

Geometric Modeling

 in Graphics
Part 2: Meshes properties

Meshes properties

- Working with DCEL representation
- One connected component with simple polygons
- Basic properties of mesh used in modeling
b Orientation
- Area, volume
- Normal
- Curvature
- Interior \& exterior
- Intersections
- Distances
- Descriptor \& comparison
- Parametrization
- Bounding box
- Skeleton

Geometric Modeling in Graphics

DCEL mesh orientation

- Given by order of vertices in faces = order of half edges in faces
- For each half edge, its opposite half edge must have flipped orientation = opposite half edges can not have same origin vertex
- Fixing orientation - making proper orientation in faces, if possible

Geometric Modeling in Graphics

DCEL mesh orientation fix

```
FixOrientation(DCEL mesh)
{
    List<Face> processed_faces;
    Face current_face = mesh.faces[0];
    while (current_face != null)
    {
        HalfEdge current_edge = current_face.edge;
        do
        {
            int num_flip_edges = 0, num_noflip_edges = 0;
            if (current_edge.opp != null &&
                    processed_faces.Contains(current_edge.opp.face))
            {
                    if (current_edge.origin == current_edge.opp.origin)
                        num_flip_edges++;
                    else
                        num_noflip_edges+ +;
            }
            current_edge = current_edge.next;
        }
            while (current_edge != current_face.edge)
            if (num_flip_edges > 0 && num_noflip_edges > 0)
                return false;
            if (num_flip_edges > 0)
                FlipOrientation(current_face);
            processed_faces.Add(current_face);
            current_face = GetNextUnprocessedFace(processed_faces);
    }
    return true;
}
```

```
GetNextUnprocessedFace(List<Face> processed_faces)
{
    foreach (Face face in processed_faces)
    {
        HalfEdge current_edge = face.edge;
        do
        {
            if (current_edge.opp != null &&
                !processed_faces.Contains(current_edge.opp.face))
                    return current_edge.opp.face;
            current_edge = current_edge.next;
        }
        while (current_edge != face.edge)
    }
    return null;
}
```

```
FlipOrientation(Face face)
{
    HalfEdge current_edge = face.edge;
    HalfEdge prev_edge = null;
    do
    {
        HalfEdge old_next = current_edge.next;
        if (prev_edge != null) current_edge.next = prev_edge;
        current_edge.origin = old_next.origin;
        current_edge.origin.edge = current_edge;
        prev_edge = current_edge;
        current_edge = old_next;
    }
    while (current_edge != face.edge)
    face.edge = prev_edge;
}
```

Geometric Modeling in Graphics

Mesh area

- Mesh area - sum of areas for polygons
- For triangle, (oriented) area A using cross product
$\left.\begin{array}{l}2 \mathrm{~A}(\Delta)=\left|\begin{array}{ll}\left(x_{1}-x_{0}\right) & \left(x_{2}-x_{0}\right) \\ \left(y_{1}-y_{0}\right) & \left(y_{2}-y_{0}\right)\end{array}\right|=\left|\begin{array}{lll}x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right| \\ \\ =\left(x_{1}-x_{0}\right)\left(y_{2}-y_{0}\right)-\left(x_{2}-x_{0}\right)\left(y_{1}-y_{0}\right)\end{array}\right\}$

- Oriented area A for simple polygon in 2D

$$
\begin{aligned}
2 \mathrm{~A}(\Omega) & =\sum_{i=0}^{n-1}\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right) \\
& =\sum_{i=1}^{n-1}\left(x_{i}+x_{i+1}\right)\left(y_{i+1}-y_{i}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i+1}-y_{i-1}\right)
\end{aligned}
$$

$$
\text { where } V_{i}=\left(x_{i}, y_{i}\right) \text {, with } i(\bmod n)
$$

- Oriented area A for simple polygon in 3D

$$
2 \mathrm{~A}(\Omega)=\mathbf{n} \cdot \sum_{i=1}^{n-1}\left(V_{i} \times V_{i+1}\right)
$$

Geometric Modeling in Graphics

Mesh normals

- Unit vector perpendicular to plane
- Normal of tangent plane of point on surface
- For geometric normal, derivation at point is needed
- Face normal
, Oriented normal of face plane
- Direction given by orientation of face
, Used for determining side of face (face culling, interior, ...)
- Vertex pseudo-normal
- Attribute of vertex
- No derivation in vertex - normal of some approximation surface passing vertex
- Used for modeling and visualization (illumination models, ...)
- Not always given by geometric properties

Geometric Modeling in Graphics

Face normal

- For triangle, determined by cross product
- If given triangle $A B C$ (in this order), then face normal N is computed as cross product of $A B$ and $A C$ (in this order)
- General face normal N for (nonplanar) polygon (PI,P2,...,Pn)

$$
\begin{aligned}
& \mathrm{Pi}=[x i, y i, z i], i=l, 2, \ldots, n \\
& N=[N x, N y, N z] \\
& N x=\Sigma(y j-y i)(z j+z i) \\
& N y=\Sigma(z j-z i)(x j+x i) \\
& N z=\Sigma(x j-x i)(y j+y i) \\
& j=(i+I) \bmod n
\end{aligned}
$$

Vertex normal

- Usually computed as weighted average of adjacent faces
- Weight of i-th face Fi
* $w i=1$
b wi $=\operatorname{Area}(\mathrm{Fi})$
* wi $=$ Angle(Fi, v)
, Weights must be normalized


```
ComputeVertexNormalAreaWeights(Vertex v)
{
    Vector N(0, 0, 0);
    float total_weight = 0;
    HalfEdge current_edge = v.edge;
    do
    {
        float wi = FaceArea(current_edge.face);
        total_weight + = wi;
        N + = wi * ComputeFaceNormal(current_edge.face);
        if (current_edge.opp == null)
            break;
        current_edge = current_edge.opp.next;
    }
    while (current_edge != v.edge);
    current_edge = v.edge.prev.opp;
    do
    {
        if (current_edge == null) break;
        float wi = FaceArea(current_edge.face);
        total_weight + = wi;
        N + = wi * ComputeFaceNormal(current_edge.face);
        if (current_edge.prev.opp == null)
            break;
        current_edge = current_edge.prev.opp;
    }
    while (current_edge != v.edge);
    return Normalize(N / total_weight);
}
```


Curvature

- How much is curve or surface curved at given point
- Curves
- Straight line has curvature equal to 0
- At given point, best possible circle is fitted
- Curvature is reciprocal of fitted circle radius

- Surfaces
- At given point, and given tangent vector, curvature of all curves passing that point with that tangent vector is the same
- There is maximum and minimum of all tangent curvatures principal curvatures $\mathrm{kl}, \mathrm{k} 2$
- Gaussian curvature $\mathrm{K}=\mathrm{kI} . \mathrm{k} 2$, mean curvature $\mathrm{H}=0.5^{*}(\mathrm{kI}+\mathrm{k} 2)$

Geometric Modeling in Graphics

Mesh curvature

- Polygonal esh - no first and second order derivation on edges and at vertices
- Curvature equal to 0 inside faces
- „Curvature" at vertex - curvature of some interpolation surface at vertex
- Gaussian curvature for triangle meshes

$$
K_{g}=\frac{1}{\mathcal{A}}\left(2 \pi-\sum_{j=1}^{N} \theta_{j}\right)
$$

- Mean curvature for triangle meshes

$H_{p}=\frac{1}{4 \mathcal{A}}\left\|\sum_{i \in s t(p)}\left(\cot \alpha_{i}+\cot \beta_{i}\right)\left(x_{i}-p\right)\right\|$.

ftp://ftp.disi.unige.it/person/MagilloP/PDF/Incs20I2.pdf
Geometric Modeling in Graphics

Mesh curvatures

http://graphics.ucsd.edu/~iman/Curvature/
Geometric Modeling in Graphics

Closed mesh

- Mesh dividing space to two sets, interior and exterior
- Interior and exterior should be non-empty sets
- Unclosed mesh has some holes, and has some boundary edges - edges with only one adjacent face
- Mesh in DCEL representation is closed if all opposite pointers in all half edges are non-null

Geometric Modeling in Graphics

Interior determination

- Check if given point in interior or exterior set of mesh
- I. Cast ray from point, if it hits mesh in odd number if intersections, it is inside mesh, and outside otherwise
- 2. Find closest point C of given point P on mesh, then use dot product of $\mathrm{P}-\mathrm{C}$ and normal in C to determine if it is inside or outside. Use angle-weighted pseudo normal if C is vertex or on edge of mesh.

Ray-mesh intersections

- Finding intersections of ray and polygons of mesh
- Counting intersections on edges and in vertices only once
- Usually checking for intersection of ray and triangle
- Using acceleration structures
- Uniform grid
- Octree
- kd-tree
- Bounding volumes hierarchy

Ray-triangle intersection

- Find intersection of ray and plane
- Ray: $P=P_{0}+t V$
- Plane: P.N+d=0
t $\mathrm{t}=-\left(\mathrm{P}_{0} . \mathrm{N}+\mathrm{d}\right) /(\mathrm{V} . \mathrm{N})$

- Find if intersection point lies inside triangle
- A,B,C - coordinates of triangle vertices
- $\mathrm{P}=\mathrm{uA}+\mathrm{vB}+w C, u+v+w=I$, barycentric coordinates
* Three equations, three variables u, v, w
- If $0<=u, v, w,=I$, then P is inside $A B C$
- Optimized computations
- https://en.wikipedia.org/wiki/M\�\�ller\�\�\�Trumbo re_intersection_algorithm

Geometric Modeling in Graphics

Kd-tree

- Probably fastest supporting structure for ray-mesh intersection - http://dcgi.felk.cvut.cz/home/havran/phdthesis.html
- Binary tree structure, each node containing one dividing plane perpendicular to one coordinate axis - each node represents axis-aligned convex area of space
- Polygons of mesh are stored only in leafs
- All polygons stored in subtree of a node are inside of the node area
- When finding intersections of ray and mesh, first kd-tree is traversed and only nodes intersecting with ray are visited
- Ray-polygon intersections are computed only for visited leafs
- Used also for set of meshes

Kd-tree

Geometric Modeling in Graphics

Kd-tree

Geometric Modeling in Graphics

Mesh descriptors

- Describing mesh using small number of numbers descriptor vector
- If description vectors are same, then meshes should be same and vice versa
- Similar meshes has similar vector using some vectors comparison metrics
- Used for mesh comparisons, shape recognition, shape retrieval, ...
- Transformation invariance
- http://web.ist.utl.pt/alfredo.ferreira/publications/DecorARSurveyon3DShapedescriptors.pdf

Shape Contexts

- Divide space into smaller number of bins, centered at local point or global center
- Prepare normalized histogram for number of mesh vertices inside bins
- Global
- Uniform grid over whole mesh
- Count number of vertices for each cell (bin)
- Normalized count is descriptor vector
- Local

- Put disc grid at each vertex location and count number of vertices in local neighborhood

Hausdorff distance

- Point-mesh distance (point x, mesh A)
- $d(x, A)=\inf \{d(x, y) ; y$ in $A\}$;
- Mesh-mesh Hausdorff distance (mesh A, mesh B)
- $d(A, B)=\sup \{d(x, B) ; x$ in $A\}$
- Symmetrical mesh-mesh Hausdorff distance (mesh A, mesh B) - $\mathrm{h}(\mathrm{A}, \mathrm{B})=\max \{\mathrm{d}(\mathrm{A}, \mathrm{B}), \mathrm{d}(\mathrm{B}, \mathrm{A})\}$
- If 0 , meshes are identical
- Higher distance $=$ meshes are more different
- For computation, acceleration structures like uniform grid, octree, kd-tree are used
- http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/m esh_mesh.pdf

Geometric Modeling in Graphics

Hausdorff distance

- http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html

Geometric Modeling in Graphics

Mesh bounding box

- Finding tight bounding box for mesh and principal direction
- Using PCA (Principal component analysis)
- Using vertices of mesh $\mathrm{V}_{\mathrm{i}}=\left[\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right]$
- http://jamesgregson.blogspot.sk/201 I/03/latex-test.html
- I. Compute mean position for each coordinate

$$
\hat{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \hat{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i} \quad \hat{z}=\frac{1}{N} \sum_{i=1}^{N} a_{i}
$$

$$
\mathbf{C}=\left[\begin{array}{ccc}
E[x x]-\hat{x} \hat{x} & E[x y]-\hat{x} \hat{y} & E[x z]-\hat{x} \hat{z} \\
E[y x]-\hat{y} \hat{x} & E[y y]-\hat{y} \hat{y} & E[y z]-\hat{y} \hat{z} \\
E[z x]-\hat{z} \hat{x} & E[z y]-\hat{z} \hat{y} & E[z z]-\hat{z} \hat{z}
\end{array}\right]
$$

$E[x x]=\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}$
$E[x y]=\frac{1}{N} \sum_{i=1}^{N} x_{i}, y_{n}$,

$$
E[x z]=\frac{1}{N} \sum_{i=1}^{N} x_{i} z_{i}
$$

- 3. Find eigenvectors of covariance matrix C
- 4. Eigenvectors form orthogonal frame of oriented bounding box

Geometric Modeling in Graphics

Mesh bounding box

- Using triangles instead of vertices, A_{i} is are of i-th triangle, A_{m} is area of entire mesh, p, q, r are vertices of i-th triangle

$$
\begin{aligned}
& \hat{x}=\frac{1}{A_{m}} \sum_{i=1}^{N} A_{i} \hat{x}_{i} \quad \hat{y}=\frac{1}{A_{m}} \sum_{i=1}^{N} A_{i, \hat{y}_{i}} \quad \hat{z}=\frac{1}{A_{m}} \sum_{i=1}^{N} A_{i} \hat{z}_{i} \\
& E[x x]=\frac{1}{A_{m}} \sum_{i=1}^{N} \frac{A_{i}}{12}\left(9 \hat{x}_{x} \hat{x}_{i}+p_{z} p_{x}+q_{z} q_{x}+r_{x} r_{z}\right) \quad E[x y]=\frac{1}{A_{m}} \sum_{i=1}^{N} \frac{A_{i}}{12}\left(\hat{x}_{\hat{i}} \hat{y}_{Y}+p_{x} p_{y}+q_{z} q_{y}+r_{x} r_{y}\right)
\end{aligned}
$$

- Using only vertices or triangles from convex hull of mesh
- Using only one eigenvector from PCA, other 2 directions are computed using 2D PCA from projected vertices

OBB fit using points

Geometric Modeling in Graphics

Mesh parameterization

- Polygonal mesh - 2D object, manifold
- Parameterization - finding bijective mapping of 2D plane and polygonal mesh
- Usually defined by putting 2 coordinates (u, v) at each vertex defining coordinates of vertex in 2D space
- 2D coordinates of points inside faces are computed using interpolation
- https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt
- Usage
- Texture mapping
- Mesh editing
- Morphing
- Animation

Geometric Modeling in Graphics

Basic parameterizations

- Computing u, v for each vertex V_{i}
- Planar
- Given plane by origin O and two orthonormal vector X, Y
b $u=(\mathrm{Vi}-\mathrm{O}) \cdot \mathrm{X}, \mathrm{v}=(\mathrm{Vi}-\mathrm{O}) \cdot \mathrm{Y}$
- Spherical
- Given origin O
| $\left.r=\left|V_{i}-\mathrm{O}\right|, u=\operatorname{atan}\left(V_{i x}-\mathrm{O}_{x}\right) /\left(\mathrm{V}_{\mathrm{iy}}-\mathrm{O}_{y}\right)\right), v=\operatorname{acos}\left(\left(\mathrm{V}_{\mathrm{i}-}-\mathrm{O}_{z}\right) / \mathrm{r}\right)$
- Cylindrical
- Given origin O
- $R=\operatorname{sqrt}\left(\left(\mathrm{V}_{\mathrm{iz}}-\mathrm{O}_{x}\right)^{2}+\left(\mathrm{V}_{\mathrm{iy}}-\mathrm{O}_{\mathrm{y}}\right)^{2}\right), \mathrm{u}=\operatorname{asin}\left(\left(\mathrm{V}_{\mathrm{ii}}-\mathrm{O}_{\mathrm{y}}\right) / \mathrm{r}\right), \mathrm{v}=\mathrm{V}_{\mathrm{iz}}-\mathrm{O}_{\mathrm{z}}$

Basic parameterizations

- http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/

Geometric Modeling in Graphics

The End for today

