
 Journal of Ubiquitous Systems & Pervasive Networks
Volume 6, No. 1 (2015) pp. 17-26

* Corresponding author. Tel.: +420 608346566
E-mail: certicky@agents.fel.cvut.cz
© 2015 International Association for Sharing Knowledge and Sustainability.
DOI: 10.5383/juspn.06.01.003

17

Analyzing On-demand Mobility Services by Agent-based Simulation

Michal Čertický*, Michal Jakob, Radek Píbil

Agent Technology Center, Faculty of Electrical Engineering

Czech Technical University, Prague, Czech Republic

Abstract
Widespread adoption of smartphones and ubiquitous internet connectivity gives rise to new markets for personalized and
efficient on-demand mobility services. To rigorously analyze new control mechanisms for these services, we introduce
an open-source agent-based simulation testbed that allows evaluating the performance of demand-responsive transport
schemes. In particular, our testbed provides a framework to compare both centralized and decentralized, static and
dynamic passenger allocation and vehicle routing mechanisms under various conditions; including varying vehicle
fleets, road network topologies and passenger demands. The testbed supports all stages of the experimental process;
from the implementation of control mechanisms and the definition of experiment scenarios, through to simulation
execution, analysis, and interpretation of results. Ultimately, our testbed accelerates the development of control
mechanisms for emerging on-demand mobility services and facilitates their comparison with well-defined benchmarks.
We illustrate our approach on an example simulation study of standard taxi and taxi sharing services in the area of
Sydney, Australia.

Keywords: On-demand Transport, Mobility, Testbed, Agent-based Simulation, Resource allocation, Vehicle rout

1. Introduction

On-demand mobility services have the potential to bring
significant improvements to personalized transport via efficient
utilization of transport vehicles. In on-demand mobility
services, vehicle routes and schedules are not fixed a priori;
instead, they are dynamically adapted to best serve
continuously incoming transport requests. Traditionally, on-
demand mobility approach was used mainly for providing
small-scale specialized transport services that required prior-
day booking. In the past years, enabled by the widespread
adoption of smartphones and ubiquitous internet connectivity,
on-demand mobility approach has been increasingly utilized
for general-purpose real-time ridesharing, taxi, or bus-on-
demand services. Looking to the future, new autonomous,
driverless vehicles, are set to lead to further growth in both
scale and scope of on-demand mobility services.
On-demand mobility services are inherently multi-agent. This
is due to a large number of geographically distributed
passengers, vehicles and service providers which, while having
their individual interests, have to coordinate and agree on how
the passenger demand is served by available transport
resources. As such, agent-based techniques are beginning to
play an important role in passenger allocation and vehicle
coordination [5].
The performance of on-demand mobility services with multi-
agent based allocation and coordination crucially depends on

two key factors: (1) the transport control mechanism used to
allocate vehicles to passengers and to determine vehicle routes

and timings; and (2) parameters of the deployment scenario, in
particular the topology of the underlying road network and
spatio-temporal structure of passenger demand. Understanding
how these factors affect the performance of the transport
system is essential for a principled development and
deployment of on-demand mobility services. Due to the
complex nature of demand-responsive transport systems,
however, gaining such understanding is difficult.
Simulation modelling is an established approach for analyzing
the behaviour of complex socio-technical systems and is
therefore also applicable for analyzing demand-responsive
transport systems. Unfortunately, out of the number of
transport simulation tools, none is specifically tailored and
consequently particularly suitable for simulation modelling of
on-demand mobility services.
In fact, within the broad family of pickup and delivery
problems, in which on-demand services are a special case,
benchmarking suites only exist for static freight transport
vehicle routing problems
(www.or.deis.unibo.it/research_pages/ORinstances/
VRPLIB/VRPLIB.html). To the best of our knowledge, no
benchmarking tools exist for dynamic, passenger-oriented
variants of the pickup and delivery problem. The key reason
for the lack of benchmarking tools is that a simulation engine is
required to rigorously account for temporal dependencies. This
means that benchmarking on-demand mobility services is a

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 18

significantly more challenging problem and cannot be solved
by simple evaluation tools that are sufficient for static variants
of the problem.
In this article, we detail our new simulation testbed - a rigorous
and flexible benchmarking suite for on-demand mobility
services. The testbed is based on our previous research in fully
agent-based simulation modelling of transport systems [7]. It is
built on top of a versatile transport simulation framework
AgentPolis [8].
The testbed is designed for two main purposes. The first
purpose is performance assessment of on-demand mobility
services prior to their deployment in new locations or under
different conditions. The second purpose is testing and
evaluation of novel control mechanisms, algorithms and on-
demand mobility schemes. As such, our testbed can speed up
the development and deployment of on-demand mobility
services.
The contributions of this article can be divided into three parts:
First, we describe the testbed and its architecture in Section 3,
then we explain the usage and experiment process in detail in
Section 4 and finally, we demonstrate how the testbed can be
used to evaluate and compare two examples of on-demand
mobility service in Sydney, Australia, in Section 5.

2. Related Work

Since 1970s, we have seen numerous attempts to study
mobility and transport systems in general by analytical
modelling. An extensive overview of analytical modelling
methodology, along with mathematical background can be
found in a monograph by Ortuzar and Willumsen [15]. Early
models of mobility systems were largely based on
mathematical programming and continuous approximations.
The former technique relied on detailed data and numerical
methods, whereas the latter relied on concise summaries of
data and analytic models. Geoffrion [16] advocated the use of
simplified analytic models to gain insights into numerical
mathematical programming models. In a similar spirit, Hall
[17] illustrates applications of discrete and continuous
approximations, and notes that continuous approximations are
useful to develop models that are easy for humans to interpret
and comprehend. Overview and classification of continuous
approximation models can be found in [18].
In some of the more recent work, the attention was focused on
demand-responsive mobility systems, which were formalized
as mathematical abstractions, such as dial-a-ride problem
(DARP) [19] or multiple depot vehicle scheduling problem
(MDVS) [20] to allow further formal analysis. For example,
Heuptmeier et al. [21] and Lipmann et al. [22] studied formal
properties of certain algorithms solving DARP and its variant
with restricted information.
Haghani and Banihashemi [23] addressed the influence of town
size on the performance of algorithms for MDVS and its
variant with route time constraints.
However, analytic models and theoretical algorithm analyses
were often too abstract for expressing relevant aspects in the
structure and dynamics of some transport systems. To deal with
this shortcoming, the paradigm of simulation modelling was
adopted by the transport research community and has been
employed in parallel with the analytical approaches. In 1969,
Wilson [24] conducted a pioneer simulation-based study of the
influence of the service area, demand density and number of
vehicles on the behaviour of transport system. Simulations
have since then been extensively utilized in the research of
transport and mobility, as a powerful tool for the analysis of
system's behaviour. To mention a few more examples, Regan

et al. \cite{regan1996dynamic} studied the performance of
freight mobility system using different lead acceptance and
assignment strategies, Fu [4] developed a simulation model of
an urban paratransit system and Deflorio et al. [30] evaluated
demand-responsive transport system under the influence of
real-life aspects, such as customer delays and travel time
variability.
Simulation modelling also allowed researchers to study DARP
or MDVS control mechanisms empirically (in addition to
formal algorithmic analysis). Bailey and Clark [31]
investigated the performance of one of them in relation with
varying vehicle fleet size. Jlassi et al. [10] simulated an
ambulance service implemented as dial-a-ride system and
Shinoda et al. [32] compared such systems to fixed-route
systems under varying circumstances. Diana [33] assessed the
effectiveness of scheduling algorithms under different
percentages of real time requests and intervals between call-in
time and requested pick-up time and Quadrifoglio and
Dessouky [14] studied the insertion heuristic scheduling
algorithm for Mobility Allowance Shuttle Transit systems, a
hybrid transit solution that merges the flexibility of dial-a-ride
systems and the low cost operability of fixed-route bus
services. More recently, d'Orey et al. [3] used simulations to
explore the trade-offs between the satisfaction of drivers and
passengers.
In these simulations, the system's behaviour could only be
centralized -- governed in a top-down manner by a single entity
or mechanism. Also, any self-initiated interactions,
communication or negotiation among individual actors (e.g.
passengers) was impossible, severely limiting their level of
autonomy. To overcome these limitations, a new paradigm
called Agent-based simulation was introduced. Agent-based
simulation has proven to be a highly valuable tool, especially
when studying complex self-organizing systems in many
domains [26]. Mobility systems modelled under this paradigm
are implemented as multi-agent systems -- i.e. composed of
autonomous entities termed agents situated in a shared
environment which they perceive and act upon, in order to
achieve their own goals. In the context of mobility, we usually
distinguish between three relevant types of agents: passengers
(announcing transport requests), drivers (serving passenger's
requests) and dispatchers (optional kind of agents who can
negotiate with passengers and coordinate the drivers).
 Agent-based simulations have been used to study various
aspects of mobility, as well as a number of different control
mechanisms. Horn [6] employed a simulation, developed
completely from scratch, to study operational characteristics of
a multimodal transport system integrating conventional
timetabled services (buses, trains, etc.) and flexible demand-
responsive mobility services (single- and multiple-hire taxis).
A combination of traditional and demand-responsive transit
was also simulated by Edwards [27]. The impact of zoning vs.
non-zoning strategies on demand-responsive mobility were
studied by Quadrifoglio and Dessouky in [13]. Real-time taxi
sharing schemes and ridesharing have been evaluated by
Kamar and Horvitz [11], Lioris et al. [12], or Agatz et al. [28],
while the efficiency of traditional taxi services have been
studied by Cheng and Nguyen [29].
Control mechanisms that govern the behaviour of mobility
systems are usually classified by the concentration of decision
making into:
• centralized (all the agents controlled by a central entity,

e.g. dispatcher)
• distributed (agents act based on their mutual, unorganized

interactions)
• hybrid (combination of those two)

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 19

Alternatively, control mechanisms may also be divided based
on the structure of transport demand they are dealing with into
static (all transport requests are known in advance) or dynamic
(future requests are unknown).
Since these control mechanisms represent a cornerstone of
mobility system's behaviour and success, significant amount of
research has been invested in them and more is still needed. It
therefore makes sense to develop software tools that would
assist in this research. The general idea of employing
simulation testbeds to accelerate the development of multi-
agent control mechanisms was put forward for example by [9].
A common attribute of simulations used in the works above is
that they were developed from scratch using general-purpose
programming languages (most often C++ or Java), in order to
demonstrate only a single specific mechanism. This is because
none of the existing general purpose (such as AnyLogic,
http://www.anylogic.com) as well as transport-specific
simulation tools (such as MATSIM, http://www.matsim.org or
SUMO, http://www.sumo-sim.org) has proven suitable for
simulation-based assessment of a wider variety of control
mechanisms.
The agent-based simulation testbed described in this article was
created to fill this gap and provide the researchers with a tool
necessary to analyze and compare the control mechanisms of
various classes without developing their own simulations.

3. Testbed Overview

Proposed simulation testbed is built upon the versatile transport
simulation framework AgentPolis, which provides abstractions,
code libraries and software tools for building and
experimenting with fully agent-based models of interaction-
rich transport systems.

3.1. Fully Agent-Based Simulation Approach

In fully agent-based simulations, individual entities of a
transport system are represented as autonomous agents with
continuous, asynchronous control modules and the ability to
interact freely with their surrounding environment and other
agents. Such an approach reduces coupling and allows
modeling scenarios in which agents adjust their plans at any
time during the day based on their observations of the
environment and/or communication with other agents.
The AgentPolis framework, which implements the fully agent-
based approach, provides several dozens of modelling elements
that can be used to build a wide range of simulation models.
The modelling elements provided by AgentPolis are organized
in a modelling ontology and can be grouped to three high-level
categories:

• Agent modelling elements:

The concept of the agent in AgentPolis is defined rather
loosely in order to support modelling a wide variety of
agents (e.g. DriverAgent). The behavior of agents is
defined in terms of activities - reactive control structures
implementing the logic determining which actions or
nested activities the agent executes at a certain point in
time or in response to sensor information or messages
received from other agents (e.g. DriveVehicle
activity). As part of their behaviour, agents may need to
make decisions that require executing complex
algorithms, including the ones that comprise the control
mechanisms we want to evaluate. In order to promote
reusability, such algorithms are encapsulated into so-
called reasoning modules. In practice, the reasoning

modules are Java classes (e.g. DriverLogic) that can
be easily rewritten to implement a wide variety of
algorithms, or even call external tools or solvers.

• Environment modelling elements:
The environment models the physical context in which the
agents are situated and act. It is represented by a
collection of environment objects, each representing a
fragment of the modelled physical reality (e.g.
Vehicle), and queries that allow agents to be informed
about the state of the environment and about the events
happening during simulation execution (e.g.
PositionQuery).

• Interaction modelling elements:
Modelling complex interactions among the agents or
between the agents and the environment is crucial for the
analysis of dynamic transport systems. In AgentPolis,
agent-environment interactions are realized by sensors,
which process the percepts from the environment and
atomic actions that provide a low-level abstraction for
modelling how agents actually manipulate the
environment (e.g. MoveVehicle). Inter-agent
interactions are realized by a collection of communication
protocols. The testbed currently provides 1-to-1
messaging, 1-to-many messaging and auction
protocols.

Detailed description of modelling abstractions and
corresponding model elements can be found in [7].

3.2. Testbed Architecture

Although all the power and flexibility of the AgentPolis
framework is accessible to the users of the testbed, it is hidden
and only the relevant parts of it are exposed through a facade of
APIs designed specifically for the simulation modelling of
demand-responsive transport systems.
The components of the testbed can be broadly divided into
three layers (see Figure 1):
• AgentPolis Transport Simulation Model: composed of the

core simulation engine and the basic transport domain
model. This model implements key elements comprising a
transport system, such as road network and vehicles, and
basic behavioral logic associated with them. It also
provides routing algorithms and communication interfaces
designed to simplify the implementation of higher-level
simulation logic.

• Testbed Core: specializes the general AgentPolis
simulator for the specific purpose of modelling demand-
responsive transport systems. It implements the model of
three types of agents (Passengers, Drivers and
Dispatchers) and provides extensible abstractions for
defining their behaviour.

• Control Mechanism: a user-supplied implementation of a
specific control mechanism that is to be experimentally
evaluated.

Fig. 1. Testbed's architecture overview.

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 20

In addition to these three layers, the testbed provides a suite of
tools that facilitate creation, execution and evaluation of
simulation experiments:

• Benchmark importer loads all the required input data

(discussed in detail in Section 4, constructs the graph
representation of a road network and creates the
environment objects and agents accordingly. All the
imported data is automatically checked for consistency in
order to prevent hard-to-trace errors. Resulting internal
representations are simplified by selectively removing
redundant information in order to accelerate the reasoning
without losing accuracy (see Figure 2).

Fig. 2. An integrated simplified transport graph combining
road and walkpath networks in Milan, Italy.

• Experiment management is supported by a benchmark

generator and tools for the design of experiment. The
generator allows users to build their own scenarios
covering real-world or fictional locations with custom
numbers and types of agents. Agents can be generated
either based on real-world data or randomly, using various
temporal and spatial distributions.
Since a robust evaluation of the control mechanism under
a sufficiently wide range of circumstances may require
many simulation runs, the testbed provides tools for
accelerating the evaluation process. In particular, it can
use design of experiments methods to generate simulation
configurations in a way so that maximum information
about the behaviour of the control mechanism is obtained
using a minimum number of simulation runs.

• The Analysis and visualization tools provide a way to
interactively browse and review simulation execution and
results at different spatial and temporal resolutions. This
assists researchers during the development and debugging
process, and allows them to find out how the tested
mechanisms perform under different conditions. The
aggregated results, as well as the visualizations, are
generated based on the detailed low-level event log
recorded during the simulation, containing all the
important events related to passengers
passGotInVehicle, passGotOffVehicle) and
drivers with their vehicles (vehicleMove) and all the
communication between the agents (e.g.
passSentRequest or requestConfirmed).

3.3. Transport Control Mechanism

Unless the studied control mechanism has some special
features, its incorporation into the testbed only requires
implementing several classes and methods. For example, in the
most simple case, the user only needs to extend the
DispatchingLogic class and implement its
processNewRequest(Request r) method.

The testbed allows us to incorporate and study a variety of
control mechanisms. They can be divided into centralized or
decentralized mechanisms, based on the degree of autonomy of
the drivers. We also distinguish between dynamic and static
control mechanisms, each suitable for the transport demand
with different temporal structure.

Centralized vs. Decentralized: In a demand-responsive
transport system, the behaviour of driver agents can be
governed either centrally by (single or multiple) dispatcher
agents, locally by the drivers themselves, or the combination of
both. The reasoning logic for individual agents and central
authorities is implemented by extending specific methods of
abstract classes PassengerLogic, DriverLogic and
DispatchingLogic (see Tables I, II and III).
Decentralized mechanisms are suitable in situations when
communication capabilities are restricted, or when the agents
are independent and self-interested but can still benefit from
collaboration (e.g. ridesharing [11]).

Static vs. Dynamic: Dynamic control mechanisms (sometimes
called “online”) process the travel demand requests when they
are announced. On the other hand, static (or “offline”)
mechanisms need to know all the requests in advance. Our
testbed grants the driver or dispatcher agents the access to
requests only after they are announced by the passengers.
Nevertheless, to also cater for the requirements of static
mechanisms, there are several benchmarks in which the travel
demand is announced long time in advance.

sendRequest(Request r): Called by the testbed
whenever this passenger is supposed to announce a new travel
request r, according to input data. The passenger should
contact other agents (dispatcher or drivers) within this method.
processProposal(Proposal p),
processRejection(RequestRejection r): Two
methods that are called when the passenger receives a trip
proposal p specifying details about the trip (e.g. price or arrival
time) or rejection r of his older request from a driver or
dispatcher.
vehicleArrived(String driverId, vehicleId):
Called when a driver arrives to pick the passenger up.
Typically, the passenger just gets on board this driver's vehicle.

Table I. Abstract methods of PassengerLogic class,
implementing the behaviour of passenger agents.

processNewRequest(Request r): A method called
whenever the driver receives a new travel request r from a
passenger or dispatcher. Here, the driver should react by
sending his trip proposal or request rejection.
processNewAcceptance(Proposal p): Called when
the driver's trip proposal p is accepted by the passenger. Here,
the driver usually plans his route and starts driving.
processNewRejection(Proposal p): If driver's
proposal p is rejected, the testbed calls this method.

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 21

processPassengerGotIn(String passengerId):
Called when the passenger gets on board this driver's vehicle.

Table II. Abstract methods of DriverLogic class,
implementing the behaviour of driver agents.

processNewRequest(Request r),
processNewAcceptance(Proposal p),
processNewRejection(Proposal p): The methods
with similar meaning as in DriverLogic class with the
exception that the dispatcher usually negotiates with
passengers and only sends instructions and routes to drivers.

Table III. Abstract methods of DispatchingLogic class,
implementing the behaviour of dispatcher agents.

4. Experiment Process

After the tested mechanism is incorporated into the framework,
the actual experimentation using the testbed follows a three-
step process, as depicted in Figure 3.

Fig. 3. Three-step process of the experiment (setup, simulation,
evaluation).

4.2. Scenario Definition and Setup

First of all, the user needs to set up and configure the scenario
under which he wants the control mechanism to be evaluated.
The scenario is described in terms of a benchmark package,
which consists of the following files:
• Road network - The road network in the experiment area

represented in the OpenStreetMap (OSM) format
(http://openstreetmap.org/).

• Driver agents - Description (in JSON) of all the relevant
drivers with their initial positions and the properties of
their vehicles including the capacity, fuel consumption,
CO2 emissions or non-standard equipment (e.g.
wheelchair accessibility).

• Travel demand - The exact representation (in JSON) of
travel demand containing all the passenger agents with
their associated trip details: origin and destination
coordinates, time windows, announcement time and
special requirements.

4.2. Simulation Execution

Once the model is set up, the user invokes the simulation
engine to execute the simulation. The AgentPolis engine

employs the discrete event simulation approach [2] in which
the operation of the target system is modelled as a discrete
sequence of (possibly concurrent) events in time. Each event
occurs at a particular time, with precision to milliseconds of the
simulation time, and marks a change of state of the modelled
system. Since there are no changes occurring between
consecutive events, the simulation can directly jump in time
from one event to the next, which, in most cases, makes it more
computationally efficient than time-stepped approaches.
The simulation progress can be presented visually during run-
time, using the internal visualization component of AgentPolis.
It is capable of displaying the transport network and agents
within the model, along with a convenient visualization of all
the ongoing events (see Figure 4).

Fig. 4. Runtime view of a running simulation. Road network,
Passenger and Driver agents are shown. Simulation events are
depicted in the overlay window.

4.4. Result Analysis and Visualization

From the low-level event log recorded during the simulation
run, the testbed calculates a range of higher-level, aggregate
performance metrics. By default, these include:
• total vehicle distance driven,
• total fuel consumption,
• total values of pollutant emissions,
• average vehicle productivity (passengers per hour),
• passenger's total travel time statistics (average, median

and maximum),
• passenger's on-board ride time statistics,
• passenger's waiting time statistics,
• total runtime of control algorithms.
Additional metrics can be defined. In addition to low-level
event logs and highly aggregated metrics, the testbed also
provides the means to visualize the simulation runs and results
in the geospatial and temporal context, using external tools.

The interactive geobrowser Google Earth
(http://earth.google.com/) can display the log of a simulation
run exported in Keyhole Markup Language (KML,
http://developers.google.com/kml/). It is capable of displaying
a large number of agents, along with simple geometry and
screen overlays, over a realistic satellite imagery and 3D model
of the environment (see Figure 5).

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 22

Fig. 5. Simulation run of on-demand transport coordination
scenario exported in KML format and displayed by Google
Earth. The input benchmark was based on historical traffic and
demand data from San Francisco, 2008.

Google Earth can be further used to display the values of
metrics as they vary across different areas. For example,
Figures 9 and 10 show a heat maps representing the spatial
distribution of successfully served and failed passenger trip
requests.

5. Example Study

To demonstrate how the testbed can be used, we have
implemented a control mechanism for dynamic multi-vehicle
dial-a-ride problem, based on parallel tabu search heuristic
[1]. We have run a series of experiments with it and evaluated
a performance of two on-demand mobility services controlled
by it: single-passenger taxi vs. taxi-sharing service.

5.1. Scenario Setup

Using our benchmark generator, we prepared 88 scenarios
divided into two collections situated in a city of Sydney,
Australia, covering the area of 2255.902km2. In both
collections, the travel requests of passenger agents were
generated with realistic temporal and spatial distribution,
taking into account peak/off-peak hours and spatial density of
points of interest (restaurants, bars, stores, etc.) in the input
OSM file. Passengers announced the travel requests 15 minutes
before desired departure and accepted rides that would end less
than 90 minutes from the announcement time. Each collection
contained 44 scenarios - one for every combination of the
number of vehicles (10 to 25 vehicles, increasing by 5) and
request frequency (100, 200, 300, 400, 500, 750, 1000, 1250,
1500, 1750 and 2000 requests per day). In the first collection
representing a single-passenger service, vehicles had the
capacity of 2, while in the second, “taxi-sharing” collection, the
vehicles had the capacity of 5 (in both cases, including the
driver).
We were particularly interested in the following performance
indicators for these two kinds of on-demand mobility services
in the Sydney area:
• Success rate (percentage of successful vs. failed requests),
• Average distance driven per vehicle,
• Average passengers waiting and travel time.

5.2. Implementation of the Control Mechanism

Since parallel tabu search is a centralized control mechanism
in a sense that the dispatcher agent has complete power over
the behaviour of all the vehicles, we only needed to extend the
abstract class DispatchingLogic and implement its
method processNewRequest(Request r), which is
called every time the passenger agent announces a travel
request.
This mechanism is considered a state of the art approach to the
problem of dynamic multiple vehicle dial-a-ride problem.
Details about it can be found in [1].

5.3. Simulation Results

We will divide the discussion of the simulation results into
three parts – each related to one of the performance indicators
of interest.
In first two cases, we will plot a series of charts depicting the
values of service’s success rate and the average driven distance
computed with different vehicle counts and under increasing
number of requests per day (request frequency). In the third
part, we will compare the average travel and waiting time in
case of both services.
This will let us estimate how many vehicles would a service
require in order to maintain a certain degree of efficiency under
varying demand, or decide whether it is advantageous to
introduce a taxi-sharing into this specific area.
Note that the testbed can also be used to gather a number of
other indicators (see Section 4.4.) and outputs can be presented
in different ways, according to the needs of the user.

5.3.1. Success Rate
Success rate is a key performance indicator - it tells us how
many passengers the studied service is able to serve per day.
The success rate is computed as a ratio of successfully served
transport requests and all the announced requests.
Figures 6 and 7 depict the unsurprisingly decreasing trend of
success rate values with the increasing request frequency. The
charts show us how many requests per day we would manage
to serve with different sizes of vehicle fleet. For example, 25
vehicles can successfully serve approximately 70 and 76% of
200 requests in case of single-passenger and taxi sharing case
respectively.
This seemingly low efficiency is caused by the fact that the
experiments cover very large urban area and the trips are quite
long. Average passenger’s ride time among the successful
requests from all the experiments is 1 hour, 17 minutes and 50
seconds and average distance driven to serve one passenger is
24.775km. This means that a single passenger occupies a
vehicle for a relatively long time period, lowering the overall
number of passengers that can be served.
Figure 8 compares the success rate of single-passenger vs. taxi-
sharing service. It seems that the success rate of taxi-sharing
service tends to be slightly higher. We suspect that the success
rate difference between the two services would be higher if the
requests were spread over a smaller area.

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 23

Fig. 6. Success rate of single-passenger taxi service with 10-25
vehicles. Horizontal axis corresponds to number of requests per
day, while vertical depicts the success rate (success rate of 1
would mean that all the requests are served).

Fig. 7. Success rate of shared taxi service with 10-25 vehicles.
Horizontal axis corresponds to number of requests per day,
while vertical depicts the success rate (success rate of 1 would
mean that all the requests are served).

Fig. 8. Success rate comparison of single-passenger and shared
taxi service with 25 vehicles. Horizontal axis corresponds to
number of requests per day, while vertical depicts the success
rate (success rate of 1 would mean that all the requests are
served).

Spatial distribution of successful requests is depicted in Figure
9. Brighter areas represent the locations where more passengers
successfully travelled. On the other hand, Figure 10 depicts a
distribution of failed requests. It seems that the tested services
are unable to deal with high number of trip requests with
destinations around Bondi Beach.

Fig. 9. Successful requests of taxi-sharing service with 25
vehicles depicted as a heatmap. The areas with higher density
of successful request destinations are brighter.

Fig. 10. Failed requests of taxi-sharing service with 25
vehicles depicted as a heatmap. The areas with higher density
of failed request destinations are brighter.

5.3.2. Distance Driven per Vehicle
Next indicator is an average distance driven by a vehicle. This
might be useful for users who need to estimate the operating
cost of their service.
The testbed measures the length of all the simulated trips and
divides it by the number of vehicles in the experiment. This
also includes all the trips without any passengers on board.
Measured values are in kilometers.
In figures 11 and 12, we can see that the distance driven by the
vehicles seems to stabilize around the frequency of 1250-1500
requests per day. This suggests that the veicles are fully
utilized (they are almost never idle) and an increase of request
frequency beyond this point would not make them drive any
more.
Figure 13 depicts slightly lower distance driven by the vehicles
of a taxi-sharing service. Even though the difference is not very
big, in combination with Figure 8, we can see that taxi-sharing
service vehicles are able to serve more passengers while,
driving smaller distances.

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 24

Fig. 11. Average distance driven per vehicle of a single-
passenger taxi service with 10-25 vehicles. Horizontal axis
corresponds to number of requests per day, while vertical
represents the distance in km.

Fig. 12. Average distance driven per vehicle of a taxi-sharing
service with 10-25 vehicles. Horizontal axis corresponds to
number of requests per day, while vertical represents the
distance in km.

Fig. 13. Comparison of average distance per vehicle for a
single-passenger and taxi-sharing service with 25 vehicles.
Horizontal axis corresponds to number of requests per day,
while vertical represents the distance in km.

5.3.3. Wait Time and Travel Time
Last indicators studied using the testbed deal with the comfort
of the passengers. We are interested in the average time spent
waiting between the request announcement and the moment
when the passenger is picked up by a taxi, as well as an
average time that a passenger spends on the actual trip.
As we can see in Figure 14, the average wait time of the
passengers is 32:00 in case of single-passenger and 34:47 in
case of taxi-sharing service. Relatively high waiting times are
understandable, since the tabu search control mechanism does
not explicitly minimize passenger’s wait time. On the contrary,
it tends to prolong the wait time (within acceptable boundaries)
if it allows the vehicles to fulfill more requests.
We can also see that both the wait time and travel time are
slightly higher in case of taxi-sharing service.

Fig. 14. Average passenger’s wait time and travel time for a
single-passenger and taxi-sharing services, computed over all
88 experiments. Horizontal axis depicts the time in H:M:S
format.

5.4. Results Summary

The experiment results suggest that in the scenarios covering a
large area of 2255.902km2 the success rate of two on-demand
services controlled by parallel tabu search heuristic decreases
significantly with growing number of requests. According to
expectations, the success rate is higher with a bigger vehicle
fleet and and in case of taxi-sharing service.
Using heatmap visualizations, we identified the locations in
Sydney area with highest density of successful requests and
found one problematic area with very high density of failures.
Insight like this might be useful for users planning to
implement such services in real world (they could consider
modifying their intended coverage area or control
mechanisms).
Despite serving more passengers, the vehicles of taxi-sharing
service seem to have slightly lower average distance driven per
day. On the other hand, more effective utilization of vehicles in
taxi-sharing service seems to negatively affect the waiting and
travel times of the passengers.

6. Conclusion

We have presented a testbed for simulation-based evaluation of
on-demand mobility services. The testbed allows its users to
incorporate their own control mechanisms, to evaluate them
with respect to a variety of performance metrics and to

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 25

compare their performance to alternative mechanisms under
identical conditions using benchmark scenarios, based on
realistic real-world or synthetic data. As such, the testbed can
help policy makers and transport operators to assess on-
demand mobility services prior to their deployment as well as it
can assist researchers in developing new control mechanisms
of on-demand mobility.
In the future, we aim to fully capitalize on the fact that the
testbed is built on top of the versatile AgentPolis transport
simulation framework. Two of the features that we plan to add
in the near future are the incorporation of realistic time-
dependent speed profiles for road network links and the use of
activity-based models for passenger demand generation. In a
longer term, we aim to combine the model of on-demand
mobility services with the model of other transport modes
supported by AgentPolis in order to allow studying properties
of on-demand mobility within the context of fully integrated
multimodal transport systems.

The testbed is freely available from:
http://github.com/agents4its/mobilitytestbed/.

Acknowledgments

This publication was supported by the European social fund
within the framework of realizing the project „Support of inter-
sectoral mobility and quality enhancement of research teams at
Czech Technical University in Prague“, CZ.1.07/2.3.00/
30.0034. Computational resources were provided by the
MetaCentrum under the program LM2010005 and the CERIT-
SC under the program Centre CERIT Scientific Cloud, part of
the Operational Program Research and Development for
Innovations, Reg. no. CZ.1.05/3.2.00/08.0144.

References

[1] A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte.
Parallel tabu search heuristics for the dynamic multi-
vehicle dial-a-ride problem. Parallel Computing,
30(3):377–387, 2004.
http://dx.doi.org/10.1016/j.parco.2003.12.001

[2] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol, et al.
Discrete-event system simulation. Pearson Prentice Hall
Upper Saddle River, NJ, 2005.

[3] P. M. d’Orey, R. Fernandes, and M. Ferreira. Empirical
evaluation of a dynamic and distributed taxi-sharing
system. In Proceedings of the 15th International IEEE
Conference on Intelligent Transportation Systems (ITSC),
pages 140–146, 2012.

[4] L. Fu. A simulation model for evaluating advanced dial-a-
ride paratransit systems. Transportation Research Part A:
Policy and Practice, 36(4):291–307, 2002.
http://dx.doi.org/10.1016/S0965-8564(01)00002-7

[5] A. Glaschenko, A. Ivaschenko, G. Rzevski, and P.
Skobelev. Multi-agent real time scheduling system for taxi
companies. In Proceedings of AAMAS 2009, pages 29–
36, 2009.

[6] M. Horn. Multi-modal and demand-responsive passenger
transport systems: a modelling framework with embedded
control systems. Transportation Research Part A: Policy
and Practice, 36(2):167–188, 2002.
http://dx.doi.org/10.1016/S0965-8564(00)00043-4

[7] M. Jakob and Z. Moler. Modular framework for simulation
modelling of interaction-rich transport systems. In
Proceedings of 15th International IEEE Conference on
Intelligent Transportation Systems. IEEE, 2013.

[8] M. Jakob, Z. Moler, A. Komenda, Z. Yin, A. X. Jiang, M. P.
Johnson, M. Pěchouček, and M. Tambe. Agentpolis:
towards a platform for fully agent-based modeling of
multi-modal transportation. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 3, pages 1501–1502.
International Foundation for Autonomous Agents and
Multiagent Systems, 2012.

[9] M. Jakob, M. Pěchouček, M. Čáp, P. Novák, and O. Vanek.
Mixed-reality testbeds for incremental development of
HART applications. IEEE Intelligent Systems, 27(2):19–
25, 2012. http://dx.doi.org/10.1109/MIS.2012.2

[10] J. Jlassi, J. Euchi, and H. Chabchoub. Dial-a-ride and
emergency transportation problems in ambulance services.
Computer Science and Engineering, 2(3):17–23, 2012.
http://dx.doi.org/10.5923/j.computer.20120203.03

[11] E. Kamar and E. Horvitz. Collaboration and shared plans
in the open world: Studies of ridesharing. In IJCAI,
volume 9, page 187, 2009.

[12] E. Lioris, G. Cohen, and A. de La Fortelle. Overview of a
dynamic evaluation of collective taxi systems providing an
optimal performance. In Intelligent Vehicles Symposium
(IV), 2010 IEEE, pages 1110–1115. IEEE, 2010.

[13] L. Quadrifoglio, M. M. Dessouky, and F. Ordonez. A
simulation study of demand responsive transit system
design. Transportation Research Part A: Policy and
Practice, 42(4):718–737, 2008.
http://dx.doi.org/10.1016/j.tra.2008.01.018

[14] L. Quadrifoglio and M. Dessouky. Insertion heuristic for
scheduling mobility allowance shuttle transit (mast)
services: sensitivity to service area. Computer-Aided
Systems in Public Transport, Springer Series: Lecture
Notes in Economics and Mathematical Systems, 600,
2007.

[15] J. de Dios Ortuzar and L. G. Willumsen. Modelling
transport. 1994.

[16] A. M. Geoffrion. The purpose of mathematical
programming is insight, not numbers. Interfaces, 7(1):81–
92, 1976. http://dx.doi.org/10.1287/inte.7.1.81

[17] R. W. Hall. Discrete models/continuous models. Omega,
14(3):213–220, 1986. http://dx.doi.org/10.1016/0305-
0483(86)90040-X

[18] A. Langevin, P. Mbaraga, and J. F. Campbell. Continuous
approximation models in freight distribution: An
overview. Transportation Research Part B:
Methodological, 30(3):163–188, 1996.
http://dx.doi.org/10.1016/0191-2615(95)00035-6

[19] D. M. Stein. Scheduling dial-a-ride transportation systems.
Transportation Science, 12(3):232–249, 1978.
http://dx.doi.org/10.1287/trsc.12.3.232

[20] L. Bodin and B. Golden. Classification in vehicle routing
and scheduling. Networks, 11(2):97–108, 1981.
http://dx.doi.org/10.1002/net.3230110204

M. Čertický, M. Jakob / Journal of Ubiquitous Systems & Pervasive Networks, 6 (2015) 17-26

 26

[21] D. Hauptmeier, S. O. Krumke, and J. Rambau. The online
dial-a-ride problem under reasonable load. In Proceedings
of the 4th Italian Conference on Algorithms and
Complexity, CIAC ’00, pages 125–136, London, UK, UK,
2000. Springer-Verlag.

[22] M. Lipmann, X. Lu, W. E. Paepe, R. A. Sitters, and L.
Stougie. On-line dial-a-ride problems under a restricted
information model. Algorithmica, 40(4):319–329, 2004.
http://dx.doi.org/10.1007/s00453-004-1116-z

[23] A. Haghani and M. Banihashemi. Heuristic approaches for
solving large-scale bus transit vehicle scheduling problem
with route time constraints. Transportation Research Part
A: Policy and Practice, 36(4):309 – 333, 2002.
http://dx.doi.org/10.1016/S0965-8564(01)00004-0

[24] N. H. M. Wilson, J. Sussman, L. Goodman, and B.
Hignnet. Simulation of a computer aided routing system
(cars). In Proceedings of the third conference on
applications of simulation, pages 171–183. Winter
Simulation Conference, 1969.

[25] A. C. Regan, H. S. Mahmassani, and P. Jaillet. Dynamic
decision making for commercial fleet operations using
real-time information. Transportation Research Record:
Journal of the Transportation Research Board,
1537(1):91–97, 1996. http://dx.doi.org/10.3141/1537-13

[26] F. Klügl. Agent-based simulation engineering. PhD thesis,
Habilitation Thesis, University of Würzburg, 2009.

[27] D. Edwards, A. Elangovan, and K. Watkins. Reaching
low-density urban areas with the network-inspired
transportation system. In Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference
on, pages 826–831. IEEE, 2012.

[28] N. Agatz, A. L. Erera, M. W. Savelsbergh, and X. Wang.
Dynamic ride-sharing: a simulation study in metro atlanta.

Procedia - Social and Behavioral Sciences, 17(0):532 –
550, 2011. Papers selected for the 19th International
Symposium on Transportation and Traffic Theory.

[29] S. F. Cheng and T. D. Nguyen. Taxisim: A multiagent
simulation platform for evaluating taxi fleet operations. In
Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent
Technology Volume 02, pages 14–21, 2011.

[30] F. P. Deflorio, B. Dalla Chiara, A. Murro, and M. A. SpA.
Simulation and performance of drts in a realistic
environment. In Proceedings of the 9th Meeting EWGT on
Intermodality, Sustainability and Intelligent Transportation
Systems and 13th Mini EURO Conference on Handling
Uncertainty in the Analysis of Traffic and Transportation
Systems, 2002, 2002.

[31] W. A. Bailey Jr and T. D. Clark Jr. A simulation analysis
of demand and fleet size effects on taxicab service rates. In
Proceedings of the 19th conference on Winter simulation,
pages 838–844. ACM, 1987.
http://dx.doi.org/10.1145/318371.318705

[32] K. Shinoda, I. Noda, M. Ohta, Y. Kumada, and H.
Nakashima. Is dial-a-ride bus reasonable in large scale
towns? evaluation of usability of dial-a-ride systems by
simulation. In Multi-agent for mass user support, pages
105–119. Springer, 2004. http://dx.doi.org/10.1007/978-3-
540-24666-4_7

[33] M. Diana. The importance of information flows temporal
attributes for the efficient scheduling of dynamic demand
responsive transport services. Journal of advanced
Transportation, 40(1):23–46, 2006.

