• EN

Mathematics 2-IKV-102

The lectures will provide students with basics of propositional and predicate logic, linear algebra, mathematical analysis, and probability that are important for the study of informatics and its role in (computational) cognitive science. At the same time, students will learn about mathematical culture, notation, way of thinking and expressing oneself.

Course schedule

Type Day Time Room Lecturer
Lecture/Excercise Thursday 09:50 M-112 Martina Koronci Babinská
Excercise/Lecture Thursday 14:50 M-V Martina Koronci Babinská

Syllabus

Date Topic References
03.10. Introduction. The basics of logic and proving methods: propositional logic. Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here; chap. 2.1, 2.2

05.10. The basics of logic and proving methods: predicate logic. Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here; chap. 2.4

10.10. The basics of logic and proving methods: the sets of numbers, rationality and irrationality of numbers Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here; chap. 3

12.10. The basics of logic and proving methods: mathematical induction Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here; chap. 3

Homework

Date Homework Points References
05.10. 1. Choose 1 Exercise from the Exercise 2.1 (page 54). 2. Is 0/0 = 0 statement or not? Why 1 point 1 point Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here;

12.10. 1. Choose 2 Exercises from the Exercise 2.4 (page 100). 1 point / exercise Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004; Download here;

References

• Discrete and combinatorial mathematics: An applied introduction / Ralph P. Grimaldi.

Rose-Hulman Institute of Technology: Pearson, 2004. Download here;

• Calculus / Gilbert Strang. Massachusetts Institute of Technology: Wellesley-Cambridge Press. Download here;
• Fundamentals of Linear Algebra / James B. Carrell. Canada: University of British Colombia, 2005. Download here;
• Artificial Intelligence: A Modern Approach / Stuart Russell and Peter Norvig. The USA: Pearson, 2010. Download here;

Course grading

To be classified student has to achieve at least 50% of every activity:

PROJECT

• form: essay, presentation, song or movie
• topic: What does mathematics mean for me? What am I expecting from this course?
• term: 27.10.2017
• goal: self-study motivation
• weight: 15%

WEEKLY EXAMS

• form: 10-15 minutes writing tests
• term: every Thursday at the beginning of the exercise
• goal: regular preparation
• weight: 40%
• note: student can also achieve extra (bonus) points for: weekly homeworks, class work (solving problems and schoolmate’s help) and/or self-activity (lecture preparation… )

MIDDLE TERM EXAM

• form: 90 minutes writing test (student can choose from the offered task sets)
• term: 16.11.2017
• goal: progress definition
• weight: 15%

FINAL EXAM

• form: 90 minutes writing test
• term: January, February 2018
• goal: course output
• weight: 30%

OVERALL GRADING: A > 90%, B > 80%, C> 70%, D > 60%, E > 52% points.