Lesson Lesson 03

Scene Representation

Juraj Onderik londerik@scc9.sk

Outline of Lessons 02-03

- * Representation of curves
- * Representation of surfaces
- Representation of volumes

Dimension of Objects

- * Object = set of points in n-dimensional space
 - * "An object is k-dimensional if there is a continuous one-to-one mapping of the k-dimensional square on this object"
- * 0-dimensional objects = points
- * 1-dimensional objects = curves
- * 2-dimensional objects = surfaces
- * 3-dimensional objects = solids

Representation of Curves

What is Curve in CG

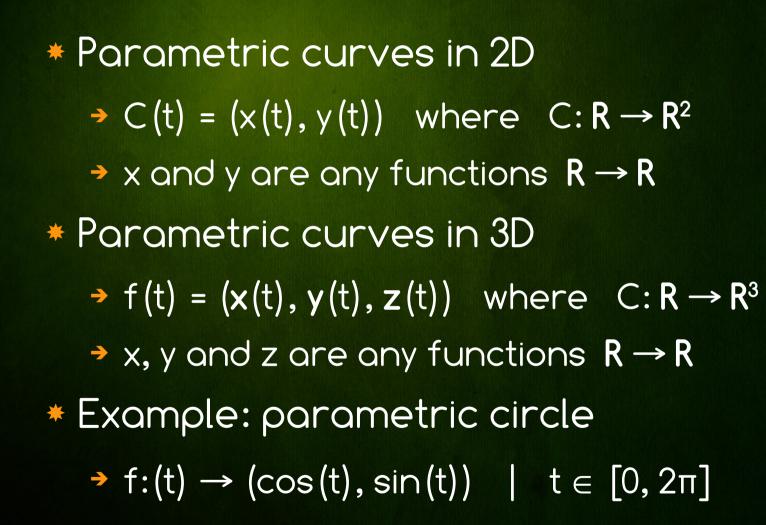
Informal definition

 Curve is the path of a continuously moving point in the space (2d or 3d) - is the set of all points where the moving point emerge during its motion

Mathematical descriptions

- Parametric Curves
- Implicit Curves
- * Application-based classification
 - Interpolation Curves
 - Approximation Curves

Parametric Curves



Implicit Curves

Implicit curves (only in 2D)

Implicit curve C is a set of points (x,y) where a given function c (x,y) is zero

→ C = { (x,y) | c(x,y) = 0 } where c: $\mathbb{R}^2 \rightarrow \mathbb{R}$

* Example: implicit circle

> C = { (x,y) | sqrt(x² + y²) - 1 = 0 }

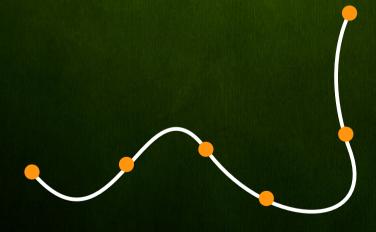
Parametric Polynomial Curves

- * Parametric curve C(t) = (x(t),y(),z(t)) is polynomial iff functions x,y,z are polynomials
 - $\Rightarrow x(t) = x_0 + x_1 t + x_2 t^2 + x_3 t^3 + \dots + x_n t^{nx} = \sum_{i=0..nx} x_i t^i$
 - → $y(t) = y_0 + y_1 t + y_2 t^2 + y_3 t^3 + ... + y_{ny} t^{ny} = \sum_{i=0..ny} y_i t^i$
 - → $Z(t) = Z_0 + Z_1 t + Z_2 t^2 + Z_3 t^3 + ... + Z_{nz} t^{nz} = \sum_{i=0..nz} Z_i t^i$
- Curve Cⁿ(t) is n-th degree polynomial if n_x=n_y=n_z=n
 - → Let $c_k = (x_k, y_k, z_k)$ then → $C^n(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + ... + c_n t^n = \sum_{i=0..n} c_i t^i$

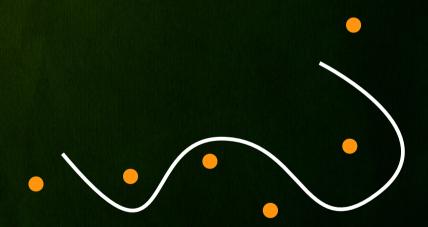
Application of Curves

* Curves are used in CG mainly for

- Interpolation of data
- Approximation of data



Interpolation Curve



Approximation Curve

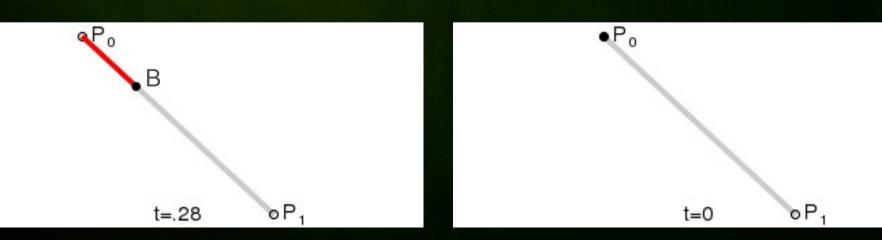
Approximation Curves

- Approximation Curves do not need to interpolate input data points (but can)
- Common approximation curves
 - Bézier Curve
 - B-Spline Curve
 - Catmull-Rom Spline
 - Cardinal Spline...

Linear Bézier Curve

 $* B^{1}(t) = (1-t)P_{0} + tP_{1}$

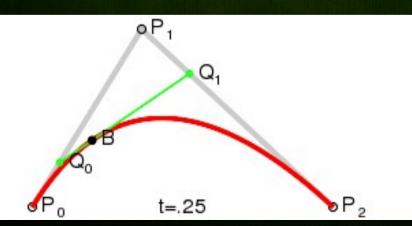
* Recursive evaluation $\rightarrow B = (1 - t)P_0 + tP_1$ (linear interpolation)

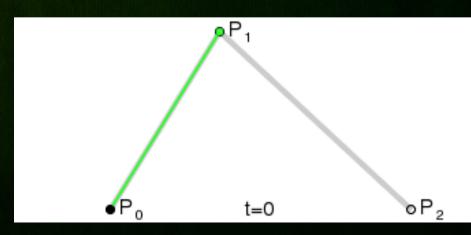


Quadratic Bézier Curve

*
$$B^{2}(t) = (1 - t)^{2}P_{0} + 2(1 - t)tP_{1} + t^{2}P_{2}$$

★ Recursive evaluation:
→ Q₀ = (1 - t)P₀ + tP₁ | Q₁ = (1 - t)P₁ + tP₂
→ B = (1 - t)Q₀ + tQ₁

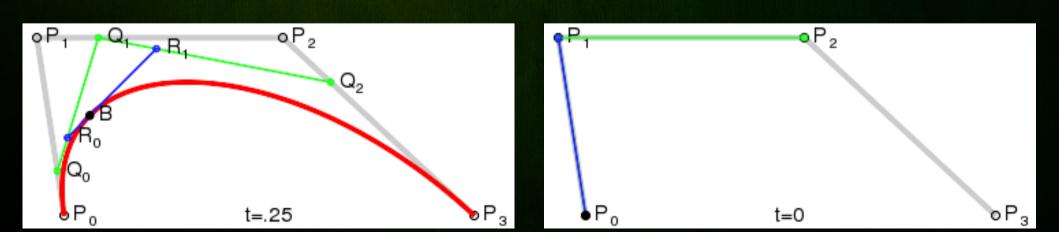




Cubic Bézier Curve

 $* B^{3}(t) = (1 - t)^{3}P_{0} + 3(1 - t)t^{2}P_{1} + 3(1 - t)^{2}tP_{2} + t^{3}P_{3}$

* Recursive evaluation: $\Rightarrow Q_0 = (1-t)P_0 + tP_1 | Q_1 = (1-t)P_1 + tP_2 | Q_1 = (1-t)P_1 + tP_2$ $\Rightarrow R_0 = (1-t)Q_0 + tQ_1 | R_1 = (1-t)Q_1 + tQ_2$ $\Rightarrow B = (1-t)R_0 + tR_1$



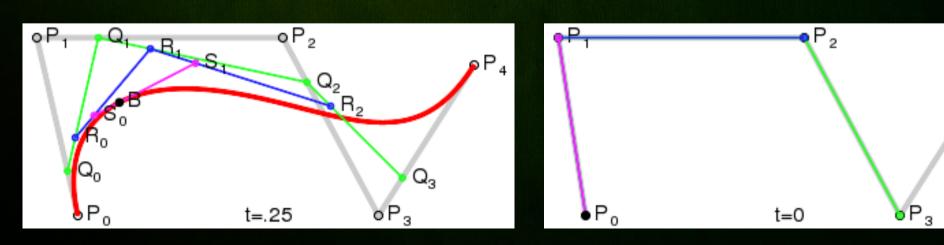
n-th Bézier Curve

 $* B^{n}(t) = \sum_{i=0..n} {n \choose i} (1 - t)^{n-i} t^{i} P_{i}$

Recursive evaluation (de Casteljau algorithm)
B^k_i(t) = (1-t)B^{k-1}_i(t) + tB^{k-1}_i(t)

oP₄

→ $B_i^0(t) = P_i^0$ → $B = B_0^0(t)$



Properties of Bézier Curve

- \rightarrow Interpolation of P₀ and P_n
- Curve is straight line iff all P_i are collinear
- The start (end) of the curve is tangent to the first (last) section of the Bézier polygon
- Always lies in convex hull of Bézier polygon
- Can be split at any point into two Bézier sub-curves
- Each n-th Bézier curve has an equally shaped (n+1)-th Bézier curve (degree elevation)
- → Is affine invariant → Affine transformation of curve is equal to curve produced from equally transformed control polygon

Rational Bézier Curves

* Weighted version of Bézier curve

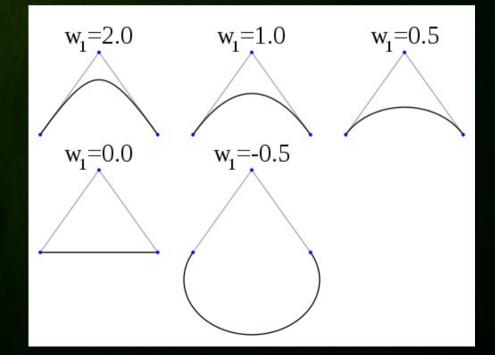
→ $B^{n}(t) = (1/W(t)) \sum_{i=0..n} {n \choose i} (1 - t)^{n-i} t^{i} w_{i} P_{i}$

→
$$W_i(t) = \sum_{i=0..n} {n \choose i} (1 - t)^{n-i} t^i w_i$$

* Pros

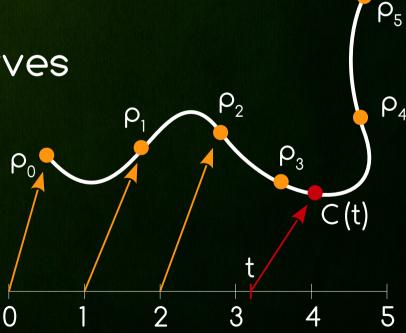
- Better local control
- Can express conics
- * Cons

Need more computation

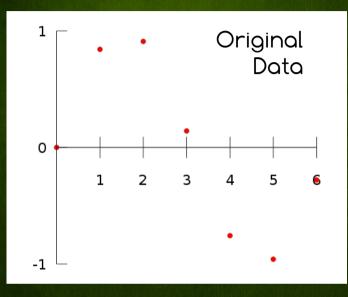


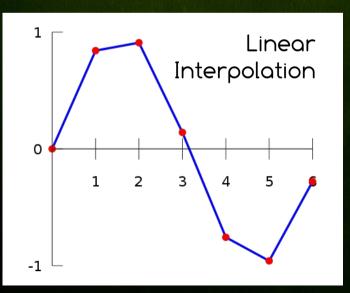
Interpolation Curves

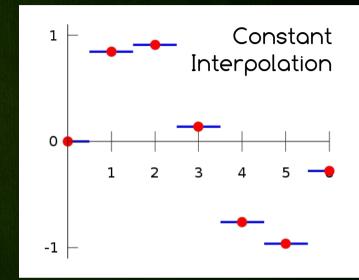
- * Given n interpolation points $\rho_0 \dots \rho_{n-1}$ we want to construct an interpolation curve C(t)
 - \rightarrow C(k) = ρ_k where k = 0 ... n 1
 - t ∈ [0, n − 1]
- Common interpolation curves
 - Lagrange interpolation
 - Piecewise Bezier Curve
 - Piecewise B-Spline Curve
 - Piecewise combinations...

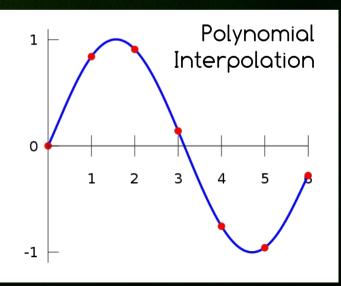


Interpolation Types









Lagrange Interpolation

 Given n+1 interpolation points Lagrange interpolation is

$$\rightarrow L^{n}(t) = \sum_{k=0..n} l_{k}(t) P_{k}$$

$$\rightarrow l_{k}(t) = v_{k}(t) / w_{k} = \prod_{0 \le i \ne k \le n} (t-i) / (k-i)$$

→
$$v_k(t) = (t-0)...(t-(k-1))(t-(k+1))...(t-n) = \prod_{0 \le i \ne k \le n} (t-i)$$

→ $w_k = (k-0)...(k-(k-1))(k-(k+1))...(k-n) = \prod_{0 \le i \ne k \le n} (k-i)$

* Pros: Polynomial, easy to implement

 Cons: huge Oscillations, large interpolation error

Piecewise Interpolation Curves

* Known as "Poly-Curves"

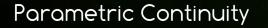
- Each segment between two interpolation points is a given curve
- Linear Poly-curve

* Cubic Bezier Poly-curve

Continuity in Poly-Curves

Parametric Continuity Cⁿ

- Segments have equal n-th derivative in interpolations points
- Tangents have equal direction and length
- Geometric Continuity Gⁿ
 - Tangents have equal direction but not length



Geometric Continuity

Continuity in Poly-Curves

* Parametric continuity classes

- C⁻¹ = curves include discontinuities
- C⁰ = curves are joined (continuous)
- C¹ = first derivatives are continuous
- \rightarrow C² = first and second derivatives are continuous
- Cⁿ = first trough n-th derivatives are continuous

C⁻¹ Continuity

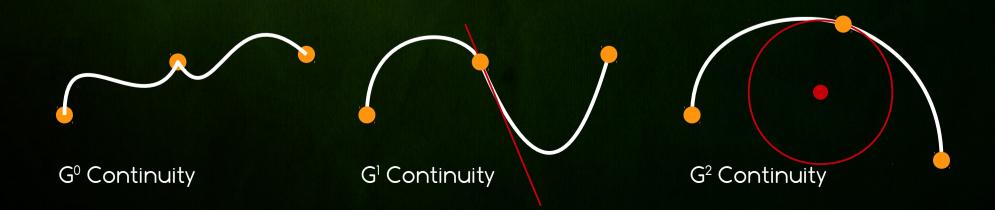
C⁰ Continuity

C¹ Continuity

Continuity in Poly-Curves

Geometric Continuity at joint point

- → G^0 = Curves touch at the join point (= C^0)
- \rightarrow G¹ = Curves share a common tangent direction
- → G² = Curves share a common center of curvature
- Curve is Gⁿ continuous if it can be reparametrized to have Cⁿ continuity



Representation

of Surfaces

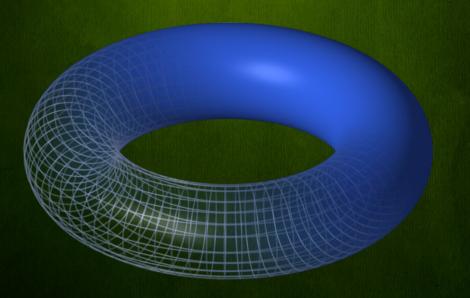
Surface Definition

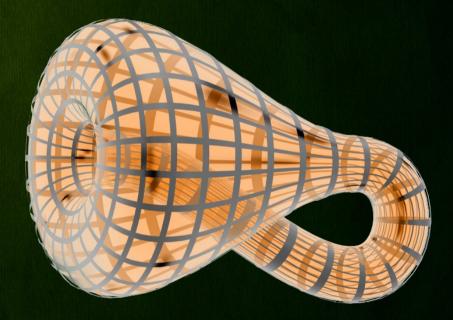
- Formally: "Surface is an orientable continuous
 2d manifold embed in R³"
- Informally: "Surface is the boundary of nondegenerate 3D solid"
- * Non-degenerate solid object
 - Each point is the space can be uniquely classified as either interior or exterior w.r.t. given object

Surface Classification

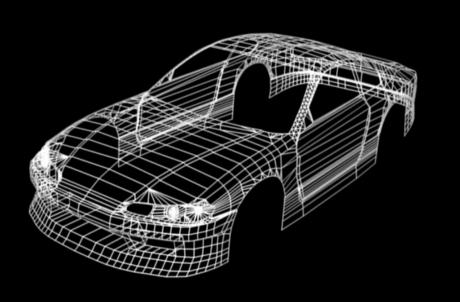
- * Orientable / Non-orientable
- * Open / Closed (with/without boundaries)
- Manifold / Non-manifold

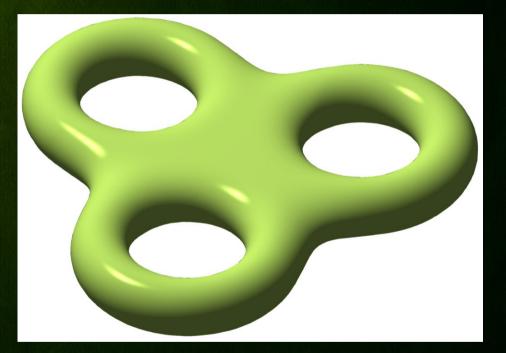
Orientable | Non-orientable



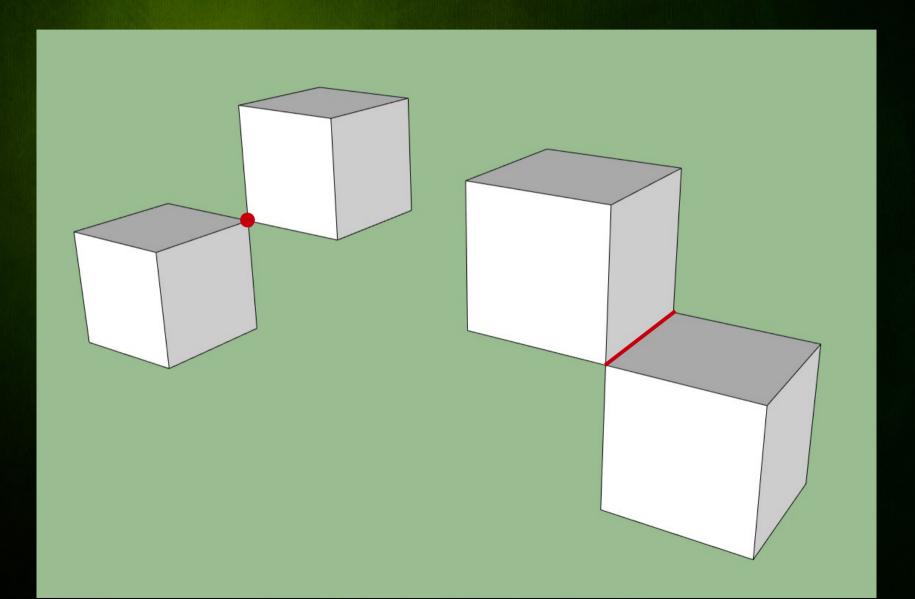


Open | Closed Surface



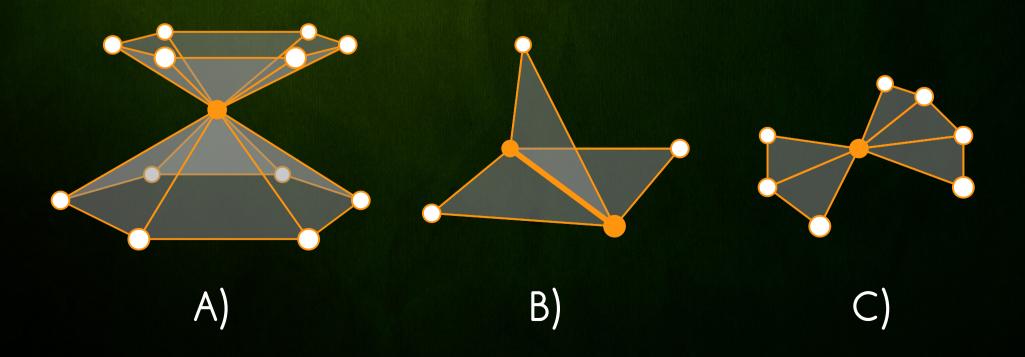


Non-manifold Cases



Non-manifold Cases

- A) Strictly non-manifold vertex
- * B) Non-manifold edge
- * C) Weak non-manifold vertex



Topological Classification

* Topological equivalence

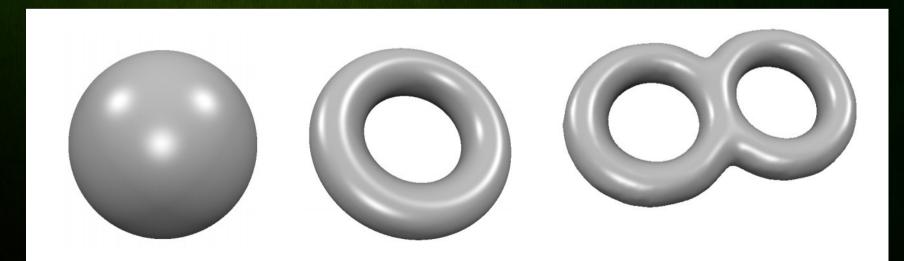
 Two surfaces are topological equivalent if we can transform one to each other using only continuous stretching and bending

* Genus of surface

The maximum number of cuttings along nonintersecting closed simple curves without rendering the resultant manifold disconnected

Surface Genus

- Genus 0 (Sphere):
 - Surfaces topologically equivalent to sphere
- * Genus 1 (Torus): ...
- Genus 2 (Double torus): ...



Operational Classification

* Evaluation

- The sampling of the surface geometry or of other surface attributes, e.g., the surface normal field.
- A typical application example is surface rendering

Modification

A surface can be modified either in terms of geometry (surface deformation), or in terms of topology, e.g., when different parts of the surface are to be merged.

Operational Classification

* Query

- → Spatial queries are used to determine whether or not a given point p∈ R³ is inside or outside of the solid bounded by a surface S
- This is a key component for solid modeling operations.
- Another typical query is the computation of a point's distance to a surface.

Parametric vs Implicit Surfaces

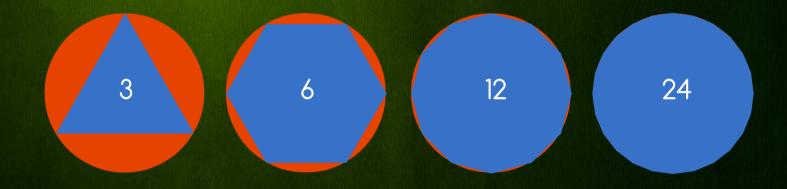
- * Parametric surfaces
 - → [3d] f: P → C | P ⊂ R², C = f(P) ⊂ R³
- Implicit surfaces
 - → [3d] f: $\mathbb{R}^3 \rightarrow \mathbb{O}$
- * Parametric circle
 - → f:(s,t) → (cos(t),sin(t)) | f: $[0,2\pi] \times [0,2\pi] \rightarrow \mathbb{R}^3$

Implicit sphere

→ F:(x,y) → sqrt(x² + y² + z²) - 1 | f: $\mathbb{R}^3 \rightarrow \mathbb{R}$

Mesh Representation

 Mesh: Piecewise linear approximation with error O (h²)



- Mesh elements
 - Face subset of a 3d plane
 - Edge Incident points of two (or more) faces
 - Vertex Incident points of min two edges

Mesh – Local Structure

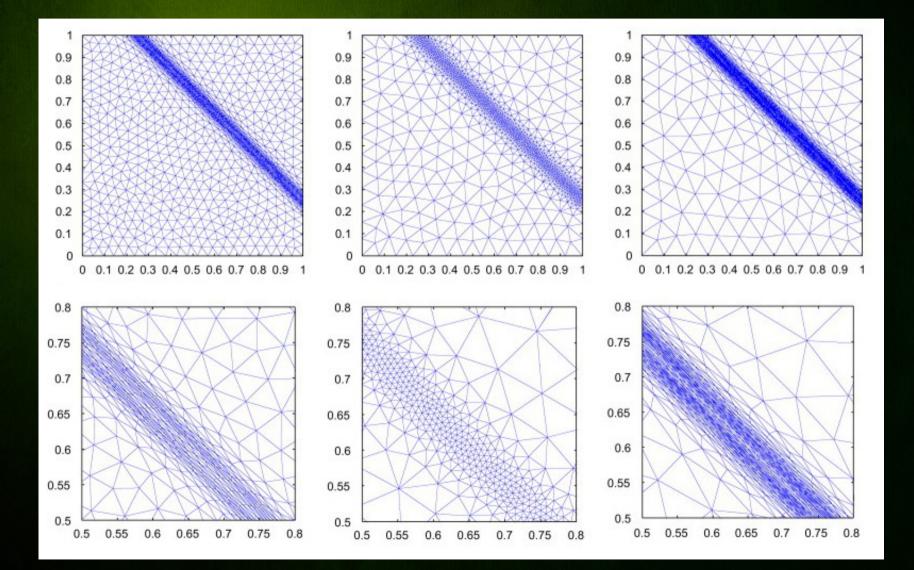
* Element type

- Triangular, Quadrilateral meshes...
- Polygonal (general) meshes

* Element shape

- Isotropic locally uniform in all directions
- Anisotropic prolong non-uniform elements

Mesh – Element Shape



Mesh – Local Structure

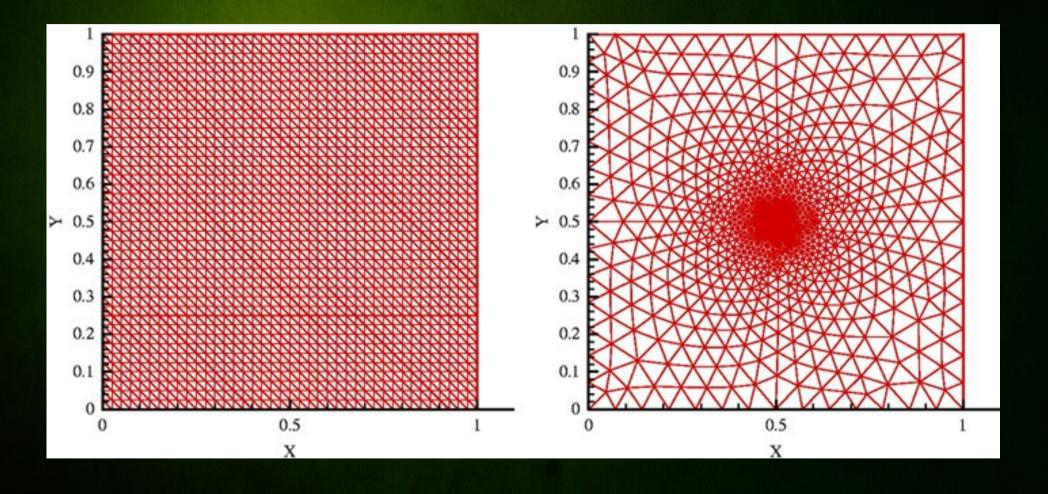
* Element density

- Uniform distribution of elements
- Nonuniform (adaptive) distribution

* Element alignment and orientation

- Alignment for sharp features of original object
- Properly represent tangent discontinuities
- Viable orientation of anisotropic elements

Mesh – Element Density



Mesh – Global Structure

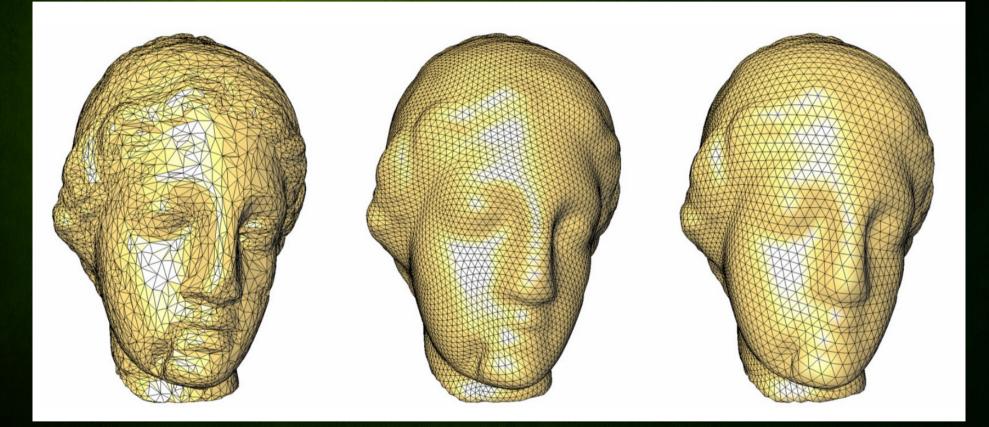
* Topological Complexity

- 2 manifolds
- Complex non-manifold edges, singular vertices

Regularity

- Irregular any number of irregular vertices
- Semiregular small number of irregular vertices
- Highly regular most vertices are regular
- Regular all vertices are regular

Mesh – Regularity



Irregular Mesh

Semi-regular mesh

Regular mesh

Mesh Data Structures

- * Face-based data Structures
 - Face Set
 - Indexed Face Set (+ topology data)
- * Edge-based data Structures
 - Winged Edge / Quad Edge
 - → Half Edge (DCEL)
 - Directed Edge

Mesh - Algorithmic Requirements

- * What kind of algorithms will be operating on the mesh data structure ?
- * Do we need topology data accessible ?
- * Do we want to render or edit mesh ? Change topology during editing ?
- * What are the memory requirements ? How big will be our mesh ?

Mesh – Topology Requirements

- Access to individual vertices, edges and faces
 - Enumeration of all elements in unspecified order
- Oriented traversal of the edges of a face
 - Finding previous/next edge in a face
 - Additional access to vertices (for rendering)
- * Access to incident faces of an edge
 - Enables access of neighboring (left/right) faces

Mesh – Topology Requirements

- * Access to vertices of an edge
 - Enables traversal from edge to incident edges
- Access to at least on incident edge/face of vertex
 - For manifold meshes all other elements (edges/faces) in one-ring neighborhood are accessible

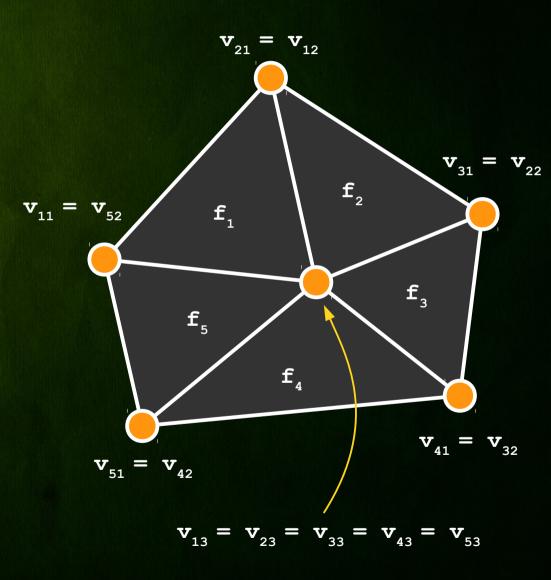
Mesh – Face set

Face	
Vertex	$v_1 = (x_1, y_1, z_1)$
Vertex	$v_2 = (x_2, y_2, z_2)$
Vertex	$v_3 = (x_3, y_3, z_3)$

Faces

$$f_1 = (v_{11}, v_{12}, v_{13})$$

 $f_2 = (v_{21}, v_{22}, v_{23})$
....
 $f_k = (v_{k1}, v_{k2}, v_{k3})$
....
 $f_F = (v_{F1}, v_{F2}, v_{F3})$



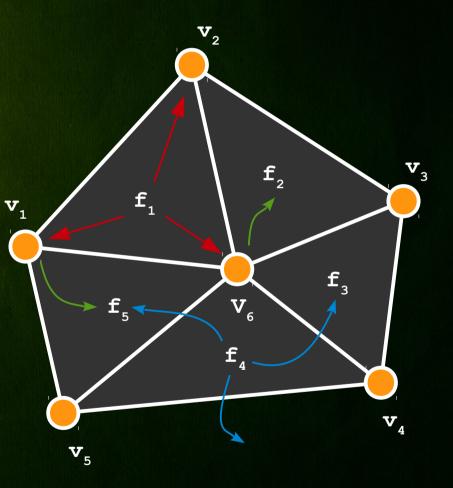
Mesh – Face Set

- Pros Suitable for static meshes, rendering
- Cons No explicit connectivity information.
 Replicated vertices and associated data
- Storage 72 bytes per vertex
- * Applications Stereo-lithography
- * Performance
 - Rendering fast
 - One-ring traversal slow
 - Boundary traversal slow

Mesh – Indexed Face Set

Face	
VertexRef	V ₁ , V ₂ , V ₃
FaceRef	f ₁ , f ₂ , f ₃
FaceData	data

Vertex			
Point	x, y, z		
FaceRef	face		
VertexData	data		



Faces
$f_1 = (i_{11}, i_{12}, i_{13})$
$f_2 = (i_{21}, i_{22}, i_{23})$
$f_{k} = (i_{k1}, i_{k2}, i_{k3})$
$f_{F} = (i_{F1}, i_{F2}, i_{F3})$

Vertices
$v_1 = (x_1, y_1, z_1)$
· · · ·
$\mathbf{v}_{v} = (\mathbf{x}_{v}, \mathbf{y}_{v}, \mathbf{x}_{v})$

Face-to-Vertex references
 Vertex-to-Face references
 Face-to-Face references

Mesh – Indexed Face Set

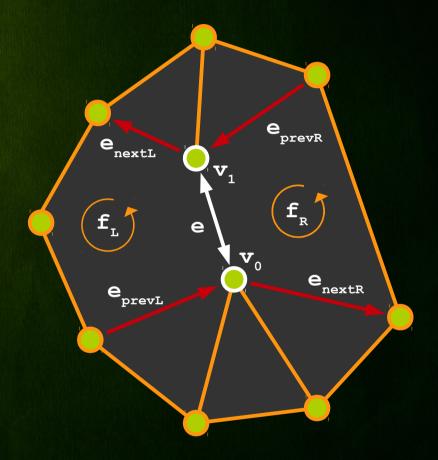
- Pros Simple and efficient storage. Suitable for static meshes and rendering
- Cons No explicit connectivity information.
 Not efficient for most topology algorithms
- Storage 36 bytes per vertex
- Applications Rendering (OpenGl, DirectX)
- * Performance
 - Rendering fast
 - One-ring traversal slow
 - Boundary traversal slow

Mesh – Winged Edge

Vertex	
Point	position
EdgeRef	edge
VertexData	data

Face	
EdgeRef	edge
FaceData	data

Edge		
VertexRef	v0	∨1
FaceRef	fL	fR
EdgeRef	ePre∨L	ePre∨R
EdgeRef	eNextL	eNextR
EdgeData	data	



Mesh – Winged Edge

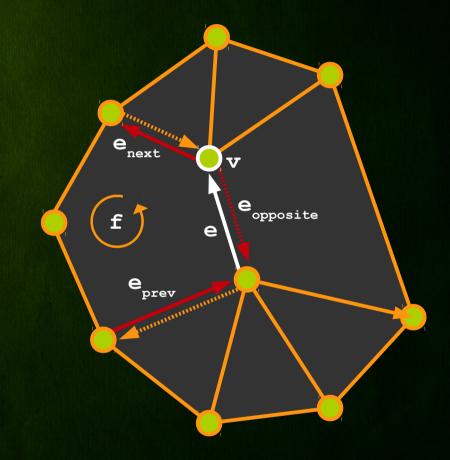
- * Pros Arbitrary polygonal meshes
- Cons Massive case distinctions for one-ring traversal
- Storage 120 bytes per vertex
- * Applications Rarely used today
- * Performance
 - Rendering medium
 - One-ring traversal fast
 - Boundary traversal medium

Mesh – Half Edge

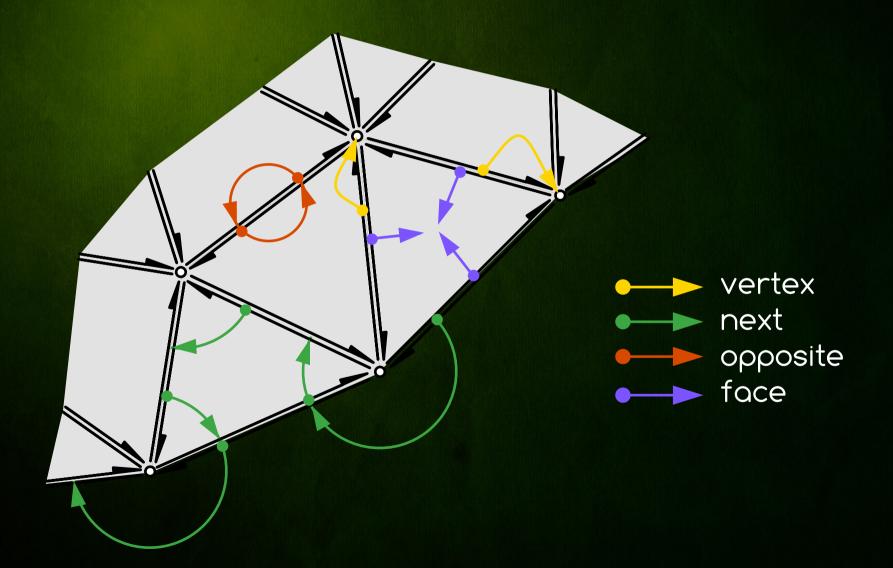
Vertex	
Point	position
HalfedgeRef	edge
VertexData	data

Face	
HalfedgeRef	edge
FaceData	data

Edge	
VertexRef	vertex
FaceRef	face
HalfedgeRef	prev
HalfedgeRef	next
HalfedgeRef	opposite
EdgeData	data



Mesh – Half Edge



Mesh – Half Edge

- Pros One-ring traversal. Explicit representation of edges
- Cons Slow rendering
- Storage 144 bytes per vertex
- Applications Mostly used for mesh refinement, decimation, smoothing
- * Performance
 - Rendering Medium
 - One-ring traversal fast
 - Boundary traversal fast

Mesh – Directed Edge

Half Edge modification for triangular meshes

- Store all 3 half-edges of common face next to each other in memory
- Let f be index of some face. Place its k-th (0,1,2) half-edge on index hldx(f,k) = 3f + k
- Then h-th half-edge belongs to f-th (= h div 3) face
- Index of h-th half-edge within its face (= h mod 3)

 We do not need to store face-to-edge and edge-to face references ! They are implicit from face and half-edge storage order

Mesh – Directed Edge

- * Pros Memory efficient, one-ring traversal
- Cons Only for tri/quad-meshes, no edge info
- Storage 64b per vertex
- Applications Mesh refinement, decimation, smoothing of tri-meshes
- * Performance Fast/Medium

Mesh – Performance Comparison

Data Structure	Space / Vertex	Mesh Topology	Rendering	One-Ring Traversal	Boundary Traversal
Face Set	72 bytes	Static, fixed (3,4)	Fast	Slow	Slow
Indexed Face Set	36 bytes	Static, fixed (3,4)	Fast	Slow	Slow
Indexed Face Set + Topology	64 bytes	Usually static	Fast	Fast (if static topology)	Slow
Winged Edge	120 bytes	Any (2 manifolds)	Medium	Slow (case distinctions)	Slow
Quad Edge	144 bytes	Any (2 manifolds)	Medium	Fast	Medium
Half Edge	144 / 96 bytes	Any (2 manifolds)	Medium / slow	Fast	Fast
Directed Edge	64 bytes	Regular Triangular / Quad meshes (2 manifolds)	Medium / slow	Medium	Medium

Mesh – Pros/Cons

Data Structure	Strengths	Weaknesses
Face Set	Static meshes; rendering	No explicit connectivity information; replicated vertices and associated data
Indexed Face Set	simple and efficient storage; static meshes; rendering;	No explicit connectivity information; not efficient for most algorithms
Indexed Face Set + Topology	Access to individual vertices/edges/faces. Oriented traversal; access to incident faces of an edge; access to an edge's two endpoint vertices; one-ring traversal possible	No explicit edge storage (no data attachments); massive case distinctions for one-ring traversal; complex & less efficient for general polygonal faces
Winged Edge	Arbitrary polygonal meshes	Massive case distinctions for one-ring traversal
Quad Edge	One-ring traversal	Slow rendering
Half Edge	One-ring traversal; explicit representation of edges	Slow rendering
Directed Edge	Memory efficiency; One-ring traversal for triangular meshes	Only for pure triangle/quad meshes; no explicit reoresentation of edaes

Mesh – Applications

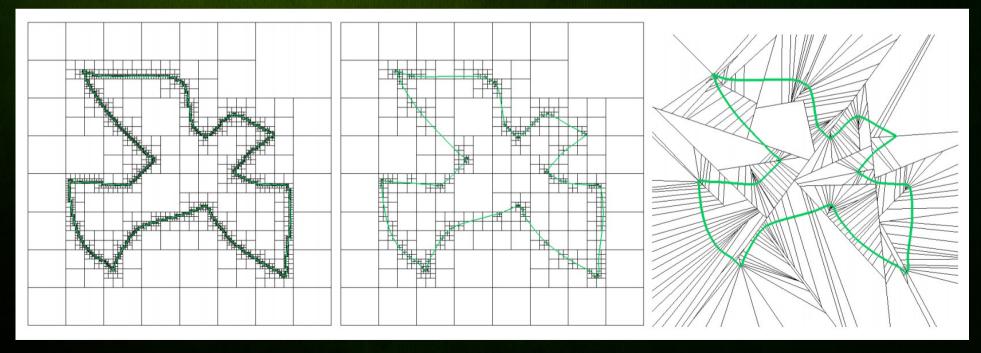
Mesh Data Structure	Common Applications
Face Set	stereo-lithography (STL)
Indexed Face Set	Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML
Indexed Face Set + Topology	2D triangulation data structures of CGAL
Winged Edge	Rarely used today
Quad Edge	Rarely used today
Half Edge	Mostly used for mesh refinement, decimation, smoothing
Directed Edge	Mostly used for mesh refinement, decimation, smoothing of pure triangular meshes

Mesh – Applications

Mesh Data Structure	Common Applications
Face Set	stereo-lithography (STL)
Indexed Face Set	Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML
Indexed Face Set + Topology	2D triangulation data structures of CGAL
Winged Edge	Rarely used today
Quad Edge	Rarely used today
Half Edge	Mostly used for mesh refinement, decimation, smoothing
Directed Edge	Mostly used for mesh refinement, decimation, smoothing of pure triangular meshes

Volumetric Representations

- Spatial subdivision
- Implicit (functional) representations
- * Constructive (hierarchical) Geometry



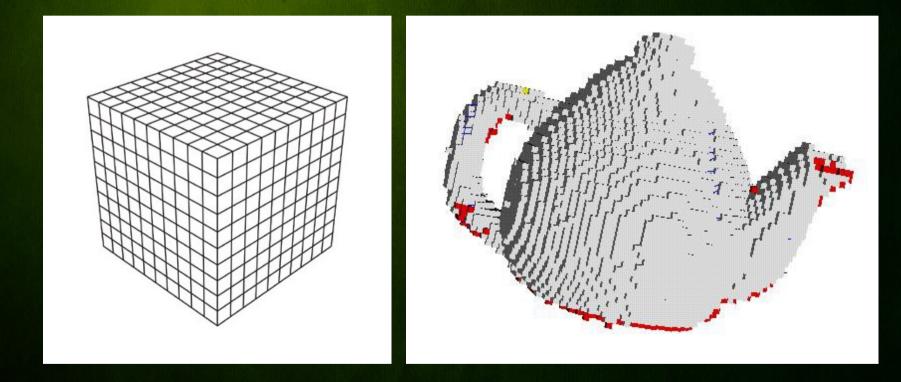
Octree

Adaptive Distance Field

BSP tree

Uniform Grid

Trivial 3d regular lattice of N x N x N cells



In each cell we store desired data

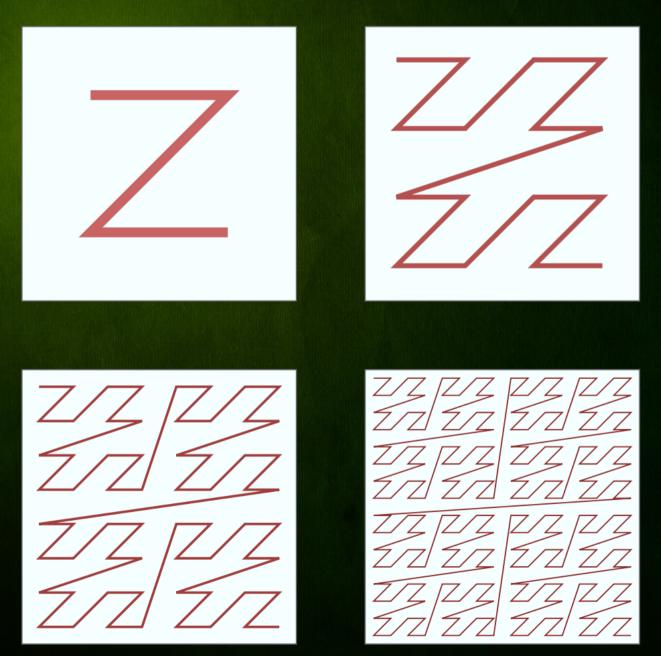
Color, density, curvature, normal...

Uniform Grid

Construction of Grid

- * Find models minimal and maximal coordinates
- Define grid resolution (manual/automatic)
- Choose indexing and create huge linear array in memory
- For each cell (3d loop) sample desired values and store them in cell
- * Huge memory footprint !

Uniform Grid – Z-Index



Uniform Grid - Summary

* Pros

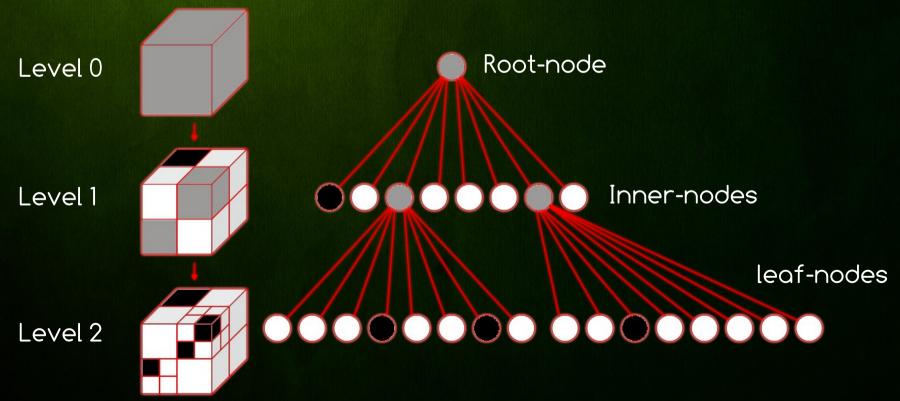
- Trivial data structure
- Algorithms can be naturally parallelized
- Natural acquisition for some applications
- Trivial Boolean operations

* Cons

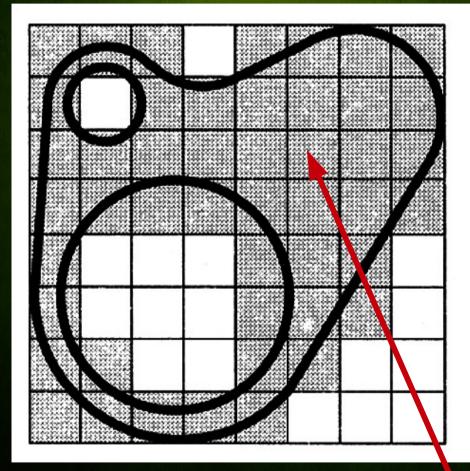
- Huge memory requirements (storing empty cells)
- Large 3d loops make algorithms too slow
- * Applications
 - Medical Imaging, Many GPGPU applications

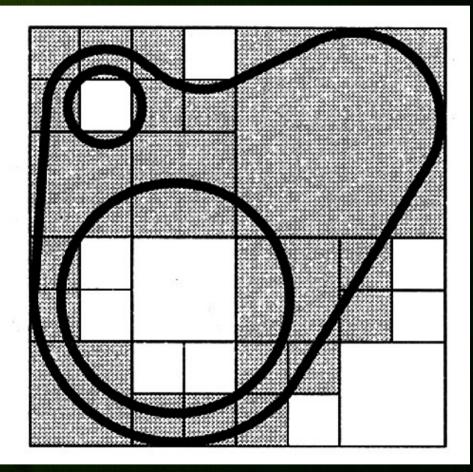
Octree

 Octree is an adaptive hierarchy of cells created only within important (non-empty) data regions. Each non-leaf cell is subdivided exactly into 8 half-size sub-cells



Grid vs Octree





Useless cells

Octree Data Structure

* Node

- NodeType type
- NodeRef subNodes[8];

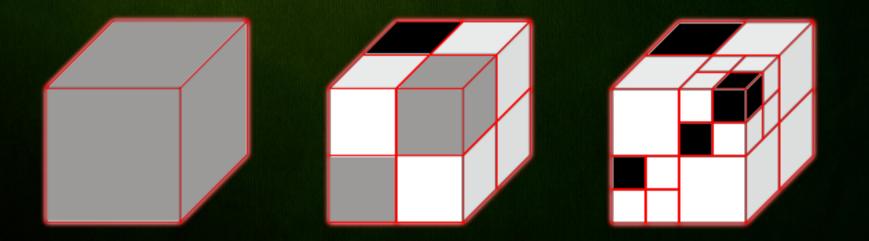
NodeType

- Empty all 8 sub-cells are empty
- Mixed there is at least on non-empty sub-cell
- Full all 8 sub-cells are full

Octree Construction

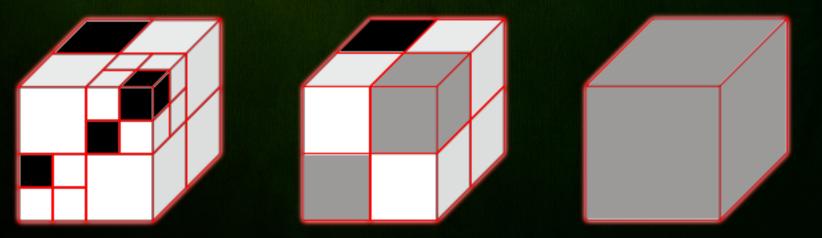
* Top-Down (slitting) scheme

- Fit whole data (geometry) into one bounding cell
- If it is mixed split it into 8 sub-cells
- Repeat this with each of 8 sub-cells until there is nothing more to split (all are small / empty / full

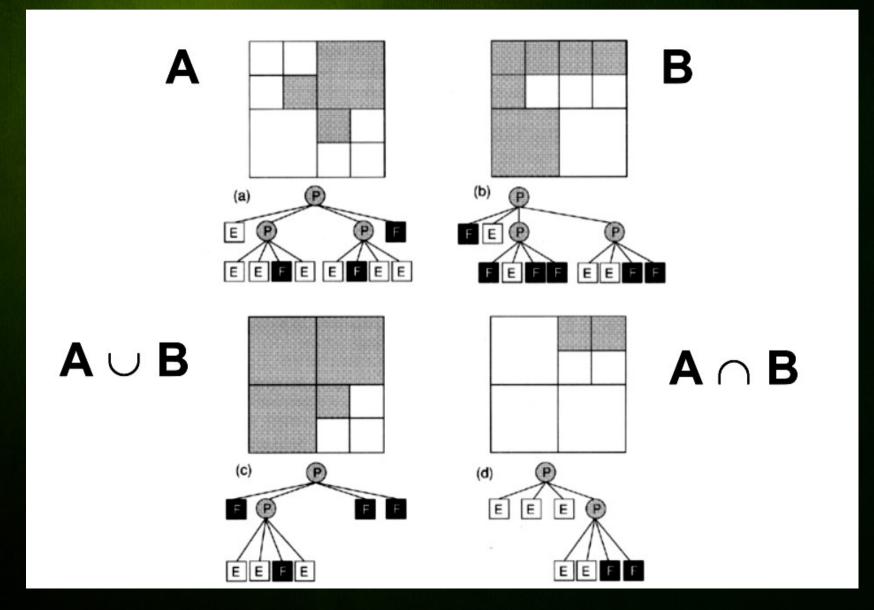


Construction of Octree

- * Bottom-Up (merging) scheme
 - Create uniform grid with high resolution
 - For each 8 neighboring cells do
 - If they are all empty (full) merge them into one empty (full) cell, reject sub-cells
 - Otherwise create mixed parent cell and proceed up in the hierarchy



Octree Boolean



Octree Summary

* Applications

- > Volume data storage (compression)
- Color quantization
- Collision detection

* Pros

- Memory efficient storage
- Adaptive refinement (more details are preserved)

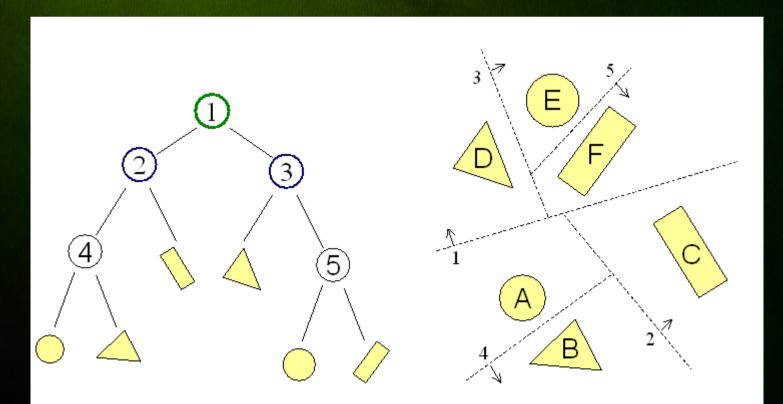
* Cons

- Longer point localization (data search)
- → Small change in data \rightarrow large change in Octree

Binary Space Partition (BSP)

 BSP is a method for recursively subdividing a space into convex sets by hyperplanes

* Every cell is a convex polyhedron

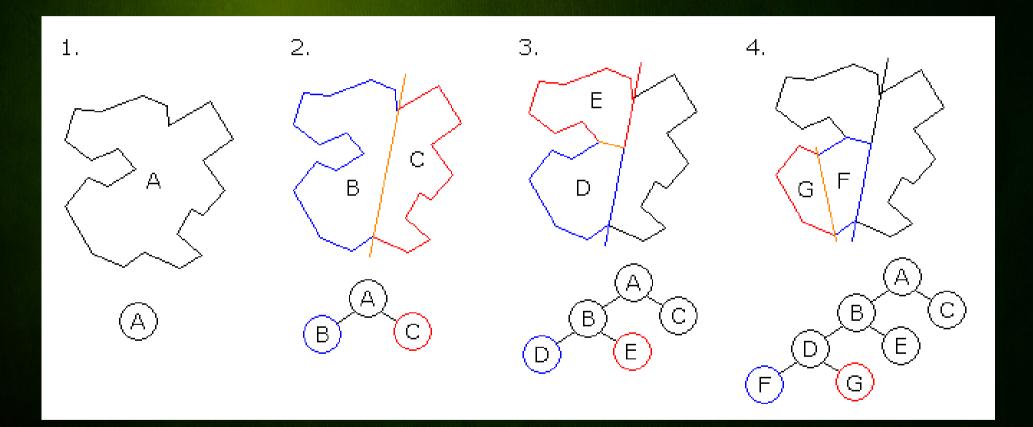


BSP Data Structure

BSP Node

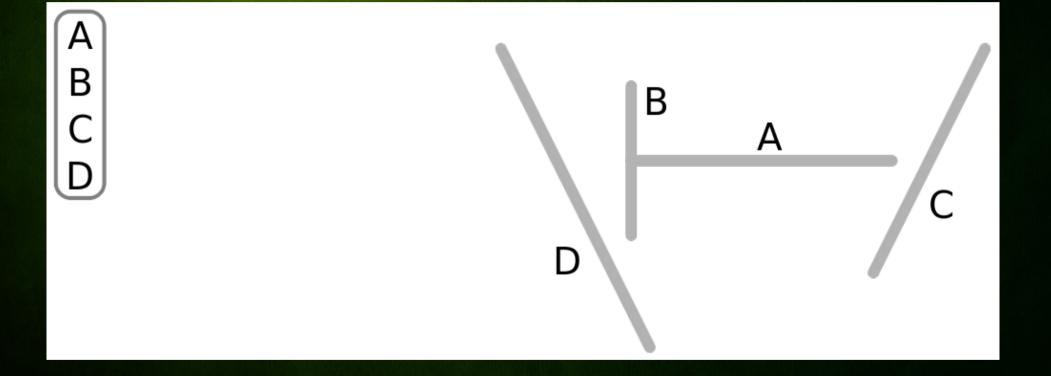
- Partitioning hyperplane (position, normal, dist)
- List of objects (polygons) "intersecting" this node
- Front child node N_f
- Back child node N_b

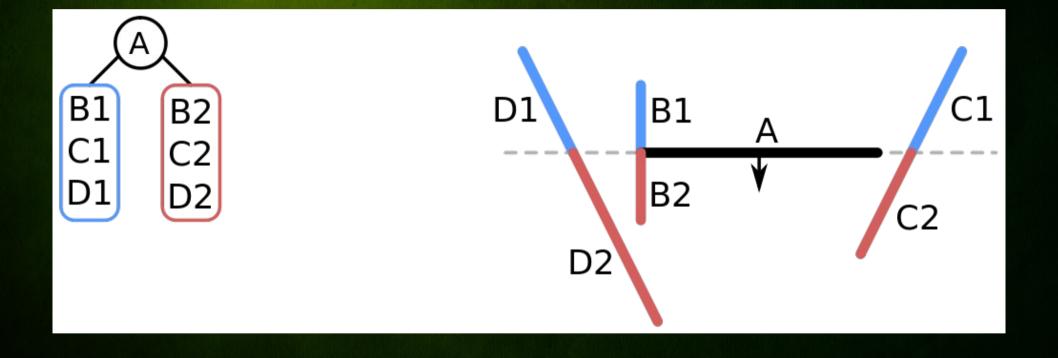
BSP Construction

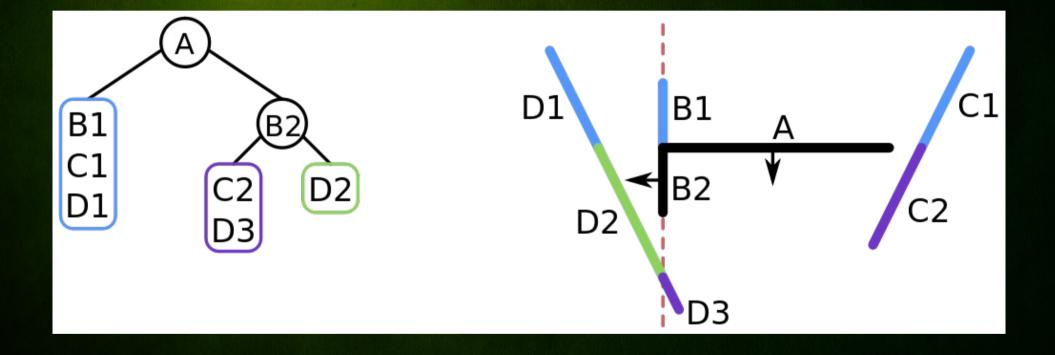


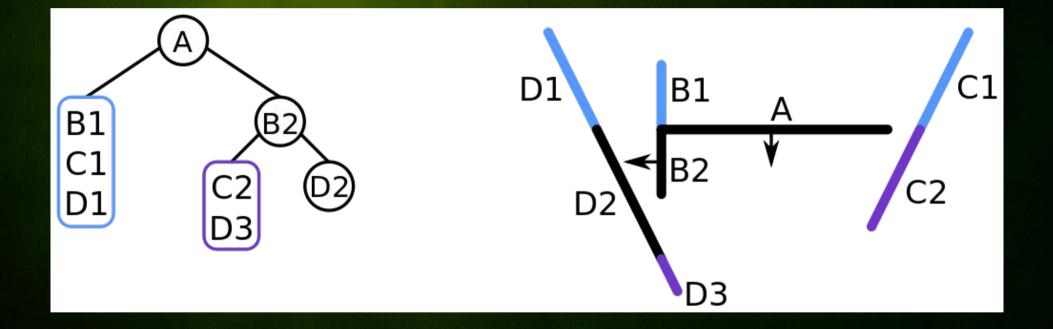
BSP Generation Algorithm

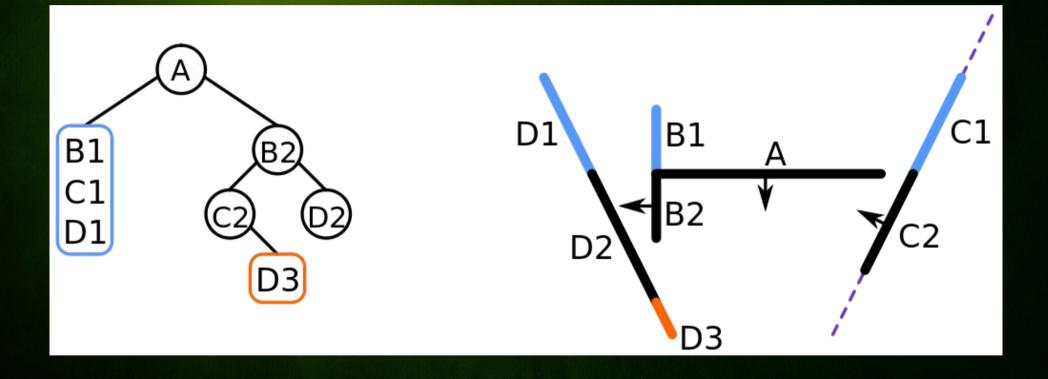
- Choose a polygon P from the list
- Make a node N in the BSP tree, add P to the list of polygons at that node
- For each other polygon Q in the list:
 - If Q is wholly in front (behind) of the plane containing P, move it to the front (back) sub-nodes of P
 - If Q is intersected by the plane containing P, split it into "front" and "back" polygon and move it to respective front and back sub-nodes
 - If Q lies in the plane containing P, add it to the list of polygons at node N
- Repeat this to the list of polygons in front of P
- Repeat this to the list of polygons behind P

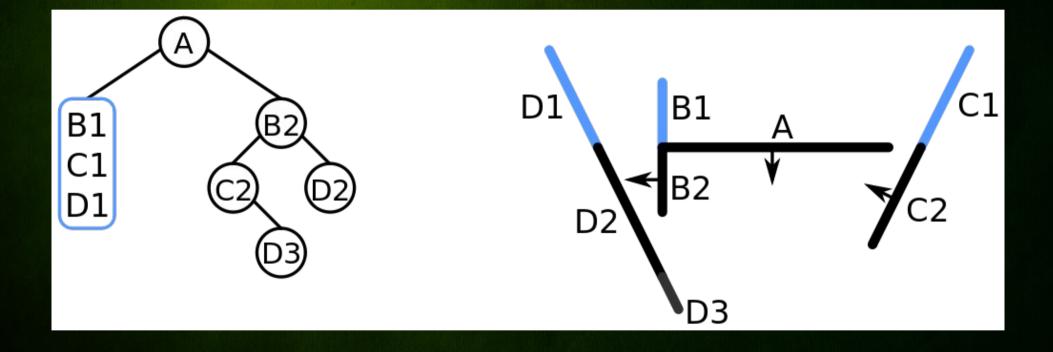


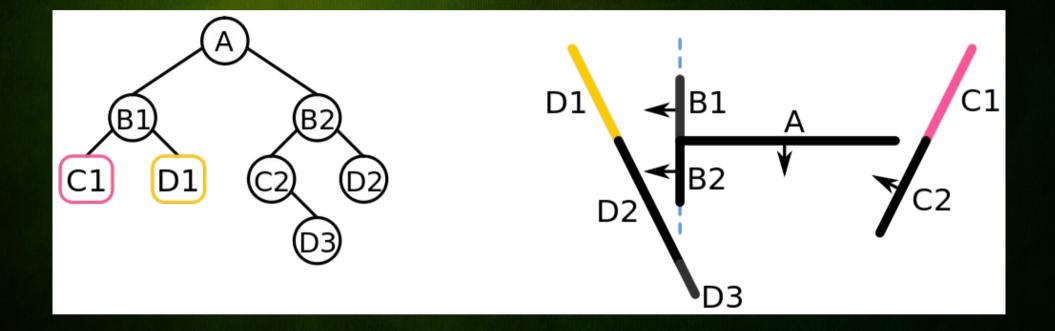


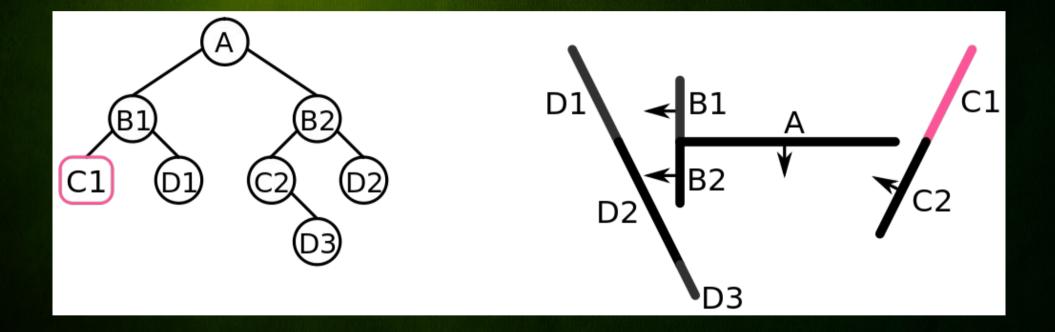


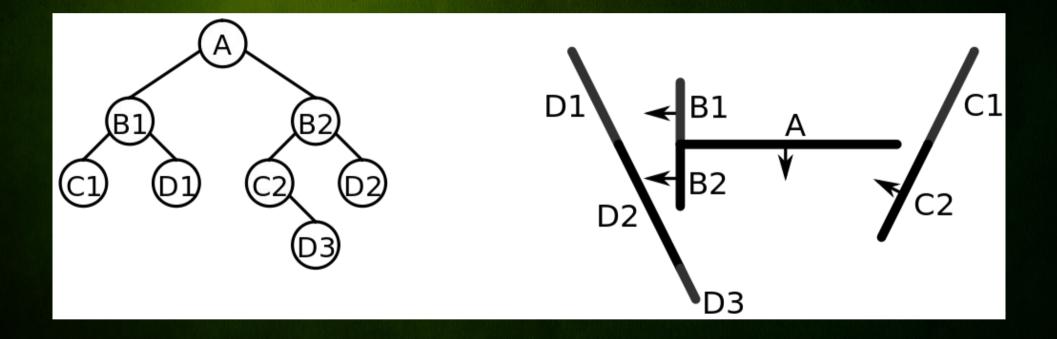




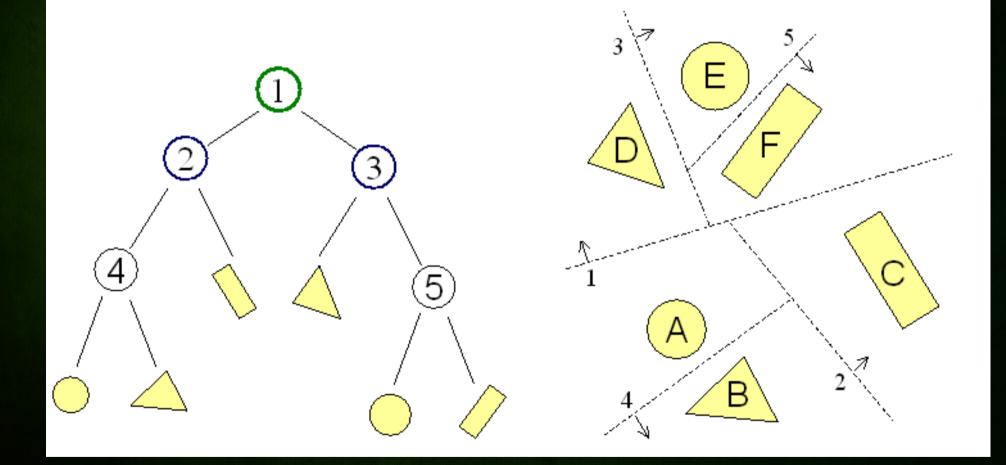




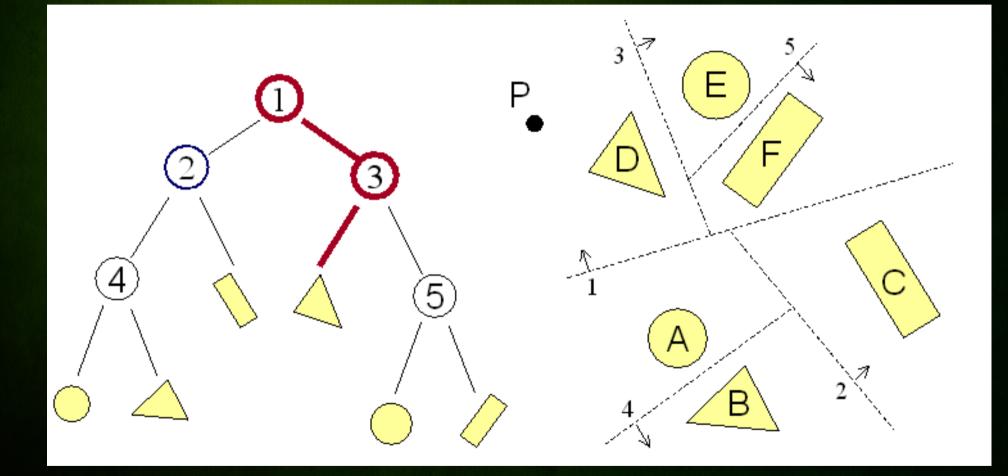




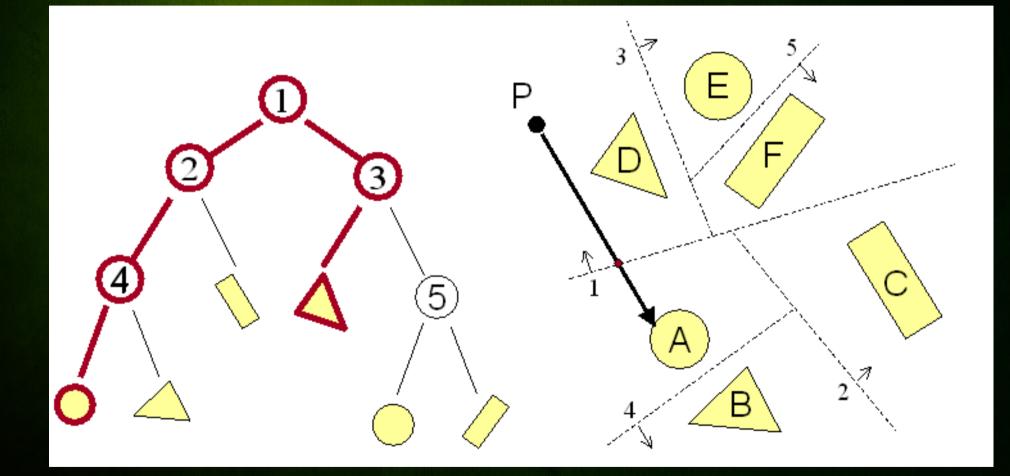
BSP Raytracing 1



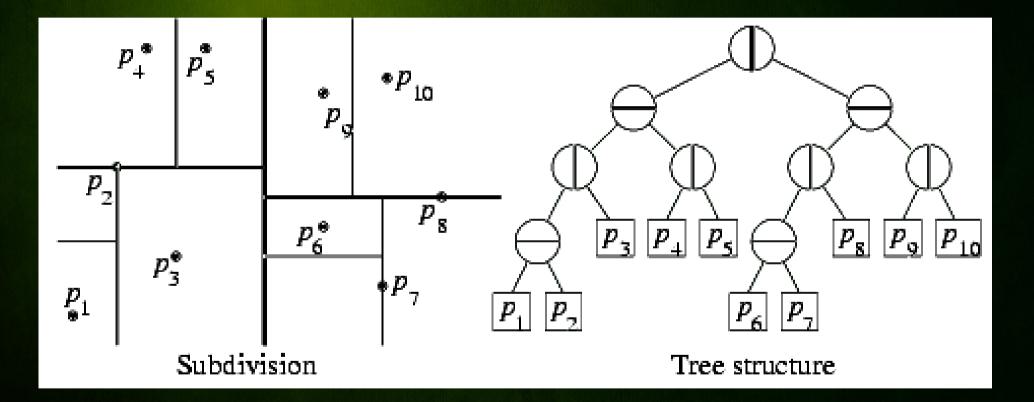
BSP Raytracing 2



BSP Raytracing 3



Orthogonal BSP \rightarrow kD-tree



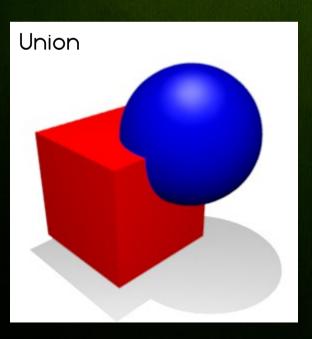
Constructive Solid Geometry

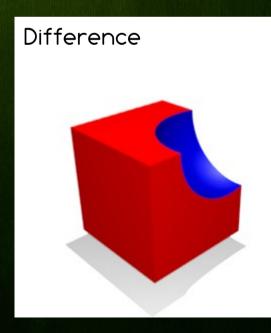
Constructive Solid Geometry (CSG)

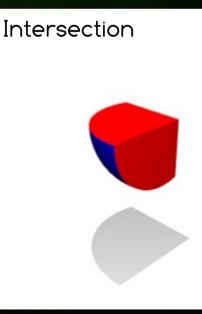
- Is a volumetric scene representation based on combination of Boolean operations on primitive geometry or other CSG
- Using only implicitly defined geometry, CSG becomes a a special case of F-Rep
- * CSG scene definition includes
 - Primitive geometry objects
 - Tree of Boolean operations

CSG Operations

- * Union: $A+B = \{\rho \mid \rho \in A \text{ or } \rho \in B \}$
- * Difference: $A-B = \{ \rho \mid \rho \in A \text{ and } \rho \notin B \}$
- * Intersection: $A^B = \{ \rho \mid \rho \in A \text{ and } \rho \in B \}$
- Any other Boolean operation

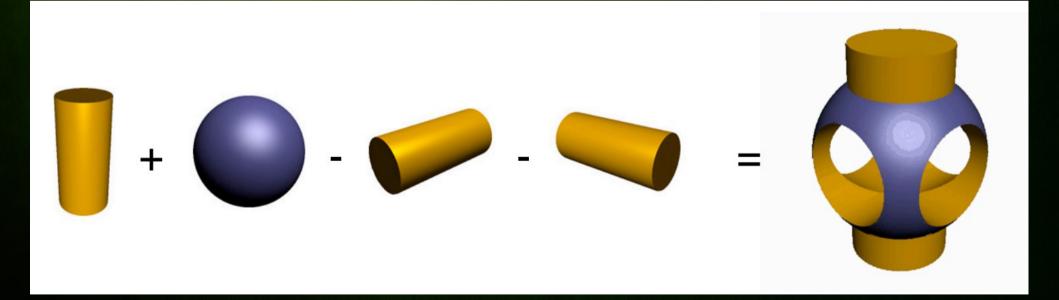




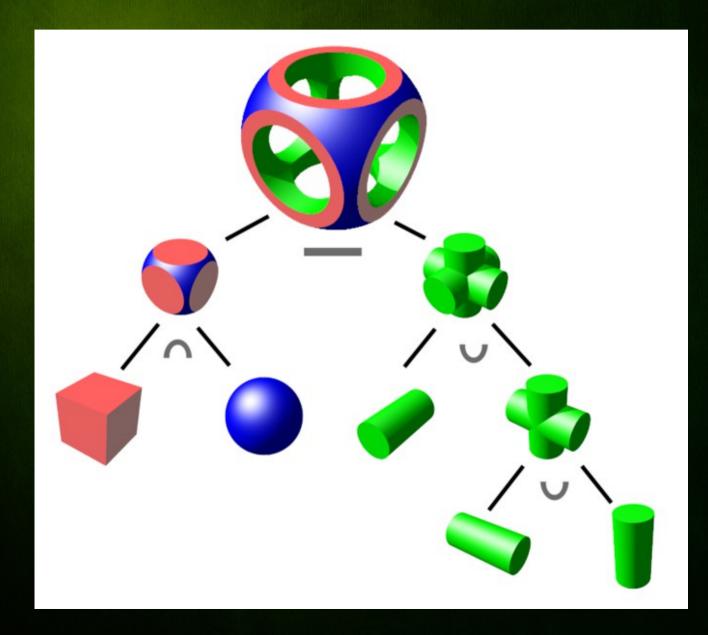


CSG Operations

 Complex objects can be created by applying Boolean operations on primitive geometries in linear order



CSG Operations in hierarchy



CSG Summary

- * Applications are mainly in CAD Industry
 - Solid Engineering, Architecture, Security, Army...

* Pros

- Natural and intuitive modeling strategy
- Complex shapes can be created from basic shapes
- Model can always be remodeled

* Cons

- Using parametric (mesh) primitives can be very slow and complicated
- Conversion to B-rep can be slow and error-prone

Surface Representation Conversion

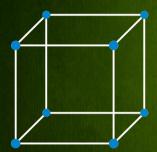
- * Parametric to Implicit
 - Algebraic solutions
 - Numerical solutions (Scan conversion onto grid)
- Implicit to Parametric
 - Marching Cubes
 - Marching Tetrahedra

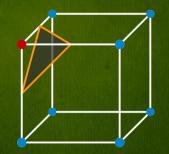
→ ...

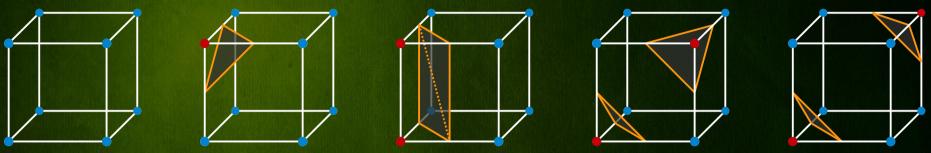
Marching Cubes Algorithm

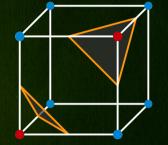
- I. Specify threshold value
- 2. Decide vertex type (in or out) using the threshold
 - In: value < threshold value</p>
 - Out: value ≥ threshold value
 - If all 8 voxel's vertices are in/out: whole cube is in/out
- 3. Based on 8 vertex states create find MC case in a table and find intersection edges
- 4. Compute vertices coordinates
 - Use linear interpolation with threshold value
- → 5. Compute normals
 - Use linear interpolation of vertices normals
 - Normal vector is same as a gradient vector (difference)

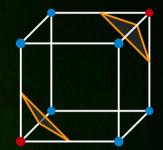
Marching Cubes – 15 Cases

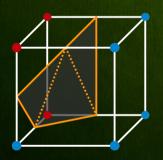


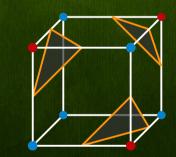


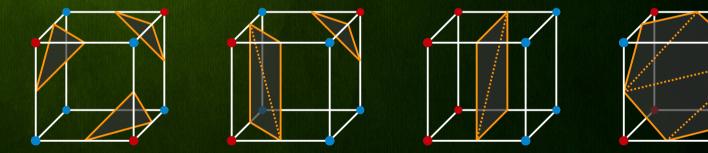


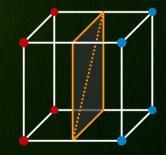


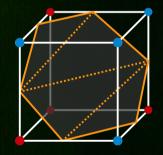


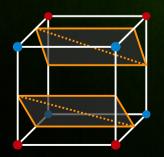


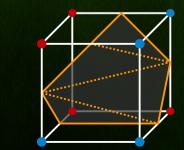




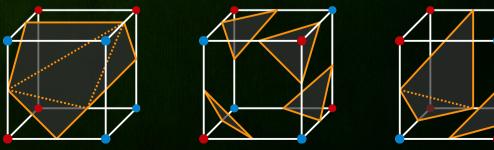








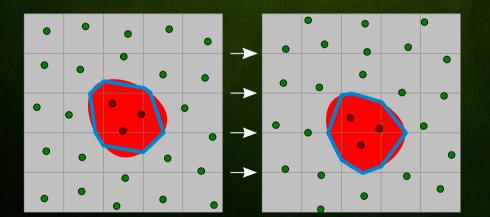




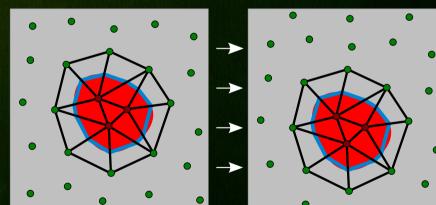


Marching Cubes / Tetrahedra

 Marching cubes produce mesh with stronger turbulence for deforming objects during animation then Marching tetrahedra



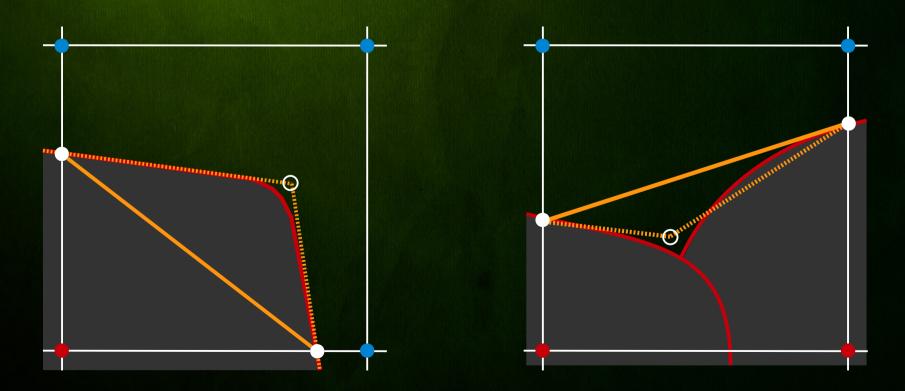
Marching Cubes



Marching tetrahedra

Marching Cubes - Problems

- * Local features are not preserved
- Can be improved when exist using normals and tangent discontinuities



Marching Cubes - Summary

* Applications

- Trimesh construction for any volume data
- Remeshing during simulations
- Surface reconstruction for fluid simulations
- * Pros
 - Faster than Marching Tets (no neighbor search)
 - Semi-regular triangulations

* Cons

- Details are not preserved well
- Mesh turbulence during animations

the end

that was enough...