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Outline of Lessons 02-03

 Representation of curves

 Representation of surfaces

 Representation of volumes



  

Dimension of Objects

 Object = set of points in n-dimensional space
 “An object is k-dimensional if there is a continuous 

one-to-one mapping of the k-dimensional square 
on this object”

 0-dimensional objects = points

 1-dimensional objects = curves

 2-dimensional objects = surfaces

 3-dimensional objects = solids



  

  Representation
  of Curves



  

What is Curve in CG

 Informal definition
 Curve is the path of a continuously moving point in 

the space (2d or 3d) - is the set of all points where 
the moving point emerge during its motion

 Mathematical descriptions
 Parametric Curves
 Implicit Curves

 Application-based classification
 Interpolation Curves
 Approximation Curves



  

Parametric Curves

 Parametric curves in 2D
 C(t) = (x(t), y(t))   where   C: R → R2

 x and y are any functions  R → R

 Parametric curves in 3D
 f(t) = (x(t), y(t), z(t))   where   C: R → R3

 x, y and z are any functions  R → R

 Example: parametric circle
 f:(t) → (cos(t), sin(t))   |   t ∈ [0, 2π]



  

Implicit Curves

 Implicit curves (only in 2D)
 Implicit curve C is a set of points (x,y) where a 

given function c(x,y) is zero
 C = { (x,y)  |  c(x,y) = 0 } where c: R2 → R

 Example: implicit circle
 C = { (x,y)  |  sqrt(x2 + y2) - 1 = 0 }



  

Parametric Polynomial Curves

 Parametric curve C(t) = (x(t),y(),z(t)) is 
polynomial iff functions x,y,z are polynomials
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Application of Curves

Interpolation Curve Approximation Curve

 Curves are used in CG mainly for
 Interpolation of data
 Approximation of data



  

Approximation Curves

 Approximation Curves do not need to 
interpolate input data points (but can)

 Common approximation curves
 Bézier Curve
 B-Spline Curve
 Catmull-Rom Spline
 Cardinal Spline...



  

Linear Bézier Curve

 B1(t)=(1-t)P
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Quadratic Bézier Curve
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Cubic Bézier Curve
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n-th Bézier Curve

 Bn(t)=∑
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Properties of Bézier Curve

 Interpolation of P
0
 and P

n

 Curve is straight line iff all P
i
 are collinear

 The start (end) of the curve is tangent to the first 
(last) section of the Bézier polygon

 Always lies in convex hull of Bézier polygon
 Can be split at any point into two Bézier sub-curves
 Each n-th Bézier curve has an equally shaped 

(n+1)-th Bézier curve (degree elevation)
 Is affine invariant → Affine transformation of 

curve is equal to curve produced from equally 
transformed control polygon



  

Rational Bézier Curves

 Weighted version of Bézier curve
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 Pros
 Better local control
 Can express conics

 Cons
 Need more computation



  

Interpolation Curves

 Given n interpolation points p
0
 … p

n-1
 we want 

to construct an interpolation curve C(t)

 C(k) = p
k
   where  k = 0 … n - 1

 t ∈ [0, n – 1]

 Common interpolation curves
 Lagrange interpolation
 Piecewise Bezier Curve
 Piecewise B-Spline Curve
 Piecewise combinations...
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Interpolation Types

Original
Data

Constant
Interpolation

Linear
Interpolation

Polynomial
Interpolation



  

Lagrange Interpolation

 Given n+1 interpolation points Lagrange 
interpolation is

 Ln(t) = ∑ 
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 Pros: Polynomial, easy to implement 

 Cons: huge Oscillations, large interpolation 
error



  

Piecewise Interpolation Curves

 Known as “Poly-Curves”
 Each segment between two interpolation points is 

a given curve

 Linear Poly-curve

 Cubic Bezier Poly-curve



  

Continuity in Poly-Curves

 Parametric Continuity Cn

 Segments have equal n-th derivative in 
interpolations points

 Tangents have equal direction and length

 Geometric Continuity Gn

 Tangents have equal direction but not length

Parametric Continuity Geometric Continuity



  

Continuity in Poly-Curves

 Parametric continuity classes
 C-1 = curves include discontinuities
 C0 = curves are joined (continuous)
 C1 = first derivatives are continuous
 C2 = first and second derivatives are continuous
 Cn = first trough n-th derivatives are continuous

C-1 Continuity C0 Continuity C1 Continuity



  

Continuity in Poly-Curves

 Geometric Continuity at joint point
 G0 = Curves touch at the join point (= C0)
 G1 = Curves share a common tangent direction
 G2 = Curves share a common center of curvature

 Curve is Gn continuous if it can be 
reparametrized to have Cn continuity

G0 Continuity G1 Continuity G2 Continuity



  

Representation

of Surfaces 



  

Surface Definition

 Formally: “Surface is an orientable continuous 
2d manifold embed in R3”

 Informally: “Surface is the boundary of non-
degenerate 3D solid”

 Non-degenerate solid object
 Each point is the space can be uniquely classified 

as either interior or exterior w.r.t. given object



  

Surface Classification

 Orientable / Non-orientable

 Open / Closed (with/without boundaries)

 Manifold / Non-manifold



  

Orientable   |   Non-orientable



  

Open | Closed Surface



  

Non-manifold Cases



  

Non-manifold Cases

 A) Strictly non-manifold vertex

 B) Non-manifold edge

 C) Weak non-manifold vertex

         A)                            B)                           C)



  

Topological Classification

 Topological equivalence
 Two surfaces are topological equivalent if we can 

transform one to each other using only continuous 
stretching and bending

 Genus of surface
 The maximum number of cuttings along non-

intersecting closed simple curves without 
rendering the resultant manifold disconnected



  

Surface Genus

 Genus 0 (Sphere):
 Surfaces topologically equivalent to sphere

 Genus 1 (Torus): …

 Genus 2 (Double torus): ...



  

Operational Classification

 Evaluation
 The sampling of the surface geometry or of other 

surface attributes, e.g., the surface normal field.
 A typical application example is surface rendering

 Modification
 A surface can be modified either in terms of 

geometry (surface deformation), or in terms of 
topology, e.g., when different parts of the surface 
are to be merged.



  

Operational Classification

 Query
 Spatial queries are used to determine whether or 

not a given point p∈R3 is inside or outside of the 
solid bounded by a surface S

 This is a key component for solid modeling 
operations.

 Another typical query is the computation of a 
point's distance to a surface.



  

Parametric vs Implicit Surfaces

 Parametric surfaces
 [3d] f: P → C  |  P ⊂ R2, C = f(P) ⊂ R3 

 Implicit surfaces
 [3d] f: R3 → 0

 Parametric circle
 f:(s,t) → (cos(t),sin(t))   |   f: [0,2π]x[0,2π] → R3

 Implicit sphere
 F:(x,y) → sqrt(x2 + y2 + z2) - 1   |  f: R3 → R



  

Mesh Representation

 Mesh: Piecewise linear approximation with 
error O(h2)

 Mesh elements
 Face – subset of a 3d plane 
 Edge – Incident points of two (or more) faces
 Vertex – Incident points of min two edges

246 123



  

Mesh – Local Structure

 Element type
 Triangular, Quadrilateral meshes...
 Polygonal (general) meshes

 Element shape
 Isotropic – locally uniform in all directions
 Anisotropic – prolong non-uniform elements



  

Mesh – Element Shape



  

Mesh – Local Structure

 Element density
 Uniform distribution of elements
 Nonuniform (adaptive) distribution

 Element alignment and orientation
 Alignment for sharp features of original object
 Properly represent tangent discontinuities
 Viable orientation of anisotropic elements



  

Mesh – Element Density



  

Mesh – Global Structure

 Topological Complexity
 2 - manifolds
 Complex non-manifold edges, singular vertices

 Regularity
 Irregular – any number of irregular vertices
 Semiregular – small number of irregular vertices
 Highly regular – most vertices are regular
 Regular – all vertices are regular



  

Mesh – Regularity

       Irregular Mesh             Semi-regular mesh              Regular mesh



  

Mesh Data Structures

 Face-based data Structures
 Face Set
 Indexed Face Set (+ topology data)

 Edge-based data Structures
 Winged Edge / Quad Edge
 Half Edge (DCEL)
 Directed Edge
 ...



  

Mesh - Algorithmic Requirements

 What kind of algorithms will be operating on 
the mesh data structure ?

 Do we need topology data accessible ?

 Do we want to render or edit mesh ? Change 
topology during editing ?

 What are the memory requirements ? How big 
will be our mesh ?

 …



  

Mesh – Topology Requirements

 Access to individual vertices, edges and faces
 Enumeration of all elements in unspecified order

 Oriented traversal of the edges of a face
 Finding previous/next edge in a face
 Additional access to vertices (for rendering)

 Access to incident faces of an edge
 Enables access of neighboring (left/right) faces



  

Mesh – Topology Requirements

 Access to vertices of an edge
 Enables traversal from edge to incident edges

 Access to at least on incident edge/face of 
vertex
 For manifold meshes all other elements 

(edges/faces) in one-ring neighborhood are 
accessible



  

Mesh – Face set
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Mesh – Face Set

 Pros – Suitable for static meshes, rendering

 Cons - No explicit connectivity information. 
Replicated vertices and associated data

 Storage – 72 bytes per vertex

 Applications - Stereo-lithography

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow



  

Mesh – Indexed Face Set
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Mesh – Indexed Face Set

 Pros – Simple and efficient storage. Suitable 
for static meshes and rendering

 Cons – No explicit connectivity information. 
Not efficient for most topology algorithms

 Storage – 36 bytes per vertex

 Applications – Rendering (OpenGl, DirectX)

 Performance
 Rendering – fast
 One-ring traversal – slow
 Boundary traversal – slow



  

Mesh – Winged Edge

Vertex

Point position

EdgeRef edge

VertexData data

Face

EdgeRef edge

FaceData data

Edge

VertexRef v0 v1

FaceRef fL fR

EdgeRef ePrevL ePrevR

EdgeRef eNextL eNextR

EdgeData data
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Mesh – Winged Edge

 Pros - Arbitrary polygonal meshes

 Cons - Massive case distinctions for one-ring 
traversal

 Storage – 120 bytes per vertex

 Applications – Rarely used today

 Performance
 Rendering – medium
 One-ring traversal – fast
 Boundary traversal – medium



  

Mesh – Half Edge

Vertex

Point position

HalfedgeRef edge

VertexData data

Face

HalfedgeRef edge

FaceData data

Edge

VertexRef vertex

FaceRef face

HalfedgeRef prev

HalfedgeRef next

HalfedgeRef opposite

EdgeData data
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Mesh – Half Edge

vertex
next
opposite
face



  

Mesh – Half Edge

 Pros – One-ring traversal. Explicit 
representation of edges

 Cons – Slow rendering

 Storage – 144 bytes per vertex

 Applications - Mostly used for mesh 
refinement, decimation, smoothing

 Performance
 Rendering – Medium
 One-ring traversal – fast
 Boundary traversal – fast



  

Mesh – Directed Edge

 Half Edge modification for triangular meshes
 Store all 3 half-edges of common face next to each 

other in memory
 Let f be index of some face. Place its k-th (0,1,2) 

half-edge on index hIdx(f,k) = 3f + k
 Then h-th half-edge belongs to f-th (= h div 3) face
 Index of h-th half-edge within its face (= h mod 3)

 We do not need to store face-to-edge and 
edge-to face references ! They are implicit 
from face and half-edge storage order



  

Mesh – Directed Edge

 Pros – Memory efficient, one-ring traversal

 Cons – Only for tri/quad-meshes, no edge info

 Storage – 64b per vertex

 Applications – Mesh refinement, decimation, 
smoothing of tri-meshes

 Performance – Fast/Medium



  

Mesh – Performance Comparison

Data Structure Space / 
Vertex

Mesh Topology Rendering One-Ring 
Traversal

Boundary 
Traversal

Face Set 72 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face 
Set

36 bytes Static, fixed (3,4) Fast Slow Slow

Indexed Face 
Set
+ Topology

64 bytes Usually static Fast Fast (if 
static 
topology)

Slow

Winged Edge 120 
bytes

Any (2 manifolds) Medium Slow (case 
distinctions)

Slow

Quad Edge 144 
bytes

Any (2 manifolds) Medium Fast Medium

Half Edge 144 / 96 
bytes

Any (2 manifolds) Medium / 
slow

Fast Fast

Directed Edge 64 bytes Regular Triangular 
/ Quad meshes
(2 manifolds)

Medium / 
slow

Medium Medium



  

Mesh – Pros/Cons
Data Structure Strengths Weaknesses

Face Set Static meshes; rendering No explicit connectivity 
information; replicated vertices 
and associated data

Indexed Face Set simple and efficient storage; 
static meshes; rendering;

No explicit connectivity 
information; not efficient for 
most algorithms

Indexed Face Set
+ Topology

Access to individual 
vertices/edges/faces. Oriented 
traversal; access to incident 
faces of an edge; access to an 
edge’s two endpoint vertices; 
one-ring traversal possible

No explicit edge storage (no 
data attachments); massive 
case distinctions for one-ring 
traversal; complex & less 
efficient for general polygonal 
faces

Winged Edge Arbitrary polygonal meshes Massive case distinctions for 
one-ring traversal

Quad Edge One-ring traversal Slow rendering

Half Edge One-ring traversal; explicit 
representation of edges

Slow rendering

Directed Edge Memory efficiency; One-ring 
traversal for triangular meshes

Only for pure triangle/quad 
meshes; no explicit 
representation of edges



  

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of 
pure triangular meshes



  

Mesh – Applications

Mesh Data Structure Common Applications

Face Set stereo-lithography (STL)

Indexed Face Set Rendering (OpenGL vertex array, Direct3D), OFF, OBJ, VRML

Indexed Face Set
+ Topology

2D triangulation data structures of CGAL

Winged Edge Rarely used today

Quad Edge Rarely used today

Half Edge Mostly used for mesh refinement, decimation, smoothing

Directed Edge Mostly used for mesh refinement, decimation, smoothing of 
pure triangular meshes



  
of Volumes

Representation



  

Volumetric Representations

              Octree                Adaptive Distance Field                BSP tree

 Spatial subdivision

 Implicit (functional) representations

 Constructive (hierarchical) Geometry



  

Uniform Grid

 Trivial 3d regular lattice of N x N x N cells

 In each cell we store desired data
 Color, density, curvature, normal...



  

Uniform Grid



  

Construction of Grid

 Find models minimal and maximal coordinates

 Define grid resolution (manual/automatic)

 Choose indexing and create huge linear array 
in memory

 For each cell (3d loop) sample desired values 
and store them in cell

 Huge memory footprint !



  

Uniform Grid – Z-Index



  

Uniform Grid - Summary

 Pros
 Trivial data structure
 Algorithms can be naturally parallelized
 Natural acquisition for some applications
 Trivial Boolean operations

 Cons
 Huge memory requirements (storing empty cells)
 Large 3d loops make algorithms too slow

 Applications
 Medical Imaging, Many GPGPU applications



  

Octree

 Octree is an adaptive hierarchy of cells 
created only within important (non-empty) 
data regions. Each non-leaf cell is subdivided 
exactly into 8 half-size sub-cells

Level 0

Level 1

Level 2

Root-node

Inner-nodes

leaf-nodes



  

Grid vs Octree

Useless cells



  

Octree Data Structure

 Node
 NodeType  type
 NodeRef subNodes[8];

 NodeType
 Empty – all 8 sub-cells are empty
 Mixed – there is at least on non-empty sub-cell
 Full – all 8 sub-cells are full



  

Octree Construction

 Top-Down (slitting) scheme
 Fit whole data (geometry) into one bounding cell
 If it is mixed split it into 8 sub-cells
 Repeat this with each of 8 sub-cells until there is 

nothing more to split (all are small / empty / full



  

Construction of Octree

 Bottom-Up (merging) scheme
 Create uniform grid with high resolution
 For each 8 neighboring cells do
 If they are all empty (full) merge them into one 

empty (full) cell, reject sub-cells
 Otherwise create mixed parent cell and proceed 

up in the hierarchy  



  

Octree Boolean



  

Octree Summary

 Applications
 Volume data storage (compression )
 Color quantization
 Collision detection

 Pros
 Memory efficient storage
 Adaptive refinement (more details are preserved)

 Cons
 Longer point localization (data search)
 Small change in data → large change in Octree



  

Binary Space Partition (BSP)

 BSP is a method for recursively subdividing a 
space into convex sets by hyperplanes

 Every cell is a convex polyhedron



  

BSP Data Structure

 BSP Node
 Partitioning hyperplane (position, normal, dist)
 List of objects (polygons) “intersecting” this node

 Front child node N
f

 Back child node N
b



  

BSP Construction



  

BSP Generation Algorithm

 Choose a polygon P from the list
 Make a node N in the BSP tree, add P to the list of 

polygons at that node
 For each other polygon Q in the list:

 If Q is wholly in front (behind) of the plane containing  P, 
move it to the front (back) sub-nodes of P

 If Q is intersected by the plane containing P, split it into 
“front” and “back” polygon and move it to respective 
front and back sub-nodes

 If Q lies in the plane containing P, add it to the list of 
polygons at node N

 Repeat this to the list of polygons in front of P
 Repeat this to the list of polygons behind P



  

BSP Generation 1



  

BSP Generation 2



  

BSP Generation 3



  

BSP Generation 4



  

BSP Generation 5



  

BSP Generation 6



  

BSP Generation 7



  

BSP Generation 8



  

BSP Generation 9



  

BSP Raytracing 1



  

BSP Raytracing 2



  

BSP Raytracing 3



  

Orthogonal BSP → kD-tree



  

Constructive Solid Geometry

 Constructive Solid Geometry (CSG)
 Is a volumetric scene representation based on 

combination of Boolean operations on primitive 
geometry or other CSG

 Using only implicitly defined geometry, CSG 
becomes a a special case of F-Rep

 CSG scene definition includes
 Primitive geometry objects
 Tree of Boolean operations



  

CSG Operations

 Union: A+B = { p | p∈A or p∈B }

 Difference: A-B = { p | p∈A and p∉B }

 Intersection: A^B = { p | p∈A and p∈B}

 Any other Boolean operation

Union Difference Intersection



  

CSG Operations

 Complex objects can be created by applying 
Boolean operations on primitive geometries in 
linear order



  

CSG Operations in hierarchy



  

CSG Summary

 Applications are mainly in CAD Industry
 Solid Engineering, Architecture, Security, Army...

 Pros
 Natural and intuitive modeling strategy
 Complex shapes can be created from basic shapes
 Model can always be remodeled

 Cons
 Using parametric (mesh) primitives can be very slow 

and complicated
 Conversion to B-rep can be slow and error-prone



  

Surface Representation Conversion

 Parametric to Implicit
 Algebraic solutions
 Numerical solutions (Scan conversion onto grid)

 Implicit to Parametric
 Marching Cubes
 Marching Tetrahedra
 ...



  

Marching Cubes Algorithm
 1. Specify threshold value
 2. Decide vertex type (in or out) using the threshold

 In: value < threshold value
 Out: value ≥ threshold value
 If all 8 voxel’s vertices are in/out: whole cube is in/out

 3. Based on 8 vertex states create find MC case in a 
table and find intersection edges

 4. Compute vertices coordinates
 Use linear interpolation with threshold value

 5. Compute normals
 Use linear interpolation of vertices normals
 Normal vector is same as a gradient vector (difference)



  

Marching Cubes – 15 Cases



  

Marching Cubes Marching tetrahedra

Marching Cubes / Tetrahedra

 Marching cubes produce mesh with stronger 
turbulence for deforming objects during 
animation then Marching tetrahedra



  

Marching Cubes - Problems

 Local features are not preserved

 Can be improved when exist using normals 
and tangent discontinuities



  

Marching Cubes - Summary

 Applications
 Trimesh construction for any volume data
 Remeshing during simulations
 Surface reconstruction for fluid simulations

 Pros
 Faster than Marching Tets (no neighbor search)
 Semi-regular triangulations

 Cons
 Details are not preserved well
 Mesh turbulence during animations



  

the 
end
that was enough...
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