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Abstract: The magnetization of ferromagnetic systems is treated within framework of many-body
Green function theory by considering x- and z- components of the magnetization. We present a method
for the calculation of expectation values in terms of the eigenvalues and eigenvectors of the equations of
motion matrix for set of Green functions.

1. Introduction

The bosonic and fermionic Green functions theory of a Heisenberg model for the
ferromagnet is presented. The bosonic Green function theory is appropriated when one
considers an isotropic or unidirection system. In this case we need to calculate only one
component of magnetization, i.e. the z-component. However, there exist cases where the
system is anisotropic and not uniaxial. For example, under an external transversal mag-
netic field, the magnetization rotates with the variation of the field. In ferromagnetic ultra
thin film, the magnetization may rotate with the variation of the temperature [1] and the
film thickness [2]. The reorientation of magnetization in ferromagnetic thin films may be
qualitatively understood by considerations of the competing shape and uniaxial aniso-
tropy and was observed at the temperature below the Curie temperature in films of a few
monolayers of Fe, Co, and Nion Cu or Ag substrates. The orientation of the magnetization
is determined by the components m,, m,. When one wants to calculate within Green func-
tion method more than one component of magnetization, the bosonic Green function the-
ory is limited. The most serious problem encountered is that one of the dispersion relations
o(q)is always zero. The zero-frequency difficulties could be circumvented by means of
the fermionic Green function [3-5].

2. The Theory

The time-dependent retarded Green function involving the two operators 4 and B,
{{A(?); B)), is defined by

Gy =(4,();B,)), =—i0(X[4,(0),B,],), (1)
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where subscripts i,  label sites in lattice, 4,(), is the spin operator at time ¢, B; is the spin oper-
ator, 0(?) is the unity for positive 7 and zero for negative ¢, single angular brackets denote an
average with respect to the canonical density matrix of the system at temperature 7 and

[4,(1),B,], = A()B, +nB,A(1), m==1. (2)

In these equations the Green function is called the bosonic Green function, if = —1, or the
fermionic Green function, if n = +1. The equation of motion for G,,(¢) is written as

[/

.d
IEG,»,W(t) =([4 (1),B,]1,)® (t)+<<[Ai ([)’H];B">>n . 3)
Where 3(%) is the Dirac 8-function, brackets [ 4, (¢), H] correspond to the commutator and

h =1 has been used. The time Fourier transform of the Green function is a function of fre-
quency o, and is denoted by G, (0)=((4;B,)), - It satisfies the equation of motion

o((4:8,))' =(14,.8,1)8,+((14, . H1:B,)) . (4)

Where 61,], is the Kronecker symbol. For Heisenberg Hamiltonian H with general spin S, the
operators 4, Bj are taken as the following spin operators

4, =S7 and B, =(8))(S;)", )

where [, m are zero or positive integers, necessary for dealing with higher spin values S.
Then the Green function is further Fourier transformed in real space

1 iq.(a;—a
Gijtn)(m):ﬁchn(w)eq(‘ /)' (6)
q

Here q is the wave vector and a;; are the position vectors of the sites 7, j. The integration
over wave vector can be in one, two or three dimensions depending on the system studied.
Now the Green function G, (®) is a function of wave vector q and frequency ® = w(q).

Statistical averages of the product of the two operators 5B; and 4; (the correlation func-
tion C; =(B,4,)) is expressed in terms of the Green function by the spectral theorem

C,=(B,A)= 1@3%24““”“ i e;f—mm(G‘““)(m +ig) =Gy, (@ —ie)). (7)
q
If the equation of motion can be solved for G,,,(®)={(4;B,))} one then extracts knowl-
edge of the correlation function C; =(B,4,) Equations (4) and (7) are the only equations re-
quired for the application of the Green function method.
To solve the Green function, Hamiltonian A that appears in the equation of motion
must be known. For simplicity, we only consider isotropic Hamiltonian

1 1 sor ., gmgt
H==230,8,8, == 3,18:5;+5,5]1, (8)
LJ L]
where J;;—J> 0 is the exchange integral corresponding to the interaction between the

spins on lattice sites , j. The notation S, =S, *iS} is introduced. Higher order Green func-
tion will appear in the equation of motion (4), too. It is to be decoupled by a random phase
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approximation (RPA). There are two decoupling procedures, namely asymmetric and sym-
metric decoupling.

2.1. Asymmetric decoupling
a) Bosonic Green functions
The exact equations of motion for Green functions are G,.j(.fn'”(w) =<<875(S; )’S]T >>1
m<<S,*;(Sj)1S;>>: =([S7,(S7)'S71,)8, +<<[S,*,7-{];(Sj)’SjT>>: . 9)

The first term on the right side of (9) is given by

([S7.(5))' S 1, )0, = 408, 0 (10)
where
AP =2((S7 =187 )+ ({087 =) = (S HS(S+D) =87 =(S)’}). (11)

The commutator of s/ with the Hamiltonian H, required in the last term of (9), is easily
computed, giving

(S5, H1 =27 (SiS) =SiS0). (12)

ki

The equations of motion (9) are then given by

(S 5(ST) SN = AL 8+ DT SIS ST = USTS (S5 S e (13)
k#i

The remaining problem is to express the higher order Green function on the right in
terms of lower order Green functions, so that (13) can be explicitly solved for
Gl (@) =<< 5]3(S7)'S; >>17". Here asymmetric decoupling means that

=1
(5087 =Sr8305))' 7)) = (SIS 38 ST =S558 S =
(14)

~(SNGHL @) =Gl @)

ijm=-1 kjn=-1
Inserting the decoupling approximation (14) into the equation of motion (13) gives
(@ = 2J(S NG [(0)= 4508, —(S) D TGl (). (15)

ij.n= iin=—1"7 kin=
k#i

These equations are set of coupled equations for various pairs of sites (i,), (k). Be-
cause of the translational invariance of the lattice we can transform the Fourier functions
G (@), J,and §; with respect to the reciprocal lattice:

b

+ 1 + iq.(a;—a 1 iq.(a;—a 1 iq.(a;-a
Gl (@)= DG @) T =SS @e 8, =3 (16)
N4 N4 N

q
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where the parameter J(q)=J e “*™ and N is the number of the spins in the lattice.
Equation (15) then implies 7
(@ =2J(STNG (@) = A7 —(SHI (@G (). (17)

From (17) we get, Gi»” (o), for the equation

(+10) (+.0)
G () = A . (18)
0-J0)<85 >(1-J(@)/)(0) o-o,

Where J(0) =2/, o,=J(0)<S5 > (1-J(q)/J(0)).
Between the Fourier transform G{""(w) and the spectral function / 4 exists the relation

" )— 111m[G<+” (@ +ig) =G (0 —ig)] =
ianh 1 1
= f:i L lim —— — |, (19)
e” -l o-—o,+ie ©-0,—i
where the spectral function is connected with the correlation function by the relation
(+0) _ NP i 1
CH =<(57)'S°S >_ﬁzq:£dm[2 (©). (20)
Using the relation
i f(o) [ flo) 7
lim J’dm s Pfdwr%+nz:[odmf(m)6(m—mq), 1)
or its symbolic form
lim—©@)__p S©) e -o,). (21a)
00—, tie -0,

the equation (19) can be written as

(+1)
1 @)= ZhD 020, (22)
e’ —1
With the relation[S*,S"]=-S" and §°S*=S(S+1)-S5°—(S°)’ we find that
<(87)'S7ST>=S(S+IST) )y = (ST )y =((59)"*). (23)

From (19) and (20) we get
<(8§%)' 878" >=

Rl — 7 2n4§*“5(w ®,) _ “_’I (24)
:ﬁzq:_[od@]q (03)— Zjdc) T Z o .

q -

If we use (11) and (23) we get
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S(S+I(S)) =S =(($7)") = (25)

=2(S7 =187 )+ ({(ST =D = (S HS(S+D) =S =(S])VI)K,

where

1 1
K=—) ——. 26
N;eﬁw“—l (26)

From (25) we can write down 2§ independent, simultaneous linear equations in
(87),4(S7)*),...,{(857)*°), by putting 1 in (24) equal 1, 2, ..., 25, consequently. Callen [6]
shown that for any S value, magnetization (S*) can be calculated using

S-K)Y(1+K)*" +(1+85+K)K>"
(1+K)ST g2 :

(§%)= (27
b) Fermionic Green functions

Now let us use the fermionic Green functions. Taking n = +1 in (7), we have

0 g 40
Cir=((57)'s™s >“:e““’ﬂ+1’ (28)

Using the relation between anticommutator and commutator
AT (@) = 470 +2C0", (29)

one obtains
2<(SZ)ZS’S+>q _ Aéif?

§7)'5°S* =
(0 y ™41 ™41

(30)

which bring us back to (24). The conclusion is that for the asymmetric coupling, the
fermionic Green function is exactly equivalent to the bosonic Green function.

2.2. Symmetric decoupling

In order to treat the reorientation of the magnetization, we need the following Green
functions

G (@) ={(S73(5) (S N » (1)
where o = (+,—,z) takes care of all directions in space. The exact equation of motion are

OGEM (@)= AFMS £ T SIS (S (S))" Waw —(SESHS ) Vo] (32)

k=i

z,0m 1 - o+ - Qo+ z —\m
(DG'(Z'IM)((D) = A(-J )8[,' +EZJ,A<<(S, Sk _SkS,' )s(S, )I(S,) >>m(ﬂ) (33)

ij(m) ij(n)
ki

with inhomogeneities
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Al :<[SF"(S;)[(S;)M D. (35)

i)
The symmetric decoupling of the Green function is as follows
(S SE S S Mgy Z(STHCSE S () My + (SOUS S S) Wuery - (36)

After the Fourier transform to momentum space, one obtains for a 3-dimensional
Green function vector three equations of motion in the following matrix form

|Q1-A[Q)] g, (0,2 = A", (37
where
A 0 -B
AlQ(q)]=| 0 -4 B |, (38)
-1B 1B 0
gy (q.Q)
2" (q.Q) =] g " (q.Q) |, (39)
g]gz,lm)(q’Q)
(+,Im)
A](11m): An(—,[m) (40)
AT(IZJW)

with abbreviation
Q=0/J, g"(4,Q)=JG"(q0),4=(S)z—-v,], B=(S)z-7,],7,= 2" ™.
Matrix I is the unit matrix and z is the coordination number. J

The eigenvalues A[Q(q)] of matrix are

Q,=0, Q,(q)=9Q,, Q,(q)=-Q,, where Q_=vA"+B", (41)

It is seen that there is a zero eigenvalue. In this case equation (7) cannot be applied to the
bosonic Green function directly. Now we employ the fermionic Green function, namely,
taking n =1 in the equation (37). Between anticommutator and commutator inhomo-
geneities exists the following relation

A(Im) — A]El[;njl + ZC;Zm) , (42)

qn=+1

Where C{" is the correlation vector
(5)'($7)"S"),
C” =8 (S)"ST), |- (43)
(5)'($7)"87),
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It is important that the commutator inhomogeneities A{"’; do not depend on the momentum

q. We follow the eigenvalue method as mentioned in [4]. One starts with a transformation,
which diagonalizes the matrix A[Q(q)] of equation (37)

UJAIQ(@]| U = Q, (44)

where Q is a diagonal matrix with eigenvalues Q, (i = 1,2,3), and the transformation matrix U
and its inverse U~! are obtained from the right eigenvectors of matrix A[Q(q)] as columns
and from the left eigenvectors as rows, respectively. In our case the eigenvectors by which
the transformation matrices U and U™ are constructed can be given explicitly. They are

B Q+4 Q-4
gl o BA QB+A 2BA 2BA 44°
U=|— a Sap— , U'= 12 -(Q +AB (Q,-AB 2B*|. (43)
A B B 40 d d )
1 1 1 Q,-AHB —(Q,+AB 2B

These matrices are normalized to unity: UU' = U'U =1.
Multiplying the equation of motion (37) from the left U™ and inserting 1 = UU " one
finds

(QI-QU ' g (g, ) =U" A, (46)

. () _qy-lglm Umy gyt 4 () .
Defining ¥gnon = U™ 8,21(Q) and o2, =UTA, one obtains

(QI-Q) yim = alm (47)

qn=+1 qn=+1°*

™, is anew vector of Green functions, each component i of which has but a single pole

(m.i)

m,i) a n=+1
y‘(llﬂ=1l 7%{2,' (48)
This is the important point and allows application of the spectral theorem to each compo-
nent separately. This gives with <" =U"'C{"
(Im,i)
C(Im,i) _ aqn (49)

E Py’

We proceed with the anticommutator (n = +1) and one obtains the original correlation vec-
tor C{"” by multiplying from the left with U, i.c.

CY=R Al (50)

where R, = UEU " with matrix elements

> UUy
Ry :Zem‘ +/1 > (51)

k=1



10 V. ILKOVIC

e}

E is a diagonal matrix with matrix elements E; =5,(e" +1)" Using (42) one obtains the

following set of equations

(I-2R))C{" = Rq A, (53)
or
icoth(ﬁQ /2) 0 —ﬁcoth(m /2)
Qq a Qq q C("J’”)
A B ((]—Im)
0 ———coth(BQ, /2) —coth(BQ,/2) | CI™ |=
Qq Qq (z.Im)
B B G
———coth(BQ_/2) ——coth(BQ, /2 0
20, (BQ,/2) 20, (BQ,/2)
l—icoth(BQ /2) 0 icoth(ﬁQ /2)
Qq 4 Qq 4 (+,0m)
=1
= 0 1+icoth(BQ /2) —icoth(m 12y || A, (54)
Qq ! Qq ! (z,lm)
icoth(BQ /2) —icoth(BQ /2) 0 l
20, a 20, .

From (54) we have

+,Im z,lm +,Im 1 z,im
C{MA-CHmB =4 )( Q, coth(Q, /2T" )—fA]+ B4 e, (55)
—CS™MA+CH™MB = A;;i”,”(f Q, coth(Q, /2T")+ fAj - %B s (56)
BCL‘I*'I'”) —BC;"I’”’ B(Aé o Aé* "y -Q q c0th(Q, /27) S 57

Here we should emphasize the fact that matrices C|"and R, depend on q, but A\", does
not. The equations (56) include all the necessary information to calculate the statistical av-
erage of the spin operators.

Because the correlations are in real space, we have to perform a corresponding Fourier
transformation (($7)'($7)" %) Z((S )'(§7)"S8"),. Fourier transform of equation (56)
yields

1 -Q Q 1 l B
_ct Am) 4 —C( dm) (=idm) ( /m) 2 ooth] 24 |- = (i./m) i N 58
NZ A“ N;A o )2 N;A 58)
Putting this into the Fourier transform of (55) one can eliminate the term _ZZC‘(‘Z ",
One obtains
Cim) _ (=i _l( (~dm) _4+,z»1>) (4 Im) +A‘§+lm)) Z coth Q (59)
P A 27"

The Fourier transform of equation (57) can be done directly and gives
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C(+,1m) _C(f,lm) (Aq( LIm) Aq(+1m) (z lm) 1 Z—coth( Q ] (60)
To elucidate the equations (59) and (60) we derive the explicit expressions for S = 1/2.
We need determine the correlations C“"and the inhomogeneities 4" (o =+,—, z) for

[ =0andm=1:

CHV =((89)"(87)'S") =(878") =1/2—(57), CT =((§7)°(§)'S7)=(5787) =0,

G0 = (15,57 =25, A =([S7,87],_) =0,
AV = (87,857 ]) =Sy =~5").
Inserting these into (59) and (60) one finds
= O (61)
where
D, (T") = ZA?;) coth(ZQT“*J . (62)

These are two equations which determine the two unknowns:(S*) and(S*).

For § =1 one needs equations for (/=0,m=1),(/=1,m=1),([=0,m=2),(/=0,
m = 3). This yields 8 equations for the eight unknowns. Solving these equations we obtain
for(S*) and(S")the following expressions

40 (T)D3(T”)

%y = , 63
) O (T) + O(T") +307(T)D(T) (63)
* 40, (T)PI(T")
S = 2 L .
7 OHT )+ QT ) +3D}(THOUT”) (64)
For S=3/2 one needs equations for

(I=0,m=1),(I=1,m=1),(=0,m=2),(I=0,m=3),(I=1,m=2),(I=1,m=3),a
(I=2, m=2). This yields 14 equations for the eight uknowns(SSplving these equations
we obtain for and the following expressions

5(58®7 + 587 +115D,@7 +150D°D3)
2(92®; + 178D + 92D + 178D, @3 + 115073 +1500°D3)’

(87 = (65)
5(58D° + 58D, @2 +1150°D] +150D°D?2)

209207, + 178D}, + 9203 +178D,®3 + 11507 D] + 1500°D3)

From (61), (63), (64) and (65), (66) the values of the total magnetization M (7")and the

equilibrium polar angle 6 of the magnetization are determined for §=1/2, S=1, and
S =3/2, respectively:

(8% = (66)

M (T7)=(8")" +(87)", (67)
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8%

P

0 =arctan

(68)

3. Conclusion

The presented fermionic Green function method has recently been successfully ap-
plied to treat magnetic reorientation in ferromagnetic thin films [4], [7] and in ferromag-
netic monolayers [8], [9]. In reference [10] within fermionic Green functions method the
properties of he transversal Heisenberg model is considered. The many-body Green func-
tion theory allows calculations the magnetic properties of a Heisenberg ferromagnet (anti-
ferromagnet) over the entire temperature range of interest in contrast to other methods,
which are only valid at low (Holstein-Primakoff approach) or high temperatures (high
temperature expansions). We have used the symmetric and antisymmetric Tyablikov
(RPA) decoupling for the exchange interaction term.
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