 a1
(30)

b = b2 a1 + b1

The shown pro ce dure can be gen er al ized to a set of n dif fer ent pipes in se rial. In this
case the se rial set of pipes with pa ram e ters a1, b1; ...; an, bn is equiv a lent to a sin gle pipe
given by pa ram e ters

a = a1 a2 ... an–1 an
(31)

b = b1 a2 a3 ... an + b2 a3 a4 ... an + ... + bn–1 an + bn
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Set of dif fer ent pipes in par al lel

Two closely laid on par al lel pipes (a1 , b1 ; a2 , b2) have the same pa ram e ter a1 = a2 =
a, the same end pres sures Pb, Pe but the dif fer ent gas flow G1, G2. Then, in ac cor dance
with (27a) the re sult ing flow has the fol low ing value

 
G = G1 + G2 = (Pb

2 – Pe
2 a)1/2 b1

–1/2  + (Pb
2 – Pe

2 a)1/2 b2
–1/2 

G = (Pb
2 – Pe

2 a)1/2 (b1
–1/2 + b2

–1/2) 
To ob tain this equa tion, a suf fi ciently high pres sure dif fer ence (Pb

2 > Pe
2 a) is sup posed.

The substitutional pipe for a close pair of par al lel pipes has the fol low ing char ac ter is -
tics: orig i nal a = a1 = a2 and

b–1/2 = (b1
–1/2 + b2

–1/2)             (32)

The re sult can be gen er al ized for a set of n dif fer ent closely laid on pipes in par al lel. In
this case the par al lel set of pipes with pa ram e ters a1, b1; ...; an, bn can be re placed by a sin -
gle pipe with pa ram e ters

a = a1 = a2 = ... = an

b–1/2 = (b1
–1/2 + b2

–1/2 + ... + bn
–1/2)            (33)

When a ge om e try (length and di am e ter) of par al lel pipes dif fers suf fi ciently, then (due
to a dif fer ent heat losses) their mean tem per a tures and con se quently, the pa ram e ters a of
the pipes, dif fer as well.

Then a set of two par al lel pipes of dif fer ent ge om e try is char ac ter ized by pa ram e ters
a1 = 1 + x1, b1; a2 = 1 + x2, b2. Ac cord ing to the approximative re la tion (28), the re sult ing
flow through the par al lel pipes 

G = G1 + G2 » (Pb
2 – Pe

2)1/2 (b1
–1/2 + b2

–1/2) –

– 0,5 (x1 b1
–1/2 + x2 b2

–1/2 )Pe
2(Pb

2 – Pe
2)–1/2            (34)

Com paring the equa tions (34) and (28), it is ev i dent that the equiv a lent pipe for a pair
of par al lel pipes with a dif fer ent ge om e try is char ac ter ized by pa ram e ters

b–1/2 = b1
–1/2 + b2

–1/2

x b–1/2 = x1 b1
–1/2 + x2 b2

–1/2             (35)
or

a = 1 + (a1 – 1)(b/b1)1/2 + (a2 – 1)(b/b2)1/2
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The re sult can be eas ily gen er al ized for a set of n dif fer ent pipes in par al lel. In this case
the par al lel set of pipes with pa ram e ters a1, b1; ...; an, bn can be re placed by a sin gle pipe
with pa ram e ters

a = 1 + (a1 – 1)(b/b1)
1/2 + (a2 – 1)(b/b2)

1/2 + ... + (an – 1)(b/bn)
1/2

              (36)
b–1/2 = (b1

–1/2 + b2
–1/2 + ... + bn

–1/2)

The mass flow through par al lel pipes at small pres sure gra di ents
 

It is nec es sary to take into ac count that the re la tions (34) –(36) are cor rect only at the
con di tion

1 >> (x Pe
2)/(Pb

2 – Pe
2)              (37)

which is not ful filled at very small pres sure dif fer ences Pb – Pe or in the case of the zero dif -
fer ence. In these cases it is in ev i ta ble to use the orig i nal, not sim pli fied equa tion

G = G1 + G2 + … + Gn = [(Pb
2 – a1 Pe

2)1/2 b1
 –1/2] + ...

… + [(Pb
2 – an Pe

2)1/2 bn
–1/2]             (38)

For more clar ity, the in di vid ual flows in (38) are or dered in agree ment with the de -
scend ing se quence of the con stant val ues a1 ³ a2 ³ ... ³ am ³ ... ³ an. Then at the un -
changed ini tial pres sure Pb and the in creas ing end pres sure Pe < Pb, the mass flow G1

through the first pipe de creases fi nally to zero. In such a case

G1 = [(Pb
2 – a1 Pe

2)1/2 b1
–1/2] = 0

so the end pres sure Pe and the to tal flow G = Gt reach the val ues

Pe1 = Pb / a1
1/2

Gt1 = [(1 – a2a1
–1)1/2 b2

–1/2 + … + (1 – an a1
–1 )1/2 bn

–1/2]Pb                         (39)

Nat u rally, in the for mula (39) the term (1 – a1a1
–1

)
1/2

 b1
–1/2

 is miss ing. Of course, if there are sev eral con -

stants equal to the value a1, then also the flows through the cor re spond ing pipes are zero.

At lower end pres sures (Pe < Pe1), the flow G1 through the first pipe (and also through
the ad di tional pipes with the same contants a) change the di rec tion (G1 < 0). In agree ment
with (27b), the changed flow G1 must be de ter mined from the al tered re la tion

G1 = – (a1 Pe
2 – Pb

2)1/2 b1
–1/2             (40)
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Grad ually lim it ing the to tal flow, the end pres sure rise up to the value when the flow
Gm through the m-th pipe be comes to be zero. In such a case the flows from G1 to Gm–1 are
al ready op po site. Such end pres sure and to tal mass flow are cal cu la ble from

Pem = Pb / am
1/2

Gtm = –[(a1am
–1 – 1 )1/2 b1

–1/2 – … + (1 – am+1 am–1)
1/2 bm+1

–1/2 + … +

+ (1 – an am
–1)1/2 bn

–1/2]Pb              (41)

Nat u rally, in the for mula (41) the term (1 – amam
–1

)
1/2

 bm
–1/2

 is miss ing. Of course, if there are sev eral con -

stants equal to the value am, then also the flows through the cor re spond ing pipes are zero.

At the end the zero mass flow reaches the last (n-th) pipe. It hap pens at the end pres sure 
and to tal mass flow

Pen = Pb / an
1/2

Gtn = –[(a1an
–1 – 1 )1/2 b1

–1/2 – … – (am+1 an
–1 – 1)1/2 bm+1

–1/2 – ... –

– (an–1 an
–1 – 1 )1/2 bn–1

–1/2]Pb             (42)

The se quences of the pres sures Pe1, …, Pen and of the cor re spond ing to tal flows Gt1, ...,
Gtn, de ter mined by re la tions (39), (41) and (42), en able us (by means of in ter po la tion or
ex trap o la tion) to cal cu late an other pres sures and flows (in the re gion of small pres sure dif -
fer ences and cor re spond ingly small mass flows).

Gen eral pas sive di pole of hor i zon tal pipe lines

A part of a pipe line net work con nected to the rest of the net work only in two nodes (in -
put and out put) can be de noted as a pipe line di pole. The treated sets of se rial and paralell
net work are ex am ples of a pipe line di pole. Un for tu nately, not all the pipe line di poles can
be sep a rated to a com bi na tion of se rial and par al lel net works and fi nally be re placed by a
sin gle pipe. (For ex am ple, a net work of pipes, con nected in form of a lad der, is in sep a ra -
ble.) There is a prac ti cal ques tion: “Can any pipe line di pole be re placed by a sin gle tube
which is de scribed by the equa tion (24)?” The an swer is pos i tive, at least in the case of not
strongly in clined pipes with the pa ram e ter a » 1. In this case, ac cord ing to (24), trans port
through a pipe is de scribed by the only con stant

b » (Pb
2 – Pe

2)/G2 = [(kPb)
2 – (kPe)

2]/(kG)2 = k2(Pb
2 – Pe

2)/(k2G2)                     (43)

It means, the higher are the end pres sures (Pb ® kPb; Pe ® kPe) the proportionaly
higher is the mass flow (G ® kG). (It is an an a log of Ohm´s law in a pipe line net work.)
Since mul ti pli ca tion of the nu mer a tor and of the de nom i na tor by the same num ber does
not change the value of the frac tion (43), it can be shown that a sim i lar pro por tion al ity be -
tween the end pres sures and the mass flow is typ i cal also for any hor i zon tal pipe line di -
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pole. Ev i dently, such a di pole made of N nodes in ter con nected by pipes can be de scribed
by steady-state mass flows in its nodes and by pres sure dif fer ences at its pipes:
Generaly, the nodes can be num bered as: 1 = in put, ..., n, ..., j, ... , N = out put . The pres sure
in a node “n” is de noted as Pn. A mass flow through a pipe be tween nodes “n” and “j” is
signed as Gnj. Ex ter nal mass flows into the di pole Gin and out of the di pole Gout are equal at
a steady-state: Gin = –Gout = G. (The neg a tive sign de notes a mass out flow of a node.)
Then con ser va tion of mass in the steady-state flow can be de scribed in nodes as

k (S´G1,j = Gin = + G ) 

k (S´GN,j = Gout = – G )             (44)
...
k (S´Gn,j = 0 )

The prime above the sum (S´) ex cludes a non-ex ist ing flow of a type Gnn from the sum.
Mul ti pli ca tion by “k” does not change equa tions (44). Sim i larly, the pres sure equa tions for
tubes are also not in flu enced by a like wise mul ti pli ca tion

... k2( Pn
2 – Pj

2 » bnj Gnj
2) .....               (anj » 1)                                             (45)

As the shown mul ti pli ca tion of the equa tions is equiv a lent to the change of vari ables

G ® kG; … Gnj ® kGnj ...;    Pn ® kPn

then the change in G ® kG leads in ev i ta bly to the changes of the in di vid ual mass flows
kGnj and pres sures kPn, in clud ing the end pres sures kPin, kPout. Con se quently, the value of
the ini tial frac tion

bdip = (Pin
2 – Pout

2)/G2 = [(kPin)
2 – (kPout

2)] / (k G2) = con stant

does not vary with a vari a tion of the mass flow through the pipe line di pole. Ev i dently, the
di pole has the same at trib utes as a sin gle pipe, de scribed by the re la tion (43). Thus a di pole
of lit tle tilted pipes can be re placed by a sin gle tube given by the fol low ing char ac ter is tic
pa ram e ters

a » 1

b » (Pin
2 – Pout

2)/G2             (46)

It is a dis ad van tage that the for mula (46) shows no sim ple way how to cal cu late the pa -
ram e ter b of the substitutional pipe from the pa ram e ters anj, bnj of the in di vid ual pipes of
which the di pole is made. Ac cord ing to (46), for a given pair of the three val ues (Pin,Pout
and G), the third value has to be cal cu lated la bo ri ously for the real not sim pli fied pipe line
di pole. How ever, such a pro ce dure has to be done only once. That is an in dis put able ad -
van tage of the re la tion (46). At re peat ing cal cu la tions for dif fer ent trans port con di tions, a
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very com plex di pole can be re placed by a sin gle tube with pa ram e ters (46), de ter mined by
this ini tial nu mer i cal com pu ta tion.

4. Ap pli ca tion of the sim pli fied model
    of a com plex pipe line net work

The shown for mu las for sim pli fi ca tion of com plex pipe line net works have been im ple -
mented to a com pu ta tional pro gram MARTI, des ig nated to solve the prob lems of
steady-state trans port of nat u ral gas. Simplification of a real tran sit net work is done by the
pro gram automatically in three suc ces sive steps:
· sim pli fi ca tion of par al lel pipe lines, uti liz ing the re la tions (36), (39)–(42)
· sim pli fi ca tion of se rial pipe lines by the equa tions (31)
· sim pli fi ca tion of a com plex pipe line di pole by the pro ce dure (46)

Com pu ta tion of pres sures, tem per a tures and gas flows in nodes and pipes goes in the
op po site di rec tion: from the most sim pli fied net work ® com plex di poles ® se rial pipe -
lines ® par al lel pipe lines and fi nally, to the pipes and nodes of the orig i nal net work. Such
a sim pli fy ing pro ce dure can spare the com pu ta tional time im por tantly. In de pend ence on
the ac tual com plex ity of the an a lyzed net work, there can be even hun dred fold time sav ing
in com par i son to the com pu ta tion of the orig i nal, not sim pli fied net work [13]. 

 The pro posed pipe line model – the for mu las (11)–(26) de scrib ing pres sure and tem -
per a ture in tilted pipes – takes into ac count all the decissive at trib utes of a tur bu lent flow
in a long dis tance trans port of a real gas. Such a model can solve trans port prob lems at
very ex treme con di tions which are pro jected for the new gas trans mis sion pipe line
Goluboj Potok (The Blue Stream) [10]. The pipe line pro vides trans mis sion of a Rus sian
gas to Tur key un der the Black Sea. The whole length of the un der sea route is 340 km. The
deep est place is 2100 m un der the sea level. The drop to the sea bed is steep. It oc curs
within 80 km at both Rus sian and Turk ish shore. The pipe has the ex ter nal di am e ter
610 mm, wall thick ness 38 mm, in ner wall rough ness 0,03 mm, the heat trans port co ef fi -
cient 7,0 W m–2K–1 to the sur round ing wa ter of tem per a ture 8 °C, an ex pected pres sure
drop from ini tial 20 MPa to the end 5,5 MPa at a pro jected mass flow 150 kg s–1.

Sup posing the pro jected con di tions and uti liz ing the re la tions (11)–(26), the tem per a -
ture drop from the ini tial 37 °C to the end –6 °C is cal cu lated. In spite of the sur round ing
wa ter tem per a ture, +8 °C, the pipe line could be en crusted with ice along the last 70 km. It
is a con se quence of the Joule-Thomson ef fect (a dis tinct prop erty of a real gas). The ice
could cause tech ni cal prob lems as it could lead to float ing of the en crusted pipe.

At the steep slope near the Rus sian shore, the grav i ta tional force ex ceeds the fric tion.
As a re sult, the pres sure of the flow ing gas should in crease and not de crease as it is usual.
Af ter the ini tial 50 km, the orig i nal pres sure 20 MPa should rise up to 21 MPa.

The cal cu lated termal and pres sure ef fects are in agree ment with the pub lished re sults
[10]. How ever, it is nec es sary to no tify that the ac tual trans mis sion re gime at the Blue
Stream is far from the pro jected ex treme con di tions. Dur ing this sum mer, the ac tual pres -
sure dropped from 5,64 to 5,43 MPa; tem per a ture in creased from16,4 to 19,2 °C due to
heat ing by a hot sur face wa ter of 26 °C at a slow mass flow 17,5 kg s–1 [14].
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5. Con clu sions

A model of a tur bu lent real gas flow trough an in clined pipe has been de vel oped. The
model en ables to solve the steady-state prob lems of gas trans mis sion even at ex treme con -
di tions by a superlong un der sea tran sit along a unique al ti tude pro file.

Si mul ta neously, a pro ce dure for sim pli fi ca tion of com plex pipe line net works has been
shown. The pro ce dure per mits to sim plify also a net work that can not be dis trib uted to a set 
of par al lel or se rial pipes. Such a sim pli fi ca tion of a real net work pro vid ing in ter na tional
gas trans port can sig nif i cantly spare the time for com pu ta tion of the pres sure, tem per a ture
and mass flow at a steady-state tran sit re gime.
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