

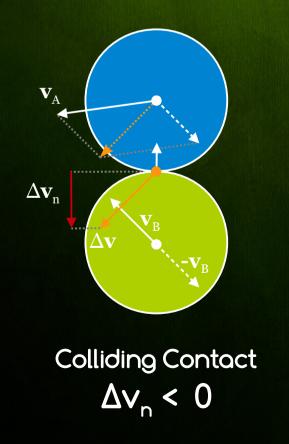
Rigid body Collisions and Joints

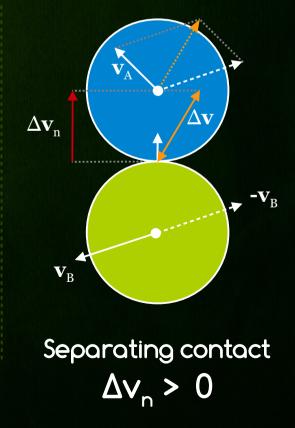
Lesson 09 Outline

- * Problem definition and motivations
- Simplified collision model
- * Impulse based collision resolution
 - Friction-less collision resolution
 - Algebraic collision resolution for Coulomb friction
- *Linear and angular joint formulations
- * Demos / tools / libs

Contact Types

- * Bodies either collide, rest or separate depending on their relative velocity of contact points
 - Assuming no rotational motion all 3 collision scenarios are:





Simplified collision model

* Perfect rigidity

Bodies are perfectly rigid. There are no plastic or elastic deformations, where kinetic energy is dissipated. Thus our impact models must artificially decrease the kinetic energy

Very short collision interval

We model highly elastic behavior, making the collision interval Δt very short requiring the repulsive forces to be very strong, to maintain the non-penetration constraint.

Direct velocity change

We need to integrate response forces during the collision interval into impulses and change objects velocities directly, causing discontinuities of motion.

Simplified collision model

* Non-impulsive forces are ignored

We can neglect all non-impulsive forces (e.g. gravity), because they are too small compared to the impulsive forces and have no time to accumulate during collision

* Point contact

We reduce the contact region to a set of point contacts treated either as a sequence of single collisions or as a simultaneous multiple impact similar to resting contact

* Constant state

We assume position, orientation, inertia tensor, contact point and contact normal constant, since their change during the collision is negligible. Velocities change strongly

Impulse based Collision Resolution

Collision Resolution

- * Rigid body collision resolution is described as Collision Laws composed of
- * Impact Model
 - Describes rules which preserve the non-penetration constraints of colliding bodies
- * Friction Model is responsible for creating frictional effects as
 - Sticking bodies rest on each other due to friction forces
 - Rolling bodies start to roll due to friction forces
 - Sliding bodies slow down sliding due to friction forces

Collision Resolution Strategies

* Algebraic Collision Resolution

→ Final velocities (impulse) are calculated using only algebraic relations between pre and post collision variables (velocities, energies...). No numerical ODE solvers → fast

* Incremental Collision Resolution

Evolution of the impulsive forces are described with some (ordinary) differential equation with initial and final conditions formed for compression and restitution phases.

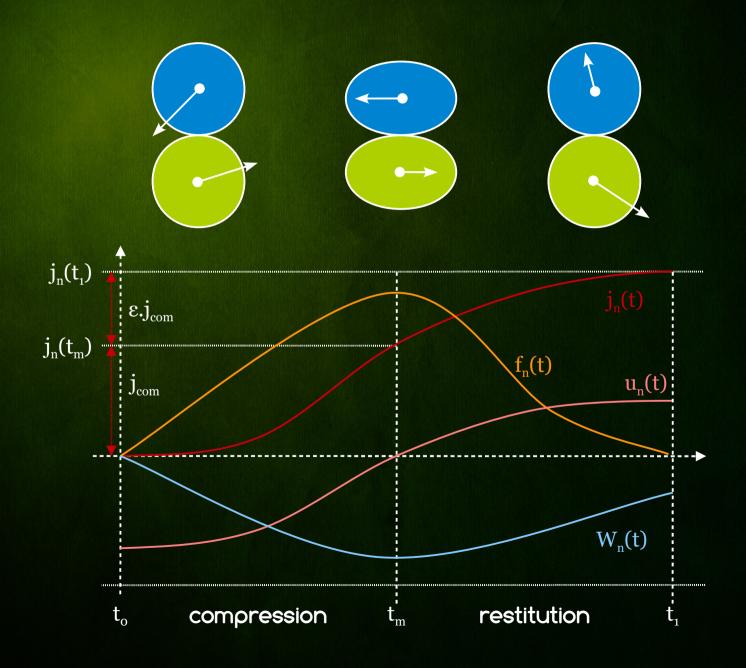
* Full Deformation Collision Resolution

Most accurate collision laws accounting with subtle stress and strain processes during the impact. Usually solved using finite element methods. Slow, not suitable for real-time apps.

Impact Model

- * In real world objects are never perfectly rigid.
 - First, their shape is compressed.
 - If they are elastic their shape is then restituted.
 - → If they are plastic their shape is then plasticlly deformed.
- * Impact model as a part of some collision law
 - Determines the post-collision velocities (positions, orientations...) which prevent bodies to penetrate.
 - Models as realistic as possible the process during the compression and restitution.
- * Time of maximum compression (t_m)
 - Time when compression ends and restitution starts.
 - Time when repulsive forces have maximal length

Impact Model



Newton's Impact Model

- * Newton's Impact Model states simple algebraic linear relation between
 - Pre-collision relative normal velocity u_n (t₀)
 - Post-collision relative normal velocity u_n(t)
 - \rightarrow Based on coefficient of restitution ε_n
- * Formally: $u_n(t) = -\varepsilon_n u_n(t_0) \equiv \mathbf{n}^T \mathbf{u}(t) = -\varepsilon_n \mathbf{n}^T \mathbf{u}(t_0)$
- * Main drawbacks
 - it "blindly" finds some impulse, which cancels the relative velocity, but have no idea about restitution force accumulation during the compression and restitution phase
 - Can add kinetic energy during collision.

Other Impact Models

* Poisson's Impact Model

- → Total impulse applied during compression $j_n(t_m)$ is proportional to the impulse applied during restitution $j_n(t_m) j_n(t_m)$
- \rightarrow Formally: $j_n(t_1) j_n(t_m) = \varepsilon_n j_n(t_m)$
- In friction-less case it is equal to Newton's model

* Stronge's Impact Model

- Directly relates the work of repulsive forces during compression W_n(t_m) and restitution W_n(t₁) - W_n(t_m)
- → Formally: $W_n(t_1) W_n(t_m) = -\varepsilon_n^2 W_n(t_m)$
- Kinetic energy can not be increased
- \rightarrow Coefficient of normal restitution ϵ_n is a property of material.

Coulomb Friction Model

- * In the real-world, microscopic interaction between colliding surfaces exerts frictional forces.
 - This process depends on many different factors, as microscopic structure of the surfaces, relative velocity, contact geometry, and other material properties.
- * Assume **f** is the repulsive force between bodies acting on contact point **p** and **u** is relative velocity
- * Both **f** and **u** can be split into
 - \rightarrow Normal components (f_n , u_n) parallel to contact normal
 - \rightarrow Tangential components $(f_{\downarrow}, u_{\downarrow})$ being inside contact plane

*
$$f = f_n + f_t$$
 and $u = u_n + u_t$

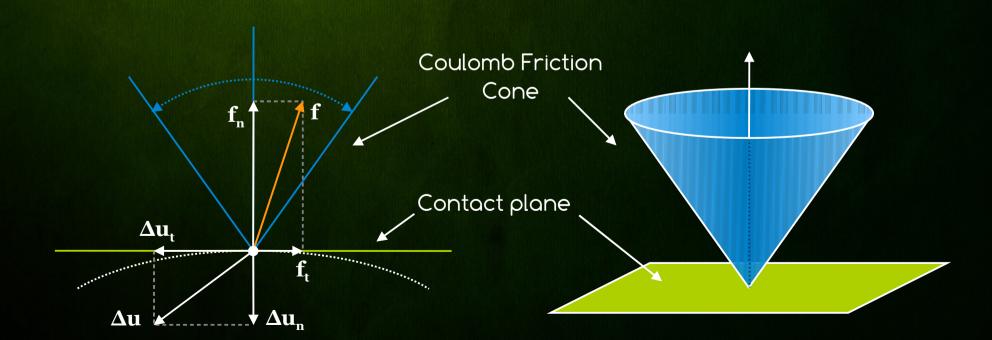
Coulomb Friction Model

* Coulomb Friction Law

- Friction force has opposite direction to relative tangential velocity and is proportional to normal repulsive force.
- → If the relative tangential velocity vanishes (is zero), we know only that the length of frictional component is less than µ times to the normal component.
- µ is the coefficient of friction and depends only on material
- * Sliding: $u_t = 0 \rightarrow f_t = -\mu |f_n|u_t / |u_t| \rightarrow |f_t| = \mu |f_n|$
- * Sticking: $\mathbf{u}_{t} == 0 \rightarrow |\mathbf{f}_{t}| \leq \mu |\mathbf{f}_{n}|$
- * In both cases $|f_t(t)| \le \mu |f_n(t)|$ thus for any direction friction force must lie in the friction cone

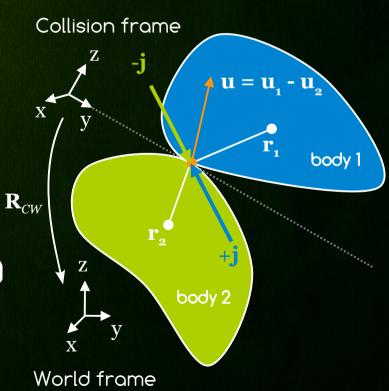
Coulomb Friction Model

- * Similar relation $|j_t| \le \mu |j_n|$ holds for impulses
 - $|j_t| = |\int_{t_0}^t f_t(\lambda) d\lambda| \le \int_{t_0}^t |f_t(\lambda)| d\lambda \le \mu \int_{t_0}^t |f_t(\lambda)| d\lambda = \mu |j_n|$



Impulse base Collision Scenario

- * Collision Frame
 - Origin is the contact point
 - Z axis is the contact normal
- *Relative velocity u on contact point is: u = u₁ u₂
- *Local body positions of contact point are: r₁ and r₂
- * Velocities are changed during collision due to applying collision impulses (+j) and (-j)



 Collision Impulse j is the time integral of the repulsive force f over the collision interval (t₀, t)

$$\rightarrow$$
 j = j(t) := $\int_{t_0}^t f(\lambda) d\lambda$

- * We define a delta operator " Δ " which for a given function " Ω " calculates the integral of its time derivative Ω ' (= d Ω /dt) over collision interval (t_0 , t)
 - $\rightarrow \Delta(\Omega) := \int_{t_0}^t \Omega'(\lambda) d\lambda = \Omega(t) \Omega(t_0)$
- * Due to Newton's Third (action-reaction) Law during the collision there are finite (but huge) repulsive forces which together with the opposite reactive forces are pushing bodies apart

- * Suppose some repulsive force +f (-f) pushes first (second) body at contact point p
- * We can express f using Newton-Euler equation

$$(+f) = P'_1 = (M_1 \vee_1)'$$
 $r_1 \times (+f) = L'_1 = (J_1 \omega_1)'$

$$(-f) = P'_2 = (M_2 \vee_2)'$$
 $r_2 \times (-f) = L'_2 = (J_2 \omega_2)'$

* Using the " Δ " operator we can express impulse j

$$(+j) = \Delta P_1 = M_1 \Delta V_1$$
 $r_1 \times (+j) = \Delta L_1 = J_1 \Delta \omega_1$

$$(-j) = \Delta P_2 = M_2 \Delta V_2$$
 $r_2 \times (-j) = \Delta L_2 = J_2 \Delta \omega_2$

* The velocity change due to applying an impulse is

$$\Delta V_1 = M_1^{-1} (+j)$$

$$\Delta \omega_1 = J_1^{-1} (r_1 \times (+j))$$

$$\Delta V_2 = M_2^{-1} \left(-j\right)$$

$$\Delta \omega_2 = J_2^{-1} (r_2 \times (-j))$$

* If we express current velocities u_1 , u_2 and their "change" Δu_1 , Δu_2 at the contact point ρ (t)

$$U_1 = V_1 + \omega_1 \times r_1$$

$$\Delta u_1 = \Delta v_1 + \Delta \omega_1 \times r_1$$

$$U_2 = V_2 + \omega_2 \times r_2$$

$$\Delta u_2 = \Delta v_2 + \Delta \omega_2 \times r_2$$

- * The final "change" of velocities after the collision
 - $\rightarrow \Delta u_1 = M_1^{-1} (+j) + J_1^{-1} (r_1 \times (+j)) \times r_1 = \dots = (M_1^{-1} 1 + r_1^{\times} J_1^{-1} r_1^{\times}) (+j) = K_1 (+j)$
 - $\Delta u_2 = M_2^{-1}(-j) + J_2^{-1}(r_2 \times (-j)) \times r_2 = ... = (M_2^{-1}1 + r_2^{\times}J_2^{-1}r_2^{\times})(-j) = K_2(-j)$
- * Final impulse-based collision equation is
- * $\Delta u = \Delta u_1 \Delta u_2 = K_1(+j) K_2(-j) = (K_1 + K_2)j = K j(t)$
 - → K₁ and K₂ are "Collision Matrices" of body 1 and 2
 - → K is "Relative Collision Matrix" symmetric positive definite
- * Impulse-momentum equation is thus
- * $j = K^{-1} \Delta u = K^{-1} (u(t) u(t_0))$
- *u(t) = u(t0) + Kj(t)

Friction-less Collision Resolution

- * Using Newton's impact model collision impulse is
 - \rightarrow Kj = Δ u = u(t) u(t_o) and j = |j|j_e
 - $\rightarrow n^T K |j|j_1 = n^T u(t) n^T u(t_0) = -\epsilon_n n^T u(t_0) n^T u(t_0) = -(1 + \epsilon_n) n^T u(t_0)$
 - $\rightarrow |j| = -(1 + \varepsilon_n) \mathbf{n}^T \mathbf{u}(t_0) / \mathbf{n}^T \mathbf{K} \mathbf{j}$
 - j is unit direction vector of impulse (parallel with impulse)
- * Collision impulse is related to pre-collision velocity
 - → In friction-less case repulsive forces acts only in the normal direction (to stop penetration), thus impulse is parallel to contact normal: j (t) = n

*
$$j(t) = |j(t)|n = \frac{-(1+\epsilon_n)n^Tu(t_0)}{n^TKn}$$

Collision Resolution with Friction

- * Considering friction we don't know the direction of the impulse.
- * Any collision impulse must be admissible
 - It must preserve non-penetration, satisfy the friction cone condition and dissipate energy
- * Friction cone Test
 - \rightarrow $j(t) = j_n(t) + j_t(t)$ and $j_n(t) = \mathbf{n}^T j(t) \mathbf{n}$
 - \rightarrow | j(t) \mathbf{n}^{T} j(t) \mathbf{n} | = | j_t(t) | $\leq \mu$ | j_t(t) | = \mathbf{n}^{T} j(t)
- * test(j) = $|j \mathbf{n}^T j \mathbf{n}| \mathbf{n}^T j(t)$
 - → If $test(j) \le 0$ → impulse is in friction cone
 - → If test(j) > 0 → impulse is not in friction cone

Algebraic Resolution Law I

* Given some positive real c and any vectors A, B we define "projection" function "kappa" as

$$\mathsf{kappa}(c, A, B) = \frac{c \mu \mathsf{n}^{\mathsf{T}} \mathsf{A}}{|\mathsf{B} - \mathsf{n}^{\mathsf{T}} \mathsf{B} \mathsf{n}| + \mu \mathsf{n}^{\mathsf{T}} (\mathsf{B} - \mathsf{A})}$$

* We define impulses P, P, and P

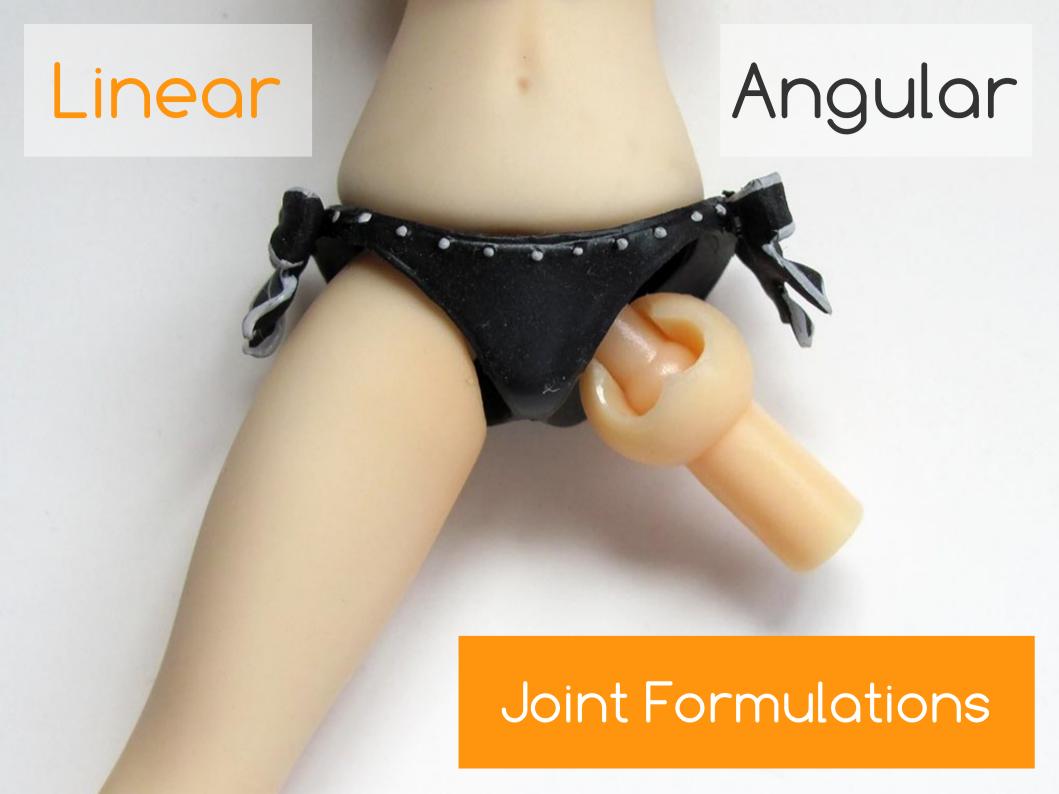
$$P_{I} = \frac{-(1+\epsilon_{n})n^{T}u(t_{0})}{n^{T}Kn}n = \frac{-n^{T}u(t_{0})}{n^{T}Kn}n$$

$$P_{II} = K^{-1}(u(t)-u(t_0)) = -K^{-1}u(t_0)$$

$$\mathbf{P} = (1 + \epsilon_n) \mathbf{P}_I + (1 + \epsilon_t) (\mathbf{P}_{II} - \mathbf{P}_I)$$

* Final impulse is

$$\mathbf{j} = (1 + \epsilon_n) \mathbf{P}_I + \kappa \left(\mathbf{P}_{II} - \mathbf{P}_I \right) \qquad \kappa = \begin{cases} (1 + \epsilon_t) & \text{test}(\mathbf{P}) \leqslant 0 \\ \text{kappa}(1 + \epsilon_n, \mathbf{P}_I, \mathbf{P}_{II}) & \text{test}(\mathbf{P}) > 0 \end{cases}$$

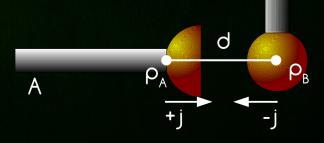


Linear and Angular Joints

- * 3 basic types of Linear joints
 - → 0,1,2,3 DOF for relative linear motion
 - Angular motion is unconstrained (= 3 angular DOF)
- * 3 basic types of Angular joints
 - → 0,1,2,3 DOF for relative angular motion
 - Linear motion is unconstrained (= 3 linear DOF)
- * Any 0-6 DOF joint constraint can be constructed as a combination of one linear and one angular joint
 - → Ball Joint = 0 linear and 3 angular DOF (= 3 DOF)
 - → Hinge Joint = 0 linear and 1 angular DOF (= 1 DOF)
 - Point on Plane Joint = 2 linear and 3 angular DOF (= 5 DOF)
 - Other joints ...

- * 0 linear DOF = Relative linear motion of bodies is fully constrained at some joint point p
 - Let ρ_A and ρ_B be on bodies A and B where the joint is applied.
- * To satisfy this joint, distance between ρ_A and ρ_B should be zero (within tolerance): $|\rho_A \rho_B| \rightarrow 0$
 - Suppose at t_0 the joint is satisfied. After Δt of free motion distance $d = \rho_A \rho_B$ can become non-zero.
 - Simplifying the relative motion of ρ_A and ρ_B is **linear** their relative velocity is simply $\Delta u = d / \Delta t$
- * From Impulse-momentum equation

*
$$j = K^{-1} \Delta u = K^{-1} (d / \Delta t)$$



- * 1 linear DOF = Relative linear motion of bodies is allowed along some line defined in one body
 Let I_A = (c_A, α_A) be the allowed line on A and ρ_B joint point on B
- * To satisfy this joint distance between l_A and ρ_B should be zero: $d(l_A, \rho_B) \rightarrow 0$
- * Similarly to previous joint we find the distance vector d between $l_{_{A}}$ and $\rho_{_{B}}$ and compute impulse
- * $j = K^{-1} \Delta u = K^{-1} (d / \Delta t)$

- 2 linear DOF = Relative linear motion of bodies is allowed along some plane defined in one body
 Let β_A = (c_A, n_A) be the allowed plane on A; ρ_B joint point on B
- * To satisfy this joint distance between β_A and ρ_B should be zero: $d(\beta_A, \rho_B) \rightarrow 0$
- * Similarly to previous joint we find the distance vector d between $\beta_{_{A}}$ and $\rho_{_{B}}$ and compute impulse
- * $j = K^{-1} \Delta u = K^{-1} (d / \Delta t)$

- * 3 linear DOF = Relative linear motion of bodies is unconstrained.
- * We do not need to apply any impulse here
 - → Assuming 3 angular DOF, the proposed joint has all DOF → Both relative linear and angular motion of bodies is unconstrained → there is no constraint at all. Bodies can freely move.

- * 0 angular DOF = Relative angular motion of bodies is fully constrained
 - \rightarrow Let q_{AO} and q_{BO} be initial orientation of A and B
 - Relative orientation of A and B is $\Delta q = (q_{B0}^{-1} q_B)^{-1} (q_{A0}^{-1} q_A)$
 - \rightarrow Δq is converted into axis-angle notation (a, α)
- * To satisfy this joint relative orientation Δq should be zero: Δq → 0
 - If relative angular motion is linearized relative angular velocity $\omega = (\omega_A \omega_B)$ is proportional to the angle α along direction a during Δt : $\omega = \alpha.a / \Delta t$
- * Angular momentum change is: $\Delta L = (J_1^{-1} + J_2^{-1})^{-1} \omega$
 - Change angular momentums: L_A += + ΔL and L_B += - ΔL

- * 1 angular DOF = Bodies are allowed to rotate around one common axis (defined in both bodies)
 - → Let a and a be the common unit axis in body A and B
 - \rightarrow Define the relative angular axis change as $d = a_A \times a_B$
 - Angular velocity change is proportional to d
- * To satisfy this joint relative orientation change d should be zero: d → 0
 - \rightarrow Similarly to previous joint relative angular velocity $\omega = d / \Delta t$
- * Angular momentum change is: $\Delta L = (J_1^{-1} + J_2^{-1})^{-1} \omega$
 - \rightarrow Change angular momentums: L_A += + Δ L and L_B += - Δ L

- * 2 angular DOF = Bodies are allowed to rotate around two linearly independent axes.
 - → Let a_A and b_B be unit rotation axes in body A and B
 - \rightarrow Define rotation change axis as c = $a_A \times b_B$
 - Angle $\varphi(t)$ = arccos($a_A(t)$, $b_B(t)$) between a_A and b_B must be constant during simulation
 - Relative orientation change is $d(t) = (\varphi(t) \varphi(0)) c$
- * To satisfy this joint relative orientation change d should be zero: d → 0
 - \rightarrow Similarly to previous joint, relative angular velocity $\omega = d / \Delta t$
- * Angular momentum change is: $\Delta L = (J_1^{-1} + J_2^{-1})^{-1} \omega$
 - \rightarrow Change angular momentums: L_A += + ΔL and L_B += - ΔL

- * 3 angular DOF = Relative angular motion of bodies is unconstrained.
- * We do not need to change angular momentum
 - → Assuming 3 linear DOF, the proposed joint has all DOF → Both relative linear and angular motion of bodies is unconstrained → there is no constraint at all. Bodies can freely move.

