

Basic methods in
Computer Animation

Lesson 02

Lesson 02 Outline
 Key-framing and parameter interpolation
 Skeleton Animation
 Forward and inverse Kinematics
 Procedural techniques
 Motion capture

Key-framing

and parameter interpolation

Key-frame base Animation
 Comes from traditional frame-based animations
 Trivial principle

 Define object states (positions...) only in KEY frames
 Let the computer calculate the in-between frames by

interpolating state variables (positions...)
 Linterpolation types

 Simple linear interpolation (insufficient in most scenarios)
 Spline (cubic bezier) interpolation (commonly used)
 Spherical (linear/bezier) interpolation (for quaternions)

Parameter interpolation
 Structure of key-frame: Fi = (ti , pi)

 ti: Time of i-th frame
 pi: Parameter value of i-th frame (position, color...)

 Problem
 Having values in key-frames how to get reasonable values for

in-between frames ?
 Solution

 Given time t (ti < t < ti+1) and frames (Fi, Fi+1)
 Find parameter value p = I(t, Fi, Fi+1)
 Where I is some frame interpolation funtion

 Nearest neighbor interpolation
 Linear interpolation
 Spline and many more

Parameter interpolation
 Frame Interpolation algorithm

 Store key-frames Fi sorted by the time value ascending
 Given time t, use binary search to find interval (Fi, Fi+1)
 Calculate parameter p = I(t, Fi, Fi+1) with interpolation

 Optimization
 When time changes coherent: t' = t + dt where dt is small
 Use interpolation evaluator instead of binary search

 Interpolation evaluator (similar to iterator)
 Simple additional structure to store current key-frame and

estimate next key-frame
 Store intermediate results of previous interpolation
 etc

Nearest neighbor interpolation
 Method:

p = I(t, Fi, Fi+1) = Fi

 Pros
 Very fast evaluation
 Simple implementation

 Cons
 Sharp discontinuities (non-smooth)
 Non-physical motion
 Visually distracting

Linear Interpolation
 Method (LERP)

 Pros
 Continuous motion
 Fast and easy calculation and implementation

 Cons
 Motion is only linear
 Non-physical
 First time derivation of motion is discontinuous

p=1−spi−s pi1 where s=
t−t i
t i1−t i

Roman
Pencil

Cubic Bezier Interpolation
 N-th Bezier interpolation curve

 Parameter s (0 <= s <= 1) is not time !!!

 Cubic (3-th) Bezier interpolation curve
 Parameter s (0 <= s <= 1) is not time !!!

Bn s=∑
i=0

n

ni 1−sn−i si pi

B3s=1−s3p01−s2 s p11−s s2p2s
3p3

Cubic Bezier Interpolation
 Quadratic Bezier

 Quadratic (s^2) equation
 3 control points

 Cubic Bezier
 Cubic (s^3) equation
 4 control points

 Quartic Bezier
 Quartic (s^4) equation
 5 control points

Bezier Interpolation in key-framing

Bezier Interpolation in key-framing

Current time t

Find curve parameter s for time t
Calculate curve value B(s)

Curve interpolation in key-framing

 Curve parameter s is not time t (s != t)
 1) For given time t find curve parameter s

 No trivial analytic solution for cubic curves
 Solve it numerically using binary search (can be slow)

 Optimization for (1)
 Fix number of iterations, than use linear interpolation for s
 Precompute values into cache, that use neighbor interpol.

 2) With parameter s calculate curve value B(s)
 Evaluate parametric Bezier curve

Orientation in 3D
 Orientation in 3D has no natural representation
 There are more common definitions

 Orientation Matrix (Euler Angles)
 Orientation Axis and Angle
 Orientation Quaternion

 Each type has its pros/cons

Orientation Matrix (Euler Angles)

 Orientation is defined as 3 rotation angles
(Ax, Ay, Az) around X-axis, Y-axis and Z-axis

 Orientation is represented as composition of 3
orthonormal rotation matrices (Rx, Ry, Rz) around
(X, Y, Z) axes → R = Rx*Ry*Rz

 Not unique representation and “Gimbal Lock”
 Complicated decomposition (matrix → angles)

R xax =
1 0 0
0 cos a x −sin a x
0 sin a x cos a x

 R y a y =
cosa y 0 sin a y

0 1 0
−sin a y 0 cosa y

 R z a z=
cos a z −sin az 0
sin a z cosa z 0

0 0 1

Rotation Axis and Angle
 Every rotation in 3D can be defined by its

 Axis u=(x,y,z) (a direction that is left fixed by the rotation)
 Angle a (the amount by which the rotation turns)

 Axis-Angle → Rotation Matrix

X
X

X
Axis

AngleR=PI−Pcos a −Q sin a

P=
u xu x u xu y u xu z
u yu x u yu y u yu z
u zu x u zu y u zu z

=u uT I=
1 0 0
0 1 0
0 0 1 Q=

0 −u z u y
u z 0 −u x
−u y u x 0

Quaternions
 Similar to complex numbers
 Defined as: q = w + xi + yj + zk | i2 = j2 = k2 =

ijk = -1
 Add: p+q = (w+w) + (x+x')i + (y+y')j + (z+z')k
 Multiply: pq = (w + xi + yj + zk)(w' + x'i + y'j + z'k) =

(ww'-xx'-yy'-zz') + (wx' xw' yz' zy')i + (wy' xz' yw' zf')j + (wz' xy' yx'
zw')k

 More info on wikipedia

Roman
Pencil

Roman
Pencil

Roman
Pencil

Quaternions for spatial rotations

 Given unit rotation axis u=(x,y,z) |u|=1 and angle a
 Define quaternion q as: q = cos(a/2) + u sin(a/2)
 Any vector v can be rotated around u by angle a as

v ' = qvq-1 (quaternion rotation formula)
 Here v = (a,b,c) represents quaternion 0 + ai + bj + ck
 See proof in wikipedia – by converting into Rodrigues formula

 Rotation composition of p and q is r = pq
 rvr-1 = (pq)v(pq)-1 = pqvq-1p-1 = q(pvp-1)q-1

 Inverse rotation of q in q-1

 v = (q-1q)v(q-1q)-1 = q-1qvqq-1 = q-1(qvq-1)q

25

Quaternions: definition

 In condensed notation the quaternion can be expressed as q = (s,v) where s
is scalar part of q and v is the vector part with axes i, j, k.

 A unit quaternion (|qu| = 1) can be noted as
 The conjugate of quaternion q = (s,v) is equal to
 For a unit quaternion qu we have

 In the context of orientation interpolation, quaternion angle 2θ of qu can
be interpreted as the rotation angle while the vector v is the rotation axis.

),(v−= sq

1-
uu q q =

 sincos)) (), ((qu vθθ=

 Definition: A quaternion is noted q = s + vxi + vyj + vzk
 with s, vx, vy, vz: real numbers and i, j, k: imaginary numbers such that
i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

Spherical linear interpolation

 Given two unit vectors v0 and v1 and interpolation
parameter t in (0,1) the slerp in defined as

 Where angle a = cos-1(v0v1) is the angle between v0 and v1

 Applied to unit quaternions, slerp produces shortest
rotation with constant angular velocity between
orientations q0 and q1

slerpt , v0 ,v1=
sin 1−t a
sin a

v0
sin ta
sin a

v1

30

Quaternions: higher order interpolants
 Spherical linear interpolation between more than two key orientations

produces jerky, sharply changing motion across the keys. Higher order of
continuity is required, e.g., spherical equivalent of the cubic spline.

 A simple example of such construction is Catmull-Rom spline which
passes through the key points and has C1 continuity.

ttt
tt

t

Bezier
 construction

11
22

1

−+

+

ttt

tt
t

Catmull-Rom
construction

Input Quaternions
(points)

Interpolated
Quaternion (point)

03020100

121110

2120

30

qqqq
qqq

qq
q

The de Casteljau algorithm: the point
 b3

0 is obtained from repeated linear
interpolation for t=0.25.

0.25

t

t
t

31

Catmull-Rom spherical interpolation

32

Quaternions rotation matrices
 In animation system each key is usually represented as a single orientation

matrix. This sequence of matrices will be then converted into a sequence of
quaternions. Interpolation between key quaternions is performed and this
produces a sequence of in-between quaternions which are then converted
back to rotation matrices. The matrices are then applied to the object.

 To convert from an orthogonal rotation matrix to a
unit quaternion, we observe that if M = [mij] is the
affine transformation in homogeneous form:

 trace (M) = 4 - 4(X2 + Y2 + Z2) = 4 W2

 and then X, Y, Z can be calculated as:

A unit quaternion q = (W, (X,Y,Z)) is equivalent to the matrix:

Skeleton

Skinning

Skeleton Animation
 Inspired by skeleton system of animals
 Basic work-flow

 Create skeleton – connect bones into hierarchy - rigging
 Create skin – usually a polygonal mesh of animal
 Create vertex-bone weights - skinning
 Animate skeleton using any animation technique - posing

 Skeleton is usually a articulated structure of bones
 Skinning weights define how much each vertex

“belongs” to a given bone

Rigging skeleton
 Rigging

 Create bone hierarchy – skeleton – in initial pose
 Bone definition

 Name of bone
 Reference to parent bone (none for root bone)
 Set of child bone references (empty for leaves)
 Local transformation (position, orientation, scale)
 Length of bone (direction in local Z-axis)
 Various translation/rotation limits (e.g. knee joint)
 IK type – start / mid / end effector
 Weighting type – (cylinder, capsule, sphere...)

Complete skeleton example

Skinning skeleton
 Matrix palette skinning technique
 Each vertex of mesh (skin) has a small set of

skinning weights W = (w 0,w 1,w 2,w 3)

 Each weight w i belongs to one (close) bone Bi with
a world transformation matrix Mi

 The final vertex transformation is

v ' i=
1

∑
k=0

n

wk

∑
k=0

n

wkMk v i

Skin, Skeleton and Weights

Posing skeleton
 Only bone transformations are animated
 Any animation technique can be used
 World transformation Q of each bone is composed

recursively from parent transform
 Qi = MiQi-1 = Mi-1Mi-2 … M0

 where Qi is parent of Qi+1

 For leaf bones Qi = Mi

Posing skinned skeleton

 Forward and inverse Kinematicsinverse

Forward Kinematics
 Forward (direct) kinematics

 Put objects into transformation hierarchy
 Animate each transformation directly (eg by key-framing)
 Problem: Figure wants to reach a cup on a table by hand, but

how to interpolate transformations to get natural motion ?

Inverse Kinematics
 Overall strategy

 Set goal configuration of end effector
 Calculate interior bone angles

 Analytic al solutions : when linkage is simple
enough, directly calculate joint angles in
configuration that satisfies goal

 Numeric al solutions : complex linkages. At
each time slice, determine joint movements that
take you in direction of goal position

Inverse Kinematics Scenario

Goal

End Effec tor

1

2
3L1

L2
L3

Inverse Kinematics - Minimization

Solution = Minimum error

Any algorithm you can think
of, for finding the lowest
points on graphs can be
used for Inverse Kinematics.

Inverse Kinematics - Minimization
 Simple gradient minimization – find better

configuration gradient of angles

IK – Gradient by Measurement
 Pseudo-code: (for 2d, 2 angles)

distance = GetDistance(a,b)
while (Distance > 0.1) {
 da = GetDistance(a+1,b) – GetDistance(a-1,b);
 da = GetDistance(a,b+1) – GetDistance(a,b-1);
 a -= da; b -= db;
 Distance = GetDistance(a,b)
}

 GetDistance(a,b){
 Move joints using angles a and b, than return |target - tip|
}

IK – Gradient by Calculation
 Pseudo-code:

for each joint {
 if 3d: axis = joint rotation axis
 if 2d: axis = (0,0,1)
 toTip = tip – jointCenter
 toTarget = target – tip
 moveDir = cross(toTip, axis)
 gradient = dot(moveDir, toTarget)
 alpha -= gradient
}

 Force based algorithm

Procedural
Animation

 L-Systems
 Fractals

L-Systems

 Lindenmayer system (L-system) is a paralle l
rewriting sys tem (formal grammar)
 Most famously used to model the growth processes of plants

 Formal definition: L = (N,T,S,P)
 L – L-system is a 4-tuple
 N – Set of non-terminal letters (big letters)
 T – Set of terminal letters (small letters)
 P – Set of production rules

 Production Rule:
 Non-terminal → (non)terminal string
 Various sub-types exists (original: D0L system)

Example 1: Algae
 Lindenmayer's original L-system

 for modelling the growth of algae.
 L = ({A,B}, {}, A, {(A → AB), (B → A)}
 Grammar results:

 n = 0 : A
 n = 1 : AB
 n = 2 : ABA
 n = 3 : ABAAB
 n = 4 : ABAABABA
 n = 5 : ABAABABAABAAB
 n = 6 : ABAABABAABAABABAABABA
 n = 7 : ABAABABAABAABABAABABAABAABABAABAAB

Example 1: Algae
 n=0: start (axiom/initiator)
 n=1: the initial single A spawned into AB by rule (A → AB), rule (B → A) couldn't be applied
 n=2: former string AB with all rules applied, A spawned into AB again, former B turned into A
 n=3: note all A's producing a copy of themselves in the first place, then a B, which turns ...
 n=4: ... into an A one generation later, starting to spawn/repeat/recurse then

n=0: A
 / \
n=1: A B
 /| \
n=2: A B A
 /| | |\
n=3: A B A A B
 /| | |\ |\ \
n=4: A B A A B A B A

Example: Sierpinski triangle
 L = ({A, B}, {+, -}, A, {(A → B-A-B), (B → A+B+A)}
 Parameters: (angle = 60°)
 A, B: both mean "draw forward",
 +: means "turn left by angle" (turtle graphics)
 -: means "turn right by angle" (turtle graphics)
 The angle changes sign at each iteration so that

the base of the triangular shapes are always in the
bottom (they would be in the top and bottom,
alternatively, otherwise)

Example: Sierpinski triangle

Motion Capture

Motion Capture
 Inspired by Rotoscoping, capturing frames by

cameras
 Marker-based work-flow

 Attach reflex markers on key parts of actors body (knees...)
 Create skeleton and assign marker points
 Capture video-sequence of moving actor (multiple cameras)
 Use image based techniques to find 3d position of markers
 Animate the skeleton by the reconstructed path data

 Pros: faster, simpler, more precise
 Cons: Marker retouching, complex motion = many

markers

the
End

that was enough...

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24
	Snímka 25
	Snímka 26
	Snímka 27
	Snímka 28
	Snímka 29
	Snímka 30
	Snímka 31
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36
	Snímka 37
	Snímka 38
	Snímka 39
	Snímka 40
	Snímka 41
	Snímka 42
	Snímka 43
	Snímka 44

