Line 78: | Line 78: | ||
=== Lecture07 "BRDF." === | === Lecture07 "BRDF." === | ||
− | + | * Bidirectional Reflectance Distribution Function (BRDF) | |
− | + | * Reflection models | |
− | + | * Projection onto spherical basis functions | |
− | + | * Shading Phong model, Blin-Phong model | |
* Lecture notes: [[media:cg2_lesson07.pdf|lesson07.pdf]] | * Lecture notes: [[media:cg2_lesson07.pdf|lesson07.pdf]] | ||
− | Homework: 1. Prove that the specular BRDF from slides less07 fulfills the BRDF properties: reciprocity, energy conservation, definit space, value space of BRDF | + | * Homework: |
− | 2. Derive the equation for reflected direction Omega_r from shading document. | + | ** 1. Prove that the specular BRDF from slides less07 fulfills the BRDF properties: reciprocity, energy conservation, definit space, value space of BRDF |
+ | ** 2. Derive the equation for reflected direction Omega_r from shading document. | ||
---- | ---- | ||
Revision as of 21:06, 1 April 2015
Contents
- 1 Computer Graphics 2
- 2 Seminars on Computer Graphics 2
- 2.1 Rules / Info
- 2.2 Homeworks
- 2.3 Exercises
- 2.3.1 Exercise00 [18.02.2015] "Introduction"
- 2.3.2 Exercise01 [25.02.2015] "Ray Casting"
- 2.3.3 Exercise02 [4.03.2015] "Primitives"
- 2.3.4 Exercise03 [11.03.2015] "Shader & Shading & Shadow"
- 2.3.5 Exercise04 [18.03.2015] "Lights & Shadows"
- 2.3.6 ExerciseLab [25.03.2015] "Laboratory Experiment"
- 2.3.7 Exercise05 [01.04.2015] "More About Shaders"
Computer Graphics 2
What you Need to Pass
- Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
- Project and exercise (mandatory, 10+50 points).
- Solve all homework problems (mandatory each one >=30%, 10 points)
- Pass final term (mandatory, 20 points) You will need to solve several problems discussed during lessons.
- Pass oral/written exam: (mandatory, +20 points)
- Summary
- Attendance = 0 or -100 (Fx)
- Exercise = +50..0
- Bonus = +10..0 (optional)
- Homework = +10..4 or +4..0 (Fx)
- Final term = +20..0
- Oral/written exam = +20..0
- Grades
- A = 92-100
- B = 84-91
- C = 76-83
- D = 68-75
- E = 60-67
- Fx = 0-59
- VIEW RESULTS
- Final Term by Modddle Ecetronic test (18.5.2015 8:10 in B)
- Schedule
- Mon (8:10) - Room B (lecture)
- Wed (16:30) - Room I-H3 (seminar)
Materials to read
- http://www.cs.princeton.edu/courses/archive/fall00/cs426/
- http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/
- http://www.amazon.com/Mathematics-Computer-Graphics-Undergraduate-Science/dp/1849960224
- http://www.martinus.sk/?uItem=19688 - Moderni Pocitacova Grafika
Lecture01 "Introduction to Computer Graphics"
Lecture02 "Ray Tracing 1."
- TayTracong Pipeline
- Lecture notes: lesson01.pdf
Lecture03 "Ray Tracing 2."
- Ray Intersections
- Lecture notes: lesson01.pdf
Lecture04 "Ray Tracing 3."
- Ray Tracing Acceleration
- Data structure: grids, BVH, Kd-tree, Directional Partitioning
- Dynamic Scenes
- Beam and Cone Tracing
- Packet Tracing
- Lecture notes: lesson02.pdf
- Poznámky v Slovenčine k téme Dátové Štruktúry a Kd-tree.
- Štátnicová téma: Kanál metódy sledovania lúča. (definícia lúča, popis metódy sledovania lúča, generovanie lúča, pochod po lúči (ray traversal), prienik lúča s trojuholníkom, stromová štruktúra lúčov (ray tree) a jej použitie na výpočet lokálnej farby, problém presnosti priesečníkov)
Lecture05 "Light Trasport."
- Physics behind ray tracing
- Physical light quantities
- Visual perception of light
- Light sources
- Light transport simulation: Rendering Equation
- Lecture notes: lesson05.pdf
Lecture06 "Radiosity."
- Diffuse reflectance function
- Radiative equilibrium between emission and absorption, escape
- System of linear equations
- Iterative solution Neuman series
- Lecture notes: lesson05.pdf
- Boo chapter Shading: shading.pdf
Lecture07 "BRDF."
- Bidirectional Reflectance Distribution Function (BRDF)
- Reflection models
- Projection onto spherical basis functions
- Shading Phong model, Blin-Phong model
- Lecture notes: lesson07.pdf
- Homework:
- 1. Prove that the specular BRDF from slides less07 fulfills the BRDF properties: reciprocity, energy conservation, definit space, value space of BRDF
- 2. Derive the equation for reflected direction Omega_r from shading document.
Seminars on Computer Graphics 2
Rules / Info
- On every seminar we will implement selected problems/algorithms related to lessons. We will usually - not necessary start with a prearranged template downloadable from this site.
- As a programming language we will use C#. We will use Visual C# 2010 as development environment. Alternatively you can use MonoDevelop (Linux / Mac OSX) on your own machine.
- Attendance at seminars is optional but recommended.
- Seminars are conducted by
- Michal Piovarči (cg2.2015.hw@gmail.com, Room M113)
- Schedule of seminars is
- Wed (16:30) - Room I-H3
Homeworks
- You can get max 100% per homework. Submission after deadline is for 0%.
- There is a min 60% of your final evaluation required for admission to final term.
- Additional activity can be awarder by max 10% of your final evaluation.
- Don't cheat - create instead. Any kind of cheating is punished by withholding 30% of your final evaluation for all involved students.
- As a homework, you will program what we could not finish during the exercise. Assignment and template will be downloadable from this site. See exercises.
- Homework must be submitted by email to cg2.2015.hw@gmail.com every week until the next Wednesday 16:30.
- Your submission email must have title in form 'ExNN' where NN is the number of exercise, eg. Ex05.
- It is required to submit zipped source code of your homework (preferably the whole solution). Do not send executable files. Homework without the source code is for 0%.
- Your code should be well formatted and commented. Titles of functions, classes, variables should be representative for their purpose. Homework without appropriate comments is for 0%.
- There are ~12 homeworks during the semester. This number can change due to holidays, tech. problems etc.
Exercises
Exercise00 [18.02.2015] "Introduction"
- Motivation?
- Theory / Reading?
- Scratchapixel Lessons - intersections, polygones, phong lighting
- Ingo Wald's Thesis - PhD. thesis about rendering, acceleration and global illumination.
- Physically Based Rendering
- Practice?
- Intro to c#?
- Visual c# 2010, c# 4.0 in a Nutshell
- Visual Shortcuts, SharpDevelop Short cuts
- Exercise "Vectors and Matrices" - CG1
- Seminar slides
Exercise01 [25.02.2015] "Ray Casting"
- Seminar slides
- Implement a camera class suitable for the ray casting method. As usual you should use a similar functionality as in the sample application. Application should specifically be able to:
- Render the scene (objects are movable).
- Move the camera in a 3D space.
- Change the camera's field of view (larger angle = more space to render), see Blender camera.
- Try to change the color of the intersected object due to distance from the camera
- '[2 bonus %]:
- Create a camera which will rotate around defined point P (target) along a sphere with r = 1. You can use ideas from the Blender camera system and / or two-angle camera in openGL. Camera should use some sort of interactivity (2 angles) and targeted point P should be movable. Bonus camera can be created in a separated solution or you can change the structure in the template to implement two different cameras.
- Example Camera Movement
- Sample | Template
- Deadline: 4. 3. - 16:30
Exercise02 [4.03.2015] "Primitives"
- Seminar slides
- Improve your tracer by adding a few primitives (ring, sphere, AABB box, triangle) [1] [2] [3] [4]. Each object should be movable. As usual you should use a similar functionality as in the sample application.
- '[1 bonus %]:
- Create also a cylinder and a cone primitives
- Sample | Template
- Deadline: 11. 3. - 16:30
Exercise03 [11.03.2015] "Shader & Shading & Shadow"
- Seminar slides
- Improve your tracer by adding shaders, shadows and lights. Implement checker and phong shader, sun light and hard shadows. Compute normals to each primitive in the point of intersection. As usual you should use a similar functionality as in the sample application.
- Sample | Template
- Deadline: 18. 3. - 16:30
Exercise04 [18.03.2015] "Lights & Shadows"
- Seminar slides
- Improve your tracer by adding a point light, spot light [5] and an area light. In the case of point and spot light, define the light as a point with hard shadows and linear/quadratic light attenuation [6]. Area light could be defined by Lights x Lights point lights. Area light should also be able to produce soft shadows.
- '[1 bonus %]:
- Write equation for illumination computed by sample code from seminar slides
- Sample | Template
- Deadline: 25. 3. - 16:25
ExerciseLab [25.03.2015] "Laboratory Experiment"
- Could we imitate materials from the real world?
- Yes we can and we will. Choose a sample paint and
- Measure its color in Lab and Convert to RGB - Easy RGB
- Measure gloss value in different conditions
- Write your results: Template
- Fill out online form with selected results (during the seminar)
- Guidelines are in the template
- Submit your results as a regular submission by mail
Exercise05 [01.04.2015] "More About Shaders"
- Seminar slides
- Improve your tracer by adding a few more shaders: Toon / Cell, Cook-Torrance, Oren-Nayar, Gradient. As usual you should use a similar functionality as in the sample application.
- Set Cook-Torrance color to match your measurements from Laboratory exercise.
- '[1 bonus %]:
- Implement chicken shader
- Sample | Template
- Deadline: 15. 4. - 16:25