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Abstract 
Widespread adoption of smartphones and ubiquitous internet connectivity gives rise to new markets for personalized and 
efficient on-demand mobility services. To rigorously analyze new control mechanisms for these services, we introduce 
an open-source agent-based simulation testbed that allows evaluating the performance of demand-responsive transport 
schemes. In particular, our testbed provides a framework to compare both centralized and decentralized, static and 
dynamic passenger allocation and vehicle routing mechanisms under various conditions; including varying vehicle 
fleets, road network topologies and passenger demands. The testbed supports all stages of the experimental process; 
from the implementation of control mechanisms and the definition of experiment scenarios, through to simulation 
execution, analysis, and interpretation of results. Ultimately, our testbed accelerates the development of control 
mechanisms for emerging on-demand mobility services and facilitates their comparison with well-defined benchmarks. 
We illustrate our approach on an example simulation study of standard taxi and taxi sharing services in the area of 
Sydney, Australia. 
 
Keywords: On-demand Transport, Mobility, Testbed, Agent-based Simulation, Resource allocation, Vehicle rout 
 

  

1. Introduction 

On-demand mobility services have the potential to bring 
significant improvements to personalized transport via efficient 
utilization of transport vehicles. In on-demand mobility 
services, vehicle routes and schedules are not fixed a priori; 
instead, they are dynamically adapted to best serve 
continuously incoming transport requests. Traditionally, on-
demand mobility approach was used mainly for providing 
small-scale specialized transport services that required prior-
day booking. In the past years, enabled by the widespread 
adoption of smartphones and ubiquitous internet connectivity, 
on-demand mobility approach has been increasingly utilized 
for general-purpose real-time ridesharing, taxi, or bus-on-
demand services. Looking to the future, new autonomous, 
driverless vehicles, are set to lead to further growth in both 
scale and scope of on-demand mobility services. 
On-demand mobility services are inherently multi-agent. This 
is due to a large number of geographically distributed 
passengers, vehicles and service providers which, while having 
their individual interests, have to coordinate and agree on how 
the passenger demand is served by available transport 
resources. As such, agent-based techniques are beginning to 
play an important role in passenger allocation and vehicle 
coordination [5]. 
The performance of on-demand mobility services with multi-
agent based allocation and coordination crucially depends on 

two key factors: (1) the transport control mechanism used to 
allocate vehicles to passengers and to determine vehicle routes  
 
 
 
and timings; and (2) parameters of the deployment scenario, in 
particular the topology of the underlying road network and  
spatio-temporal structure of passenger demand. Understanding 
how these factors affect the performance of the transport 
system is essential for a principled development and 
deployment of on-demand mobility services. Due to the 
complex nature of demand-responsive transport systems, 
however, gaining such understanding is difficult. 
Simulation modelling is an established approach for analyzing 
the behaviour of complex socio-technical systems and is 
therefore also applicable for analyzing demand-responsive 
transport systems. Unfortunately, out of the number of 
transport simulation tools, none is specifically tailored and 
consequently particularly suitable for simulation modelling of 
on-demand mobility services. 
In fact, within the broad family of pickup and delivery 
problems, in which on-demand services are a special case, 
benchmarking suites only exist for static freight transport 
vehicle routing problems 
(www.or.deis.unibo.it/research_pages/ORinstances/ 
VRPLIB/VRPLIB.html). To the best of our knowledge, no 
benchmarking tools exist for dynamic, passenger-oriented 
variants of the pickup and delivery problem. The key reason 
for the lack of benchmarking tools is that a simulation engine is 
required to rigorously account for temporal dependencies. This 
means that benchmarking on-demand mobility services is a 
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significantly more challenging problem and cannot be solved 
by simple evaluation tools that are sufficient for static variants 
of the problem. 
In this article, we detail our new simulation testbed - a rigorous 
and flexible benchmarking suite for on-demand mobility 
services. The testbed is based on our previous research in fully 
agent-based simulation modelling of transport systems [7]. It is 
built on top of a versatile transport simulation framework 
AgentPolis [8]. 
The testbed is designed for two main purposes. The first 
purpose is performance assessment of on-demand mobility 
services prior to their deployment in new locations or under 
different conditions. The second purpose is testing and 
evaluation of novel control mechanisms, algorithms and on-
demand mobility schemes. As such, our testbed can speed up 
the development and deployment of on-demand mobility 
services. 
The contributions of this article can be divided into three parts: 
First, we describe the testbed and its architecture in Section 3, 
then we explain the usage and experiment process in detail in 
Section 4 and finally, we demonstrate how the testbed can be 
used to evaluate and compare two examples of on-demand 
mobility service in Sydney, Australia, in Section 5. 

2. Related Work 

Since 1970s, we have seen numerous attempts to study 
mobility and transport systems in general by analytical 
modelling. An extensive overview of analytical modelling 
methodology, along with mathematical background can be 
found in a monograph by Ortuzar and Willumsen [15]. Early 
models of mobility systems were largely based on 
mathematical programming and continuous approximations. 
The former technique relied on detailed data and numerical 
methods, whereas the latter relied on concise summaries of 
data and analytic models. Geoffrion [16] advocated the use of 
simplified analytic models to gain insights into numerical 
mathematical programming models. In a similar spirit, Hall 
[17] illustrates applications of discrete and continuous 
approximations, and notes that continuous approximations are 
useful to develop models that are easy for humans to interpret 
and comprehend. Overview and classification of continuous 
approximation models can be found in [18]. 
In some of the more recent work, the attention was focused on 
demand-responsive mobility systems, which were formalized 
as mathematical abstractions, such as dial-a-ride problem 
(DARP) [19] or multiple depot vehicle scheduling problem 
(MDVS) [20] to allow further formal analysis. For example, 
Heuptmeier et al. [21] and Lipmann et al. [22] studied formal 
properties of certain algorithms solving DARP and its variant 
with restricted information.  
Haghani and Banihashemi [23] addressed the influence of town 
size on the performance of algorithms for MDVS and its 
variant with route time constraints. 
However, analytic models and theoretical algorithm analyses 
were often too abstract for expressing relevant aspects in the 
structure and dynamics of some transport systems. To deal with 
this shortcoming, the paradigm of simulation modelling was 
adopted by the transport research community and has been 
employed in parallel with the analytical approaches. In 1969, 
Wilson [24] conducted a pioneer simulation-based study of the 
influence of the service area, demand density and number of 
vehicles on the behaviour of transport system. Simulations 
have since then been extensively utilized in the research of 
transport and mobility, as a powerful tool for the analysis of 
system's behaviour. To mention a few more examples, Regan 

et al. \cite{regan1996dynamic} studied the performance of 
freight mobility system using different lead acceptance and 
assignment strategies, Fu [4] developed a simulation model of 
an urban paratransit system and Deflorio et al. [30] evaluated 
demand-responsive transport system under the influence of 
real-life aspects, such as customer delays and travel time 
variability. 
Simulation modelling also allowed researchers to study DARP 
or MDVS control mechanisms empirically (in addition to 
formal algorithmic analysis). Bailey and Clark [31] 
investigated the performance of one of them in relation with 
varying vehicle fleet size. Jlassi et al. [10] simulated an 
ambulance service implemented as dial-a-ride system and 
Shinoda et al. [32] compared such systems to fixed-route 
systems under varying circumstances. Diana [33] assessed the 
effectiveness of scheduling algorithms under different 
percentages of real time requests and intervals between call-in 
time and requested pick-up time and Quadrifoglio and 
Dessouky [14] studied the insertion heuristic scheduling 
algorithm for Mobility Allowance Shuttle Transit systems, a 
hybrid transit solution that merges the flexibility of dial-a-ride 
systems and the low cost operability of fixed-route bus 
services. More recently, d'Orey et al. [3] used simulations to 
explore the trade-offs between the satisfaction of drivers and 
passengers. 
In these simulations, the system's behaviour could only be 
centralized -- governed in a top-down manner by a single entity 
or mechanism. Also, any self-initiated interactions, 
communication or negotiation among individual actors (e.g. 
passengers) was impossible, severely limiting their level of 
autonomy. To overcome these limitations, a new paradigm 
called Agent-based simulation was introduced. Agent-based 
simulation has proven to be a highly valuable tool, especially 
when studying complex self-organizing systems in many 
domains [26]. Mobility systems modelled under this paradigm 
are implemented as multi-agent systems -- i.e. composed of 
autonomous entities termed agents situated in a shared 
environment which they perceive and act upon, in order to 
achieve their own goals. In the context of mobility, we usually 
distinguish between three relevant types of agents: passengers 
(announcing transport requests), drivers (serving passenger's 
requests) and dispatchers (optional kind of agents who can 
negotiate with passengers and coordinate the drivers). 
 Agent-based simulations have been used to study various 
aspects of mobility, as well as a number of different control 
mechanisms. Horn [6] employed a simulation, developed 
completely from scratch, to study operational characteristics of 
a multimodal transport system integrating conventional 
timetabled services (buses, trains, etc.) and flexible demand-
responsive mobility services (single- and multiple-hire taxis). 
A combination of traditional and demand-responsive transit 
was also simulated by Edwards [27]. The impact of zoning vs. 
non-zoning strategies on demand-responsive mobility were 
studied by Quadrifoglio and Dessouky in [13]. Real-time taxi 
sharing schemes and ridesharing have been evaluated by 
Kamar and Horvitz [11], Lioris et al. [12], or Agatz et al. [28], 
while the efficiency of traditional taxi services have been 
studied by Cheng and Nguyen [29].  
Control mechanisms that govern the behaviour of mobility 
systems are usually classified by the concentration of decision 
making into: 
• centralized (all the agents controlled by a central entity, 

e.g. dispatcher) 
• distributed (agents act based on their mutual, unorganized 

interactions) 
• hybrid (combination of those two) 
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Alternatively, control mechanisms may also be divided based 
on the structure of transport demand they are dealing with into 
static (all transport requests are known in advance) or dynamic 
(future requests are unknown).   
Since these control mechanisms represent a cornerstone of 
mobility system's behaviour and success, significant amount of 
research has been invested in them and more is still needed. It 
therefore makes sense to develop software tools that would 
assist in this research. The general idea of employing 
simulation testbeds to accelerate the development of multi-
agent control mechanisms was put forward for example by [9]. 
A common attribute of simulations used in the works above is 
that they were developed from scratch using general-purpose 
programming languages (most often C++ or Java), in order to 
demonstrate only a single specific mechanism. This is because 
none of the existing general purpose (such as AnyLogic, 
http://www.anylogic.com) as well as transport-specific 
simulation tools (such as MATSIM, http://www.matsim.org or 
SUMO, http://www.sumo-sim.org) has proven suitable for 
simulation-based assessment of a wider variety of control 
mechanisms.  
The agent-based simulation testbed described in this article was 
created to fill this gap and provide the researchers with a tool 
necessary to analyze and compare the control mechanisms of 
various classes without developing their own simulations. 

3. Testbed Overview 

Proposed simulation testbed is built upon the versatile transport 
simulation framework AgentPolis, which provides abstractions, 
code libraries and software tools for building and 
experimenting with fully agent-based models of interaction-
rich transport systems. 

3.1. Fully Agent-Based Simulation Approach 
 
In fully agent-based simulations, individual entities of a 
transport system are represented as autonomous agents with 
continuous, asynchronous control modules and the ability to 
interact freely with their surrounding environment and other 
agents. Such an approach reduces coupling and allows 
modeling scenarios in which agents adjust their plans at any 
time during the day based on their observations of the 
environment and/or communication with other agents.  
The AgentPolis framework, which implements the fully agent-
based approach, provides several dozens of modelling elements 
that can be used to build a wide range of simulation models. 
The modelling elements provided by AgentPolis are organized 
in a modelling ontology and can be grouped to three high-level 
categories: 
 
• Agent modelling elements:  

The concept of the agent in AgentPolis is defined rather 
loosely in order to support modelling a wide variety of 
agents (e.g. DriverAgent). The behavior of agents is 
defined in terms of activities - reactive control structures 
implementing the logic determining which actions or 
nested activities the agent executes at a certain point in 
time or in response to sensor information or messages 
received from other agents (e.g. DriveVehicle 
activity). As part of their behaviour, agents may need to 
make decisions that require executing complex 
algorithms, including the ones that comprise the control 
mechanisms we want to evaluate. In order to promote 
reusability, such algorithms are encapsulated into so-
called reasoning modules. In practice, the reasoning 

modules are Java classes (e.g. DriverLogic) that can 
be easily rewritten to implement a wide variety of 
algorithms, or even call external tools or solvers. 

• Environment modelling elements:  
The environment models the physical context in which the 
agents are situated and act. It is represented by a 
collection of environment objects, each representing a 
fragment of the modelled physical reality (e.g. 
Vehicle), and queries that allow agents to be informed 
about the state of the environment and about the events 
happening during simulation execution (e.g. 
PositionQuery). 

• Interaction modelling elements:  
Modelling complex interactions among the agents or 
between the agents and the environment is crucial for the 
analysis of dynamic transport systems. In AgentPolis, 
agent-environment interactions are realized by sensors, 
which process the percepts from the environment and 
atomic actions that provide a low-level abstraction for 
modelling how agents actually manipulate the 
environment (e.g. MoveVehicle). Inter-agent 
interactions are realized by a collection of communication 
protocols. The testbed currently provides 1-to-1 
messaging, 1-to-many messaging and auction 
protocols. 

Detailed description of modelling abstractions and 
corresponding model elements can be found in [7]. 

3.2. Testbed Architecture 
 
Although all the power and flexibility of the AgentPolis 
framework is accessible to the users of the testbed, it is hidden 
and only the relevant parts of it are exposed through a facade of 
APIs designed specifically for the simulation modelling of 
demand-responsive transport systems. 
The components of the testbed can be broadly divided into 
three layers (see Figure 1): 
• AgentPolis Transport Simulation Model: composed of the 

core simulation engine and the basic transport domain 
model. This model implements key elements comprising a 
transport system, such as road network and vehicles, and 
basic behavioral logic associated with them. It also 
provides routing algorithms and communication interfaces 
designed to simplify the implementation of higher-level 
simulation logic. 

• Testbed Core: specializes the general AgentPolis 
simulator for the specific purpose of modelling demand-
responsive transport systems. It implements the model of 
three types of agents (Passengers, Drivers and 
Dispatchers) and provides extensible abstractions for 
defining their behaviour. 

• Control Mechanism: a user-supplied implementation of a 
specific control mechanism that is to be experimentally 
evaluated. 
 

 
 
Fig. 1. Testbed's architecture overview. 
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In addition to these three layers, the testbed provides a suite of 
tools that facilitate creation, execution and evaluation of 
simulation experiments: 
 
• Benchmark importer loads all the required input data 

(discussed in detail in Section 4, constructs the graph 
representation of a road network and creates the 
environment objects and agents accordingly. All the 
imported data is automatically checked for consistency in 
order to prevent hard-to-trace errors. Resulting internal 
representations are simplified by selectively removing 
redundant information in order to accelerate the reasoning 
without losing accuracy (see Figure 2). 
 

 
 
Fig. 2. An integrated simplified transport graph combining 
road and walkpath networks in Milan, Italy. 

 
• Experiment management is supported by a benchmark 

generator and tools for the design of experiment. The 
generator allows users to build their own scenarios 
covering real-world or fictional locations with custom 
numbers and types of agents. Agents can be generated 
either based on real-world data or randomly, using various 
temporal and spatial distributions. 
Since a robust evaluation of the control mechanism under 
a sufficiently wide range of circumstances may require 
many simulation runs, the testbed provides tools for 
accelerating the evaluation process. In particular, it can 
use design of experiments methods to generate simulation 
configurations in a way so that maximum information 
about the behaviour of the control mechanism is obtained 
using a minimum number of simulation runs. 

• The Analysis and visualization tools provide a way to 
interactively browse and review simulation execution and 
results at different spatial and temporal resolutions. This 
assists researchers during the development and debugging 
process, and allows them to find out how the tested 
mechanisms perform under different conditions. The 
aggregated results, as well as the visualizations, are 
generated based on the detailed low-level event log 
recorded during the simulation, containing all the 
important events related to passengers 
passGotInVehicle, passGotOffVehicle) and 
drivers with their vehicles (vehicleMove) and all the 
communication between the agents (e.g. 
passSentRequest or requestConfirmed). 

3.3. Transport Control Mechanism 
 
Unless the studied control mechanism has some special 
features, its incorporation into the testbed only requires 
implementing several classes and methods. For example, in the 
most simple case, the user only needs to extend the 
DispatchingLogic class and implement its 
processNewRequest(Request r) method. 
 
The testbed allows us to incorporate and study a variety of 
control mechanisms. They can be divided into centralized or 
decentralized mechanisms, based on the degree of autonomy of 
the drivers. We also distinguish between dynamic and static 
control mechanisms, each suitable for the transport demand 
with different temporal structure.  

 
Centralized vs. Decentralized: In a demand-responsive 
transport system, the behaviour of driver agents can be 
governed either centrally by (single or multiple) dispatcher 
agents, locally by the drivers themselves, or the combination of 
both. The reasoning logic for individual agents and central 
authorities is implemented by extending specific methods of 
abstract classes PassengerLogic, DriverLogic and 
DispatchingLogic (see Tables I, II and III).  
Decentralized mechanisms are suitable in situations when 
communication capabilities are restricted, or when the agents 
are independent and self-interested but can still benefit from 
collaboration (e.g. ridesharing [11]). 

 
Static vs. Dynamic: Dynamic control mechanisms (sometimes 
called “online”) process the travel demand requests when they 
are announced. On the other hand, static (or “offline”) 
mechanisms need to know all the requests in advance. Our 
testbed grants the driver or dispatcher agents the access to 
requests only after they are announced by the passengers. 
Nevertheless, to also cater for the requirements of static 
mechanisms, there are several benchmarks in which the travel 
demand is announced long time in advance. 
 
sendRequest(Request r): Called by the testbed 
whenever this passenger is supposed to announce a new travel 
request r, according to input data. The passenger should 
contact other agents (dispatcher or drivers) within this method. 
processProposal(Proposal p),  
processRejection(RequestRejection r): Two 
methods that are called when the passenger receives a trip 
proposal p specifying details about the trip (e.g. price or arrival 
time) or rejection r of his older request from a driver or 
dispatcher. 
vehicleArrived(String driverId, vehicleId): 
Called when a driver arrives to pick the passenger up. 
Typically, the passenger just gets on board this driver's vehicle. 
 
Table I. Abstract methods of PassengerLogic class, 
implementing the behaviour of passenger agents. 
 
processNewRequest(Request r): A method called 
whenever the driver receives a new travel request r from a 
passenger or dispatcher. Here, the driver should react by 
sending his trip proposal or request rejection. 
processNewAcceptance(Proposal p): Called when 
the driver's trip proposal p is accepted by the passenger. Here, 
the driver usually plans his route and starts driving. 
processNewRejection(Proposal p): If driver's 
proposal p is rejected, the testbed calls this method. 
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processPassengerGotIn(String passengerId): 
Called when the passenger gets on board this driver's vehicle. 
 
Table II. Abstract methods of DriverLogic class, 
implementing the behaviour of driver agents. 
 
 
 
 
 
processNewRequest(Request r),  
processNewAcceptance(Proposal p),  
processNewRejection(Proposal p): The methods 
with similar meaning as in DriverLogic class with the 
exception that the dispatcher usually negotiates with 
passengers and only sends instructions and routes to drivers. 
 
Table III. Abstract methods of DispatchingLogic class, 
implementing the behaviour of dispatcher agents. 

4. Experiment Process 

After the tested mechanism is incorporated into the framework, 
the actual experimentation using the testbed follows a three-
step process, as depicted in Figure 3. 
 

 
 
Fig. 3. Three-step process of the experiment (setup, simulation, 
evaluation). 

4.2. Scenario Definition and Setup 
 
First of all, the user needs to set up and configure the scenario 
under which he wants the control mechanism to be evaluated. 
The scenario is described in terms of a benchmark package, 
which consists of the following files: 
• Road network - The road network in the experiment area 

represented in the OpenStreetMap (OSM) format 
(http://openstreetmap.org/). 

• Driver agents - Description (in JSON) of all the relevant 
drivers with their initial positions and the properties of 
their vehicles including the capacity, fuel consumption, 
CO2 emissions or non-standard equipment (e.g. 
wheelchair accessibility). 

• Travel demand - The exact representation (in JSON) of 
travel demand containing all the passenger agents with 
their associated trip details: origin and destination 
coordinates, time windows, announcement time and 
special requirements. 

4.2. Simulation Execution 
 
Once the model is set up, the user invokes the simulation 
engine to execute the simulation. The AgentPolis engine 

employs the discrete event simulation approach [2] in which 
the operation of the target system is modelled as a discrete 
sequence of (possibly concurrent) events in time. Each event 
occurs at a particular time, with precision to milliseconds of the 
simulation time, and marks a change of state of the modelled 
system. Since there are no changes occurring between 
consecutive events, the simulation can directly jump in time 
from one event to the next, which, in most cases, makes it more 
computationally efficient than time-stepped approaches. 
The simulation progress can be presented visually during run-
time, using the internal visualization component of AgentPolis. 
It is capable of displaying the transport network and agents 
within the model, along with a convenient visualization of all 
the ongoing events (see Figure 4). 
 

 
 
Fig. 4. Runtime view of a running simulation. Road network, 
Passenger and Driver agents are shown. Simulation events are 
depicted in the overlay window. 

4.4. Result Analysis and Visualization 
 

From the low-level event log recorded during the simulation 
run, the testbed calculates a range of higher-level, aggregate 
performance metrics. By default, these include:  
• total vehicle distance driven, 
• total fuel consumption, 
• total values of pollutant emissions, 
• average vehicle productivity (passengers per hour), 
• passenger's total travel time statistics (average, median 

and maximum), 
• passenger's on-board ride time statistics, 
• passenger's waiting time statistics, 
• total runtime of control algorithms. 
Additional metrics can be defined. In addition to low-level 
event logs and highly aggregated metrics, the testbed also 
provides the means to visualize the simulation runs and results 
in the geospatial and temporal context, using external tools.  

 
The interactive geobrowser Google Earth 
(http://earth.google.com/) can display the log of a simulation 
run exported in Keyhole Markup Language (KML, 
http://developers.google.com/kml/). It is capable of displaying 
a large number of agents, along with simple geometry and 
screen overlays, over a realistic satellite imagery and 3D model 
of the environment (see Figure 5).  
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Fig. 5. Simulation run of on-demand transport coordination 
scenario exported in KML format and displayed by Google 
Earth. The input benchmark was based on historical traffic and 
demand data from San Francisco, 2008. 
 
Google Earth can be further used to display the values of 
metrics as they vary across different areas. For example, 
Figures 9 and 10 show a heat maps representing the spatial 
distribution of successfully served and failed passenger trip 
requests. 

5. Example Study 

To demonstrate how the testbed can be used, we have 
implemented a control mechanism for dynamic multi-vehicle 
dial-a-ride problem, based on parallel tabu search heuristic 
[1]. We have run a series of experiments with it and evaluated 
a performance of two on-demand mobility services controlled 
by it: single-passenger taxi vs. taxi-sharing service.  
 

5.1. Scenario Setup 
 

Using our benchmark generator, we prepared 88 scenarios 
divided into two collections situated in a city of Sydney, 
Australia, covering the area of 2255.902km2. In both 
collections, the travel requests of passenger agents were 
generated with realistic temporal and spatial distribution, 
taking into account peak/off-peak hours and spatial density of 
points of interest (restaurants, bars, stores, etc.) in the input 
OSM file. Passengers announced the travel requests 15 minutes 
before desired departure and accepted rides that would end less 
than 90 minutes from the announcement time. Each collection 
contained 44 scenarios - one for every combination of the 
number of vehicles (10 to 25 vehicles, increasing by 5) and 
request frequency (100, 200, 300, 400, 500, 750, 1000, 1250, 
1500, 1750 and 2000 requests per day). In the first collection 
representing a single-passenger service, vehicles had the 
capacity of 2, while in the second, “taxi-sharing” collection, the 
vehicles had the capacity of 5 (in both cases, including the 
driver). 
We were particularly interested in the following performance 
indicators for these two kinds of on-demand mobility services 
in the Sydney area: 
• Success rate (percentage of successful vs. failed requests), 
• Average distance driven per vehicle, 
• Average passengers waiting and travel time. 

 

 

5.2. Implementation of the Control Mechanism 
 
Since parallel tabu search is a centralized control mechanism 
in a sense that the dispatcher agent has complete power over 
the behaviour of all the vehicles, we only needed to extend the 
abstract class DispatchingLogic and implement its 
method processNewRequest(Request r), which is 
called every time the passenger agent announces a travel 
request. 
This mechanism is considered a state of the art approach to the 
problem of dynamic multiple vehicle dial-a-ride problem. 
Details about it can be found in [1].  

5.3. Simulation Results 
 
We will divide the discussion of the simulation results into 
three parts – each related to one of the performance indicators 
of interest.  
In first two cases, we will plot a series of charts depicting the 
values of service’s success rate and the average driven distance 
computed with different vehicle counts and under increasing 
number of requests per day (request frequency). In the third 
part, we will compare the average travel and waiting time in 
case of both services. 
This will let us estimate how many vehicles would a service 
require in order to maintain a certain degree of efficiency under 
varying demand, or decide whether it is advantageous to 
introduce a taxi-sharing into this specific area. 
Note that the testbed can also be used to gather a number of 
other indicators (see Section 4.4.) and outputs can be presented 
in different ways, according to the needs of the user. 

5.3.1. Success Rate 
Success rate is a key performance indicator - it tells us how 
many passengers the studied service is able to serve per day. 
The success rate is computed as a ratio of successfully served 
transport requests and all the announced requests.  
Figures 6 and 7 depict the unsurprisingly decreasing trend of 
success rate values with the increasing request frequency. The 
charts show us how many requests per day we would manage 
to serve with different sizes of vehicle fleet.  For example, 25 
vehicles can successfully serve approximately 70 and 76% of 
200 requests in case of single-passenger and taxi sharing case 
respectively.  
This seemingly low efficiency is caused by the fact that the 
experiments cover very large urban area and the trips are quite 
long. Average passenger’s ride time among the successful 
requests from all the experiments is 1 hour, 17 minutes and 50 
seconds and average distance driven to serve one passenger is 
24.775km. This means that a single passenger occupies a 
vehicle for a relatively long time period, lowering the overall 
number of passengers that can be served. 
Figure 8 compares the success rate of single-passenger vs. taxi-
sharing service. It seems that the success rate of taxi-sharing 
service tends to be slightly higher. We suspect that the success 
rate difference between the two services would be higher if the 
requests were spread over a smaller area. 
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Fig. 6. Success rate of single-passenger taxi service with 10-25 
vehicles. Horizontal axis corresponds to number of requests per 
day, while vertical depicts the success rate (success rate of 1 
would mean that all the requests are served). 
 

 
 
Fig. 7. Success rate of shared taxi service with 10-25 vehicles. 
Horizontal axis corresponds to number of requests per day, 
while vertical depicts the success rate (success rate of 1 would 
mean that all the requests are served). 
 

 
 
Fig. 8. Success rate comparison of single-passenger and shared 
taxi service with 25 vehicles. Horizontal axis corresponds to 
number of requests per day, while vertical depicts the success 
rate (success rate of 1 would mean that all the requests are 
served). 
 
Spatial distribution of successful requests is depicted in Figure 
9. Brighter areas represent the locations where more passengers 
successfully travelled. On the other hand, Figure 10 depicts a 
distribution of failed requests. It seems that the tested services 
are unable to deal with high number of trip requests with 
destinations around Bondi Beach. 
 

 
 
Fig. 9. Successful requests of taxi-sharing service with 25 
vehicles depicted as a heatmap. The areas with higher density 
of successful request destinations are brighter. 
 

 
 
Fig. 10. Failed requests of taxi-sharing service with 25 
vehicles depicted as a heatmap. The areas with higher density 
of failed request destinations are brighter. 

5.3.2. Distance Driven per Vehicle 
Next indicator is an average distance driven by a vehicle. This 
might be useful for users who need to estimate the operating 
cost of their service.  
The testbed measures the length of all the simulated trips and 
divides it by the number of vehicles in the experiment. This 
also includes all the trips without any passengers on board. 
Measured values are in kilometers. 
In figures 11 and 12, we can see that the distance driven by the 
vehicles seems to stabilize around the frequency of 1250-1500 
requests per day. This suggests that the veicles are fully 
utilized (they are almost never idle) and an increase of request 
frequency beyond this point would not make them drive any 
more.  
Figure 13 depicts slightly lower distance driven by the vehicles 
of a taxi-sharing service. Even though the difference is not very 
big, in combination with Figure 8, we can see that taxi-sharing 
service vehicles are able to serve more passengers while, 
driving smaller distances. 
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Fig. 11. Average distance driven per vehicle of a single-
passenger taxi service with 10-25 vehicles. Horizontal axis 
corresponds to number of requests per day, while vertical 
represents the distance in km. 
 

 
 
Fig. 12. Average distance driven per vehicle of a taxi-sharing 
service with 10-25 vehicles. Horizontal axis corresponds to 
number of requests per day, while vertical represents the 
distance in km. 
 
 

 
 
Fig. 13. Comparison of average distance per vehicle for a 
single-passenger and taxi-sharing service with 25 vehicles. 
Horizontal axis corresponds to number of requests per day, 
while vertical represents the distance in km. 
 
 
 
 
 
 

5.3.3. Wait Time and Travel Time 
Last indicators studied using the testbed deal with the comfort 
of the passengers. We are interested in the average time spent 
waiting between the request announcement and the moment 
when the passenger is picked up by a taxi, as well as an 
average time that a passenger spends on the actual trip.  
As we can see in Figure 14, the average wait time of the 
passengers is 32:00 in case of single-passenger and 34:47 in 
case of taxi-sharing service. Relatively high waiting times are 
understandable, since the tabu search control mechanism does 
not explicitly minimize passenger’s wait time. On the contrary, 
it tends to prolong the wait time (within acceptable boundaries) 
if it allows the vehicles to fulfill more requests. 
We can also see that both the wait time and travel time are 
slightly higher in case of taxi-sharing service.  
 
 

 
 
Fig. 14. Average passenger’s wait time and travel time for a 
single-passenger and taxi-sharing services, computed over all 
88 experiments. Horizontal axis depicts the time in H:M:S 
format. 
 

5.4. Results Summary 
 
The experiment results suggest that in the scenarios covering a 
large area of 2255.902km2 the success rate of two on-demand 
services controlled by parallel tabu search heuristic decreases 
significantly with growing number of requests. According to 
expectations, the success rate is higher with a bigger vehicle 
fleet and and in case of taxi-sharing service.  
Using heatmap visualizations, we identified the locations in 
Sydney area with highest density of successful requests and 
found one problematic area with very high density of failures. 
Insight like this might be useful for users planning to 
implement such services in real world (they could consider 
modifying their intended coverage area or control 
mechanisms). 
Despite serving more passengers, the vehicles of taxi-sharing 
service seem to have slightly lower average distance driven per 
day. On the other hand, more effective utilization of vehicles in 
taxi-sharing service seems to negatively affect the waiting and 
travel times of the passengers.  

6. Conclusion 

 
We have presented a testbed for simulation-based evaluation of 
on-demand mobility services. The testbed allows its users to 
incorporate their own control mechanisms, to evaluate them 
with respect to a variety of performance metrics and to 
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compare their performance to alternative mechanisms under 
identical conditions using benchmark scenarios, based on 
realistic real-world or synthetic data. As such, the testbed can 
help policy makers and transport operators to assess on-
demand mobility services prior to their deployment as well as it 
can assist researchers in developing new control mechanisms 
of on-demand mobility. 
In the future, we aim to fully capitalize on the fact that the 
testbed is built on top of the versatile AgentPolis transport 
simulation framework. Two of the features that we plan to add 
in the near future are the incorporation of realistic time-
dependent speed profiles for road network links and the use of 
activity-based models for passenger demand generation. In a 
longer term, we aim to combine the model of on-demand 
mobility services with the model of other transport modes 
supported by AgentPolis in order to allow studying properties 
of on-demand mobility within the context of fully integrated 
multimodal transport systems. 
 
The testbed is freely available from: 
http://github.com/agents4its/mobilitytestbed/. 
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