Line 109: Line 109:
 
** [http://www.dofactory.com/ShortCutKeys/ShortCutKeys.aspx Visual Shortcuts], [http://www.shortcutworld.com/en/win/SharpDevelop_4.0.html SharpDevelop Short cuts]
 
** [http://www.dofactory.com/ShortCutKeys/ShortCutKeys.aspx Visual Shortcuts], [http://www.shortcutworld.com/en/win/SharpDevelop_4.0.html SharpDevelop Short cuts]
 
** Exercise "Vectors and Matrices" - [http://www.dai.fmph.uniba.sk/w/CG1_2013/en CG1]
 
** Exercise "Vectors and Matrices" - [http://www.dai.fmph.uniba.sk/w/CG1_2013/en CG1]
 
+
<!--
 
=== Exercise01 [26.02.2014] "Ray Casting" ===
 
=== Exercise01 [26.02.2014] "Ray Casting" ===
 
* Implement a camera class suitable for the ray casting method. As usual you should use a similar functionality as in the sample application. Application should specifically be able to:
 
* Implement a camera class suitable for the ray casting method. As usual you should use a similar functionality as in the sample application. Application should specifically be able to:

Revision as of 17:44, 14 February 2015

Cg2 2014.png

Computer Graphics 2

What you Need to Pass

  • Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
  • Project and exercise (mandatory, 10+50 points).
  • Solve all homework problems (mandatory each one >=30%, 10 points)
  • Pass final term (mandatory, 20 points) You will need to solve several problems discussed during lessons.
  • Pass oral/written exam: (mandatory, +20 points)
  • Summary
    • Attendance = 0 or -100 (Fx)
    • Exercise = +50..0
    • Bonus = +10..0 (optional)
    • Homework = +10..4 or +4..0 (Fx)
    • Final term = +20..0
    • Oral/written exam = +20..0
  • Grades
    • A = 92-100
    • B = 84-91
    • C = 76-83
    • D = 68-75
    • E = 60-67
    • Fx = 0-59
  • Schedule
    • Mon (8:10) - Room A (lecture)
    • Mon (10:40) - Room H3 (seminar)
    • Tue (09:50) - Room H6 (seminar)


Materials to read


Lesson01 "Introduction to Computer Graphics"

  • Computer Graphics Applications
  • Graphics Pipeline
  • Lecture notes: lesson01.pdf

Seminars on Computer Graphics 2

Rules / Info

  • On every seminar we will implement selected problems/algorithms related to lessons. We will usually - not necessary start with a prearranged template downloadable from this site.
  • As a programming language we will use C#. We will use Visual C# 2010 as development environment. Alternatively you can use MonoDevelop (Linux / Mac OSX) on your own machine.
  • Attendance at seminars is optional but recommended.
  • Seminars are conducted by
    • Matej Hudak (subseth.mato@gmail.com)
  • Schedule of seminars is
    • Wed (17:20) - Room I-H3
  • Other collaborators and authors: Juraj Onderik
  • Comment, errata, constructive criticism or suggestion - Make It Better

Homeworks

  • You can get max 100% per homework. Submission after deadline is for 0%.
  • There is a min 50% of your final evaluation required for admission to final term.
  • Additional activity can be awarder by max 10% of your final evaluation.
  • Don't cheat - create instead. Any kind of cheating is punished by withholding 30% of your final evaluation for all involved students.
  • As a homework, you will program what we could not finish during the exercise. Assignment and template will be downloadable from this site. See exercises.
  • Homework must be submitted by email to cg2.2014.hw@gmail.com every week until the next Wednesday 17:20.
  • Your submission email must have title in form 'ExNN' where NN is the number of exercise, eg. Ex05.
  • It is required to submit zipped source code of your homework (preferably the whole solution). Do not send executable files. Homework without the source code is for 0%.
  • Your code should be well formatted and commented. Titles of functions, classes, variables should be representative for their purpose. Homework without appropriate comments is for 0%.
  • There are ~12 homeworks during the semester. This number can change due to holidays, tech. problems etc.
  • Your Evaluation

Projects

  • There are no projects in this semester. However, if you want to implement something different than exercises you can choose e.g.:
    • Implement photon mapping method
    • Implement stochastic ray tracing method
    • Implement radiosity method
    • Implement ambient occlusion method
    • Implement path tracing method - CUDA or openCL required
    • Implement indirect lighting method
  • Deadline: 17.5. - 23:59
  • Evaluation will be calculated due to the complexity of your solution. Evaluation % will be summed into % from the exercises.


Exercises

Exercise00 [19.02.2014] "Introduction"