
Geometric

Modeling

 in Graphics

Martin Samuelčík

www.sccg.sk/~samuelcik

samuelcik@sccg.sk

Part 2: Meshes properties

Meshes properties
 Working with DCEL representation

 One connected component with simple polygons

 Basic properties of mesh used in modeling
 Orientation

 Area, volume

 Normal

 Curvature

 Interior & exterior

 Intersections

 Distances

 Descriptor & comparison

 Parametrization

 Bounding box

 Skeleton

 …

Geometric Modeling in Graphics

DCEL mesh orientation

 Given by order of vertices in faces = order of half edges

in faces

 For each half edge, its opposite half edge must have

flipped orientation = opposite half edges can not have

same origin vertex

 Fixing orientation – making proper orientation in faces, if

possible

Geometric Modeling in Graphics

DCEL mesh orientation fix

Geometric Modeling in Graphics

FixOrientation(DCEL mesh)
{
 List<Face> processed_faces;
 Face current_face = mesh.faces[0];
 while (current_face != null)
 {
 HalfEdge current_edge = current_face.edge;
 do
 {
 int num_flip_edges = 0, num_noflip_edges = 0;
 if (current_edge.opp != null &&
 processed_faces.Contains(current_edge.opp.face))
 {
 if (current_edge.origin == current_edge.opp.origin)
 num_flip_edges++;
 else
 num_noflip_edges++;
 }
 current_edge = current_edge.next;
 }
 while (current_edge != current_face.edge)
 if (num_flip_edges > 0 && num_noflip_edges > 0)
 return false;
 if (num_flip_edges > 0)
 FlipOrientation(current_face);
 processed_faces.Add(current_face);
 current_face = GetNextUnprocessedFace(processed_faces);
 }
 return true;
}

FlipOrientation(Face face)
{
 HalfEdge current_edge = face.edge;
 HalfEdge prev_edge = null;
 do
 {
 HalfEdge old_next = current_edge.next;
 if (prev_edge != null) current_edge.next = prev_edge;
 current_edge.origin = old_next.origin;
 current_edge.origin.edge = current_edge;
 prev_edge = current_edge;
 current_edge = old_next;
 }
 while (current_edge != face.edge)
 face.edge = prev_edge;
}

GetNextUnprocessedFace(List<Face> processed_faces)
{
 foreach (Face face in processed_faces)
 {
 HalfEdge current_edge = face.edge;
 do
 {
 if (current_edge.opp != null &&
 !processed_faces.Contains(current_edge.opp.face))
 return current_edge.opp.face;
 current_edge = current_edge.next;
 }
 while (current_edge != face.edge)
 }
 return null;
}

Mesh area
 Mesh area - sum of areas for polygons

 For triangle, (oriented) area A using cross product

 Oriented area A for simple polygon in 2D

 Oriented area A for simple polygon in 3D

Geometric Modeling in Graphics

http://geomalgorithms.com/a01-_area.html

Mesh normals
 Unit vector perpendicular to plane

 Normal of tangent plane of point on surface

 For geometric normal, derivation at point is needed

 Face normal

 Oriented normal of face plane

 Direction given by orientation of face

 Used for determining side of face (face culling, interior, …)

 Vertex pseudo-normal

 Attribute of vertex

 No derivation in vertex - normal of some approximation
surface passing vertex

 Used for modeling and visualization (illumination models, …)

 Not always given by geometric properties

Geometric Modeling in Graphics

Face normal

 For triangle, determined by cross product

 If given triangle ABC (in this order), then face normal N is

computed as cross product of AB and AC (in this order)

 General face normal N for (nonplanar) polygon

(P1,P2,…,Pn)

Geometric Modeling in Graphics

Pi=[xi, yi, zi], i=1,2,…,n

N=[Nx, Ny, Nz]

Nx = Σ (yj – yi)(zj + zi)

Ny = Σ (zj – zi)(xj + xi)

Nz = Σ (xj – xi)(yj + yi)

j= (i+1) mod n

Vertex normal

 Usually computed as weighted average of adjacent faces

 Weight of i-th face Fi

 wi=1

 wi = Area(Fi)

 wi = Angle(Fi, v)

 Weights must be normalized

Geometric Modeling in Graphics

ComputeVertexNormalAreaWeights(Vertex v)
{
 Vector N(0, 0, 0);
 float total_weight = 0;
 HalfEdge current_edge = v.edge;
 do
 {
 float wi = FaceArea(current_edge.face);
 total_weight += wi;
 N += wi * ComputeFaceNormal(current_edge.face);
 if (current_edge.opp == null)
 break;
 current_edge = current_edge.opp.next;
 }
 while (current_edge != v.edge);
 current_edge = v.edge.prev.opp;
 do
 {
 if (current_edge == null) break;
 float wi = FaceArea(current_edge.face);
 total_weight += wi;
 N += wi * ComputeFaceNormal(current_edge.face);
 if (current_edge.prev.opp == null)
 break;
 current_edge = current_edge.prev.opp;
 }
 while (current_edge != v.edge);
 return Normalize(N / total_weight);
}

Curvature

 How much is curve or surface curved at given point

 Curves

 Straight line has curvature equal to 0

 At given point, best possible circle is fitted

 Curvature is reciprocal of fitted circle radius

 For computation, second order derivation is needed

 Surfaces

 At given point, and given tangent vector, curvature of all curves
passing that point with that tangent vector is the same

 There is maximum and minimum of all tangent curvatures –
principal curvatures k1, k2

 Gaussian curvature K = k1.k2, mean curvature H = 0.5*(k1+k2)

Geometric Modeling in Graphics

Mesh curvature

 Polygonal esh – no first and second order derivation on

edges and at vertices

 Curvature equal to 0 inside faces

 „Curvature“ at vertex – curvature of some interpolation

surface at vertex

 Gaussian curvature for triangle meshes

 Mean curvature for triangle meshes

Geometric Modeling in Graphics

ftp://ftp.disi.unige.it/person/MagilloP/PDF/lncs2012.pdf

Mesh curvatures

Geometric Modeling in Graphics

http://graphics.ucsd.edu/~iman/Curvature/

http://graphics.ucsd.edu/~iman/Curvature/mean_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/gaussian_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/min_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/max_curvature.png

Closed mesh

 Mesh dividing space to two sets, interior and exterior

 Interior and exterior should be non-empty sets

 Unclosed mesh has some holes, and has some boundary

edges – edges with only one adjacent face

 Mesh in DCEL representation is closed if all opposite

pointers in all half edges are non-null

Geometric Modeling in Graphics

Interior determination

 Check if given point in interior or exterior set of mesh

 1. Cast ray from point, if it hits mesh in odd number if

intersections, it is inside mesh, and outside otherwise

 2. Find closest point C of given point P on mesh, then use

dot product of P-C and normal in C to determine if it is

inside or outside. Use angle-weighted pseudo normal if C

is vertex or on edge of mesh.

Geometric Modeling in Graphics

Ray-mesh intersections

 Finding intersections of ray and polygons of mesh

 Counting intersections on edges and in vertices only once

 Usually checking for intersection of ray and triangle

 Using acceleration structures

 Uniform grid

 Octree

 kd-tree

 Bounding volumes hierarchy

Geometric Modeling in Graphics

Ray-triangle intersection

 Find intersection of ray and plane

 Ray: P=P0+tV

 Plane: P.N+d=0

 t=-(P0.N+d)/(V.N)

 Find if intersection point lies inside triangle

 A,B,C – coordinates of triangle vertices

 P=uA+vB+wC, u+v+w=1, barycentric coordinates

 Three equations, three variables u,v,w

 If 0 <= u,v,w ,= 1, then P is inside ABC

 Optimized computations

 https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbo
re_intersection_algorithm

Geometric Modeling in Graphics

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

Kd-tree

 Probably fastest supporting structure for ray-mesh intersection

 http://dcgi.felk.cvut.cz/home/havran/phdthesis.html

 Binary tree structure, each node containing one dividing plane
perpendicular to one coordinate axis – each node represents
axis-aligned convex area of space

 Polygons of mesh are stored only in leafs

 All polygons stored in subtree of a node are inside of the node

area

 When finding intersections of ray and mesh, first kd-tree is

traversed and only nodes intersecting with ray are visited

 Ray-polygon intersections are computed only for visited leafs

 Used also for set of meshes

Geometric Modeling in Graphics

http://dcgi.felk.cvut.cz/home/havran/phdthesis.html
http://dcgi.felk.cvut.cz/home/havran/phdthesis.html
http://dcgi.felk.cvut.cz/home/havran/phdthesis.html

Kd-tree

Geometric Modeling in Graphics

KdTreeNodeConstruct(D, dim, d)
{
 if (|D| = 0) return null;
 v = new KdTreeNode;
 v->dim = dim;
 if (|D| <= THRESHOLD)
 {
 v->data = D.Elements;
 v->left = null;
 v->right = null;
 return v;
 }
 v->data = null;
 v->split = D.ComputeSplitValue(dim);
 D<s = D.Left(dim, v->split);
 D>s = D.Right(dim, v->split);
 j = (dim + 1) mod d;
 v->left = KdTreeNodeConstruct(D<s, j);
 v->right = KdTreeNodeConstruct(D>s, j);
 return v;
}

struct KdTreeNode
{
 float split;
 int dim;
 List<Face> data;
 KdTreeNode * left;
 KdTreeNode * right;
 KdTreeNode * parent;
}

KdTreeConstruct(S, d)
{
 T = new KdTree;
 T->root = KdTreeNodeConstruct(S, 0, d);
 return T;
}

struct KdTree
{
 KdTreeNode * root;
}

Kd-tree

Geometric Modeling in Graphics

Mesh descriptors

 Describing mesh using small number of numbers –

descriptor vector

 If description vectors are same, then meshes should be

same and vice versa

 Similar meshes has similar vector using some vectors

comparison metrics

 Used for mesh comparisons, shape recognition, shape

retrieval, …

 Transformation invariance

 http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-

Surveyon3DShapedescriptors.pdf

Geometric Modeling in Graphics

http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf

Shape Contexts

 Divide space into smaller number of bins, centered at

local point or global center

 Prepare normalized histogram for number of mesh

vertices inside bins

 Global

 Uniform grid over whole mesh

 Count number of vertices for each cell (bin)

 Normalized count is descriptor vector

 Local

 Put disc grid at each vertex location and count number of

vertices in local neighborhood

Geometric Modeling in Graphics

Hausdorff distance

 Point-mesh distance (point x, mesh A)

 d(x,A) = inf{d(x,y);y in A};

 Mesh-mesh Hausdorff distance (mesh A, mesh B)

 d(A,B) = sup{d(x,B);x in A}

 Symmetrical mesh-mesh Hausdorff distance (mesh A, mesh B)

 h(A,B) = max{d(A,B),d(B,A)}

 If 0, meshes are identical

 Higher distance = meshes are more different

 For computation, acceleration structures like uniform grid,

octree, kd-tree are used

 http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/m

esh_mesh.pdf

Geometric Modeling in Graphics

http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf
http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf
http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf

Hausdorff distance

 http://meshlabstuff.blogspot.sk/2010/01/measuring-

difference-between-two-meshes.html

Geometric Modeling in Graphics

http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://4.bp.blogspot.com/_HhP1_0uO1dY/S0pzrtyZUcI/AAAAAAAAAbU/MkyWBAn6Hrw/s1600-h/happy_vripSnap01.png
http://2.bp.blogspot.com/_HhP1_0uO1dY/S0pz4BP9o6I/AAAAAAAAAbc/EWBvGx5zX4g/s1600-h/happy_vripSnap03.png
http://4.bp.blogspot.com/_HhP1_0uO1dY/S0pzko0hXpI/AAAAAAAAAbM/uGEfKZxKXv0/s1600-h/happy_vripSnap00.png

Mesh bounding box

 Finding tight bounding box for mesh and principal direction

 Using PCA (Principal component analysis)

 Using vertices of mesh Vi=[xi,yi,zi]

 http://jamesgregson.blogspot.sk/2011/03/latex-test.html

 1. Compute mean position for each coordinate

 2. Compute covariance matrix C

 3. Find eigenvectors of covariance matrix C

 4. Eigenvectors form orthogonal frame
of oriented bounding box

Geometric Modeling in Graphics

http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html

Mesh bounding box

 Using triangles instead of vertices, Ai is are of i-th triangle,

Am is area of entire mesh, p,q,r are vertices of i-th triangle

 Using only vertices or triangles from convex hull of mesh

 Using only one eigenvector from PCA, other 2 directions

are computed using 2D PCA from projected vertices

Geometric Modeling in Graphics

OBB fit using points

 OBB fit using triangles

OBB fit using convex hull

Mesh parameterization

 Polygonal mesh – 2D object, manifold

 Parameterization – finding bijective mapping of 2D plane and
polygonal mesh

 Usually defined by putting 2 coordinates (u,v) at each vertex –
defining coordinates of vertex in 2D space

 2D coordinates of points inside faces are computed using
interpolation

 https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt

 Usage

 Texture mapping

 Mesh editing

 Morphing

 Animation

Geometric Modeling in Graphics

https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt
https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt

Basic parameterizations

 Computing u,v for each vertex Vi

 Planar

 Given plane by origin O and two orthonormal vector X,Y

 u = (Vi-O)•X, v=(Vi-O) •Y

 Spherical

 Given origin O

 r=|Vi-O|, u=atan(Vix-Ox)/(Viy-Oy)), v=acos((Viz-Oz)/r)

 Cylindrical

 Given origin O

 R=sqrt((Viz-Ox)
2+(Viy-Oy)

2), u=asin((Viy-Oy)/r),v=Viz-Oz

Geometric Modeling in Graphics

Basic parameterizations

 http://blog.digitaltutors.com/understanding-uvs-love-them-

or-hate-them-theyre-essential-to-know/

Geometric Modeling in Graphics

http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/

The End
for today

Geometric Modeling in Graphics

