Ca10 lesson01.png

Physical based Animations and Mathematical Modelling (Course Materials)

This lecture ...

  • Will focus on simulating natural phenomena
  • Will show you what are current topics
  • Will improve your skills in
    • Newtonian physics
    • Computational geometry
    • Algorithms and data structures
  • Hopefully will not be boring

Student Projects

D-E-A-D-L-I-N-E-S

  • Animators team (Axx): deadline 14.12.2015 the last lecture
    • Show your animation, how far have you made it. It should be 30% of the work done, otherwise your team gets Fx.
  • Coders team (Cxx): deadline 17.12.2015 the last exercise
    • Show the short DEMO of your project, how far have you made it. It should be 30% of the work done, otherwise your team gets Fx.
  • Coders team (Cxx): deadline 26.1.2016
    • Create a web page where you write your progress, upload source code, executable, images description of your project and short manual.
    • Send link to finished application (zipped source + executable.)
    • Your code should be well formatted and commented. Titles of functions, classes, variables should be representative for their purpose.
    • If you send it earlier you can get feedback how to improve your application
  • Animators team (Axx): deadline 26.1.2016
    • Create a web page where you write your progress, upload animation, source of animation, images description of your project and describe all physical effects to be evaluated.
    • Upload your animation video on youtube (or some alternative online service)
    • Send link to your webpage
    • If you send it earlier you can get feedback how to improve your animation
  • Oral/written exam (optional): deadline 18.1.2016, 8:00, classroom A
    • Instead of (optional) oral exam, you can get (0..+20) points due to a written exam.
    • It will be similar to final term, but less complicated.

What you Need to Pass

  • Attend lessons. All lessons attended is +0 points. Four and more missed is Fx.
  • Show your project (mandatory, 60 points). See later.
  • Solve all homework problems (mandatory each one >=30%, 40 points)
  • Pass oral/written exam: (optional, +0 .. +20 points) If you feel you are better, convince me ! You can get +20 points max.
  • Summary
    • Attendance = +0 or -100 (Fx)
    • Homework = +40..+12 or 12..0 (Fx)
    • Project = +60..0
    • Oral/written exam optional = +20..0
  • Grades
    • A = 92-100
    • B = 84-91
    • C = 76-83
    • D = 68-75
    • E = 60-67
    • Fx = 0-59

Oral Examination

To the oral examination all the above requirements must be SATISFACTORILY completed.

How to Arrange your Project

  • Take 1 friend and Team up
  • Role1: The Coder
    • Choose a given animation algorithm
    • Code up hot demo app and show it
    • Present a selected research paper
  • Role2: The Artist
    • Choose some authoring tool and create hot physically based demo reel
    • Present a selected research paper
    • Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
  • Projects with minimal requirements: Projects.pdf
  • Teams fill the form (names and project): deadline 5.10.2015 Submit a link to created web page with project description or animation story board where you write your progress, continually.


Lesson01 "Introduction to Computer Animation"

Ca10 lesson01.png

  • Introduction to Computer Animation
  • Common animation techniques
  • Cutting edge tools and packages
  • Gurus and the State of the Art
  • Lecture schedule
  • "Terms and conditions" of this lecture
  • Lecture notes: lesson01.pdf


Lesson02 "Basic methods in Computer Animation"

Ca10 lesson02.png

  • Problem definition and motivations
  • Key-framing and parameter interpolation
  • Quternions, orientation
  • Skeleton and skinning animation
  • Forward and inverse kinematics
  • Procedural techniques
  • (Motion capture)
  • Lecture notes: lesson02.pdf
  • Štátnicová téma: S1 Animácie pohybu a orientácie, interpolačný spline na animáciu pohybu, splinu podľa dĺžky krivky, quaternion a orientácia, interpolácie dvoch a viacerých quaternionov.


Lesson03 "Particle Systems"

Ca10 lesson03.png

  • Newton dynamics of particles
  • Ordinary differential equation (ODE) solver
  • Particle - obstacle collision detection
  • Practical design of particle system
  • Demos / tools / libs
  • Lecture notes: lesson03.pdf
  • Štátnicová téma: S2 Numerické riešenie diferenciálnych rovníc, Eulerova metóda, MidPoint metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku, sily odozvy (response forces).


Lesson04 "Soft bodies, Cloths and hair”

Ca10 lesson11.png

  • Problem definition and motivations
  • Modeling solids with stress and strain
  • Extending Mass-spring model for cloth and ropes
  • Massive (self) collision and resolution for cloths
  • Mesh-less deformations
  • Modeling solids with infinitely stiff springs
  • Demos / tools / libs
  • Lecture notes: lesson04.pdf
  • Štátnicová téma (Lesson 3,4): S3 Časticové systémy, rovnice pohybu prvého rádu, integračné metódy na výpočet rýchlosti a pozície, stavový vektor systému, vonkajšie sily, obmedzujúce podmienky – constraints, sily odozvy, kolízie častica - rovina.

Lesson05 "Broad Phase Collision Detection"

Ca10 lesson04.png

  • Problem definition and motivations
  • Hierarchical grids and spatial hashing
  • Sweep and prune and radix sort
  • Pair management – a practical guide
  • Demos / tools / libs
  • Lecture notes: lesson05.pdf
  • Assigment 3: assigment3.pdf

Lesson06 "Mid Phase Collision Detection"

Ca10 lesson05.png

  • Problem definition and motivations
  • Generic Bounding Volume Hierarchy (BVH)
  • Tandem BVH traversal
  • Proximity evaluation of primitive geometries
    • External Voronoi regions
    • Sphere x Capsule x Box x triangle collisions
  • Approximate convex decomposition
  • Lecture notes: lesson06.pdf
  • Assigment 4: assigment4.pdf

Lesson07 "Narrow Phase Collision Detection"

Ca10 lesson06.png

  • Problem definition and motivations
  • Proximity queries for convex objects (Minkowski space)
  • GJK based algorithms (GJK, EPA, ISA-GJK)
  • Voronoi-Clip (V-Clip) Algorithm
  • Signed Distance Maps for collision detection
  • Demos / tools / libs
  • Lecture notes: lesson07.pdf
  • Štátnicová téma (Lesson 5,6,7): S4 Detekcie kolízie, nutná a postačujúca podmienka kedy nie sú dve telesá v rovina, broad phase (hierachycká mriežka), mid phase (hierarchie obálok, Voronoiove oblasti v kolízii, vysvetlujte na príklade kolízie gula x kapsula, dekompozícia telesa na konvexné časti), narrow phase (Minkowskeho priestor a blízkosť konvexných telies).

Lesson08 "All Saints' Day (no lesson)"

Ca10 lesson07.png

  • No lesson


Lesson09 "Rigid body Dynamics”

Ca10 lesson08.png

  • Problem definition and motivations
  • Dynamics of rigid bodies
  • The equation of unconstrained motion (ODE)
  • User and time control
  • Mass properties of polyhedral objects
  • Demos / tools / libs
  • Lecture notes: lesson08.pdf
  • Štátnicová téma (Lesson 9): S5 Dynamika tuhých telies, definícia problému, rovnice pohybu (4 ODE), rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica hybnosti (matica inercie).

Lesson10 "Rigid body Collisions and Joints”

Ca10 lesson09.png

  • Problem definition and motivations
  • Simplified collision model
  • Impulse based collision equation
  • Friction-less collision resolution
  • Algebraic collision resolution for Coulomb friction
  • Linear and angular joint formulations
  • Demos / tools / libs
  • Lecture notes:lesson09.pdf


Lesson11 "Fluid, Fire and Smoke”

Ca10 lesson10.png

  • Problem definition and motivations
  • Navier-Stokes equations for fluid dynamics
  • Grid based MAC method
  • Particle based SPH method
  • Neighbor search for coupled particles
  • Modeling smoke and fire with fluid
  • Demos / tools / libs
  • Lecture notes: lesson10.pdf

Lesson12 "Final term"

Ca10 lesson12.png

  • Don't panic - just few simple questions

Lesson13 "Animation Show"

  • Show your animation to your colleagues


SEMINARS

  • Your presence at the seminar is optional.
  • On every seminar we will focus on the selected problems from lessons. We will use the numerical methods to solve specific problems.

ASSIGMENTS

  • quaternion interpolation

uloha1.pdf (deadline 8.10.)

resources:

catmull-rom.pdf

http://run.usc.edu/cs520-s15/quaternions/quaternions-cs520.pdf

http://www.academia.edu/4095904/Quaternion_calculus_as_a_basic_tool_in_computer_graphics

  • differential equations

uloha2.pdf

RESOURCES

Revision as of 09:39, 2 October 2015 by Mihalik (Talk | contribs)