Riadok 3: Riadok 3:
 
Master's Program in Cognitive Science, Comenius University, Bratislava
 
Master's Program in Cognitive Science, Comenius University, Bratislava
  
<br />'''Lecturer:''' Mgr. Dana Retová., Centre for Cognitive Science, Dept. of Applied Informatics, room I-11, [mailto:dana.retova@ii.fmph.uniba.sk dana.retova@ii.fmph.uniba.sk]''' '''<br />'''Time/Place: '''Tue., 13:10, 4 hours weekly<br />'''Credits:''' 5
+
<br />'''Lecturer:''' Mgr. Dana Retová., Centre for Cognitive Science, Dept. of Applied Informatics, room I-11, [mailto:dana.retova@ii.fmph.uniba.sk dana.retova@ii.fmph.uniba.sk]''' '''<br />'''Time/Place: '''Tue., 14:00, 3 hours weekly<br />'''Credits:''' 5
  
 
==Indicative Content<br />==
 
==Indicative Content<br />==

Verzia zo dňa a času 14:21, 21. september 2009

Winter semester 2009/10

Master's Program in Cognitive Science, Comenius University, Bratislava


Lecturer: Mgr. Dana Retová., Centre for Cognitive Science, Dept. of Applied Informatics, room I-11, dana.retova@ii.fmph.uniba.sk
Time/Place: Tue., 14:00, 3 hours weekly
Credits: 5

Indicative Content

Cognitive Science is a new interdsciplinary field focusing on the study of mind and intelligent behavior. Its roots are in psychology, computer science, linguistics, neuroscience, antropology and philosophy. The goal of this course is to provide the students with an overview of theories, methods and topics of cognitive science: representational paradigms, perception, memory, learning and reasoning, language and communication, emotional, embodied and collective cognition. Examples of computational models of the studied cognitive phenomena will be presented.

Assessment

  1. [#rj Reflective journal & Readings] 40%
  2. [#op Oral presentation (peer lecture)] 40%
  3. [#rdfc Group work & Colloquium] 20%


Schedule

(The list of readings and other resources will be updated on the way.)

Session

Date

Topic

Presented by
(L = Lecturer,

S = Students)

Readings

1.

22.9

Introduction;

Resources, Methods, Sciences and

History of Cognitive Science

L

Session 1

2.

29.9

(13:00

-18:00)

experimental group work

assoc. prof.

Markus Peschl

from Vienna Univ.

-

3.

6.10

Cognitive phenomena: empirical research

(Memory, Learning, Reasoning)

L

Session 3



4.

13.10

Cognitive Science Paradigms:

Classical (computationalism)

Concepts to be worked on:

  • symbolic representation of the world
  • symbol grounding
  • syntax, semantics,
  • Physical Symbol Systems Hypothesis (PSSH)
  • algorithm,
  • computation + Turing machine,
  • Chinese Room argument

S:

Session 4

5.

20.10

Cognitive Science Paradigms:

Connectionism & Neural Computation

Concepts to be worked on:

  • symbolic versus subsymbolic representation
  • distributed representation
  • gradedness
  • graceful degradation
  • robustness
  • feedback
  • neural architecture & knowledge

S:

Session 5


6.

27.10

Cognitive Science Paradigms:

Embodiment & Situated Cognition

Concepts to be worked on:

  • embodied representation
  • image schemas & metaphors
  • emotional mind
  • subsumption architecture
  • intelligence without representation
  • Umwelt

S:

Session 6

7.

3.11

Cognitive Science Paradigms:

Dynamical Systems, Collective Cognition

Concepts to be worked on:

  • dynamical system
  • state space
  • attractor
  • emergence
  • adaptation
  • self organisation
  • interaction / coupling
  • Agent
  • multi-agent system
  • cultural cognition
  • enactment
  • Artificial Life

S:

Session 7

8.

10.11

Computational Modeling of Cognitive Phenomena

L

Session 8


-

17.11

no lesson!


9.

24.11

Language and Communication: Evolutionary View

L

Session 9

10.

1.12

Language: Phonology, Syntax,

Semantics, Pragmatics, Semiotics

L

Session 10

11.

8.12

Closing colloquium:

Future and Ethical Aspects of

Cognitive Science and

AI Research

Session 11

-

17.12

Informal meeting with Vienna MEiCogSci students + Christmas market in downtown

(voluntary)

==

Other resources:

  • Basic Concepts of Cognitive Science I. - parallel lecture of MEiCogSci program at Vienna Univ.
  • Wilson, R., Keil, F. (eds): The MIT Encyclopedia of the Cognitive Sciences. Cambridge: MIT Press 1999.
  • Johnson-Laird, P.: The Computer and the Mind, Harvard University Press, Cambridge, MA, 1988.
  • Rybár J. a kol. (eds.): Jazyk a kognícia, Kalligram Bratislava, 2005.
  • Rybár J. a kol. (eds.): Kognitívne vedy, Kalligram Bratislava, 2002.
  • Beňušková L. a kol. (eds.): Hľadanie spoločného jazyka v kognitívnych vedách, IRIS Bratislava, 2000.
  • Gál E., Kelemen J. (eds.): Myseľ, telo, stroj, BRADLO Bratislava, 1992.


Assessment details

Readings

Before each session, a student should carefully read at least one article from the related group of readings under the title READINGS (optional supplementary readings are below in SUPPLEMENTARY READINGS) and make up at least one question or a discussion point related to the chosen article. The discussion points should be posted under the corresponding thread (e.g. Session 2 - Readings) 'before the respective session'. If you are the first person to post the discussion point to a topic, please identify the topic you are reacting to in the subject of the thread (e.g. Session 2 - Journal).

Reflective Journal

The reflections will serve the lecturer as a feedback of students' understanding, as well as a platform for discussions among students themselves. Also, they will train the students in formulating and expressing their critical views on scientific content supported by relevant arguments.
The students are supposed to send their written reflections upon each week's topic (either a lecture or a presentation) by posting in on the forum under the corresponding thread.
Each reflection should be sent not later than one week after the lecture (i.e. by the next week session). If you are the first person to post the discussion point, please identify the lecture you are reacting to in the subject of the thread (e.g. Session 2 - Journal).
The reflection should include personal views, reactions to reading-related discussion points raised by colleagues, critical attitude and feedback to the content. It can roughly follow the scheme:

  1. How do I assess the quality of the lecture/presentation?
  2. Which parts were confusing or weakly explained? What did I miss? What more would I need to know?
  3. What (from the content) do I agree with and what do I disagree with? Why? Support by arguments and your experiences.
  4. Can I see any connections with my student's or practical background? Any application areas?
  5. Do I have any reactions to discussion points raised by my colleagues?

These example questions are just for inspiration, creative reflections are welcome!

Oral Presentations

Students will work in teams. Each team will have to prepare a presentation of one topic from the list above. The team will meet the lecturer one week before their presentation to consult the details. The team is responsible for the whole course of presentation, involving demonstrations, discussions etc.

Group work & Colloquium

Students will be evaulated for their activity during the group work (Sept 29) and the final colloquium (Dec 8).