

Geometric Modeling in Graphics

Part 6: Curves

Martin Samuelčik
www.sccg.sk/~samuelcik samuelcik@sccg.sk

Curve

- ID set of points, embedded in space $\mathbf{X}\left(E^{2}, E^{3}\right)$
- $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{X}$
- Parametric curves
- Set of all points $X \in \mathbf{X}$ such that $X=f(t), t \in<a, b>$
- Line: $\mathrm{X}=\mathrm{S}+\mathrm{tD}, \mathrm{t} \in \mathbf{R}, \mathrm{S}$ - start point, D - direction vector
- Circle in 2D: $X=(r . \cos t, r \cdot \sin t), t \in\langle 0,2 \pi\rangle, r-r a d i u s$
- Implicit curves
- Set of all points $X \in E^{2}$ such that $f(X)=0$
- Line: ($\mathrm{X}-\mathrm{P}$). $\mathrm{N}=\mathrm{O}, \mathrm{P}$ - any point on line, N - normal of line, inner product
- Line in 2D: ax $+\mathrm{by}+\mathrm{c}=0$
- Circle: |X-C|-r=0, C-center, r-radius
- Circle in 2D: $(x-c x)^{2}+(y-c y)^{2}-r=0$

Geometric Modeling in Graphics

Parametric curve

- Suitable for many modeling algorithms
- Given parametrization - easy „walk" on curve, easy to generate points on curve
- Visualization
- Approximation with piecewise linear curve - polyline
b Given domain interval $<\mathrm{a}, \mathrm{b}>$, choose sample values $\mathrm{a}=\mathrm{t}_{0}<\mathrm{t}_{1}<$ $t_{2}<\ldots<t_{m}=b$
- Compute sample curve points $F_{0}=f\left(t_{0}\right), F_{1}=f\left(t_{1}\right), \ldots, F_{m}=f\left(t_{m}\right)$, draw polyline $F_{0}, F_{1}, \ldots, F_{m}$
- Parameter m - quality of sampling, approzimation, visualization
, Uniform sampling: $\mathrm{t}_{\mathrm{i}}=\mathrm{a}+\mathrm{i}(\mathrm{b}-\mathrm{a}) / \mathrm{m}, \mathrm{i}=0, \mathrm{I}, \ldots, \mathrm{m}$
- Adaptive sampling: compute t_{i} based on curve parameters, for example curvature

Curve adaptive sampling

- I. Starting with domain - interval <a,b>
- 2.For current interval <u,v>, choose value w at random, $\mathrm{w}=\mathrm{u}+\mathrm{d} .(\mathrm{v}-\mathrm{u}), \mathrm{d}$ is picked at random from <0.45,0.55>
- Store u, v as sampling values
- Check if curve for $\langle u, v\rangle$ is flat enough by computing $P=f(u)$, $Q=f(v), R=f(w)$ and using criterion
- Area of triangle PQR is small
- Angle $P R Q$ is large enough
- R is close to chord PQ
- Tangents of curve at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are approximately parallel
- If curve is not flat enough at <u,v>, divide it into two intervals $<u, w>,<w, v>$ and recursivly call 2 . for both
- 3. Organize generated sampling values in one sequence

Parametric curve sampling

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves

Uniform sampling

Adaptive sampling

Polynomial curve

- Parametric curve where f is polynomial function
- Popular parametric representation due to fast and easy computation
- In modelling, usually only order up to 3 is used
- Extended to rational curve - fraction of two polynomials
- Circle in 2D: $f(t)=\left(\left(1-t^{2}\right) /\left(I+t^{2}\right), 2 t /\left(I+t^{2}\right)\right), t \in R$

Geometric Modeling in Graphics

Polynomial curve

- Several forms of polynomial basis
- Monomial basis
- $\mathrm{f}(\mathrm{t})=\mathrm{V}_{0}+\mathrm{V}_{1} \mathrm{t}+\mathrm{V}_{2} \mathrm{t}^{2}+\ldots+\mathrm{V}_{\mathrm{n}} \mathrm{t}^{\mathrm{n}}, \mathrm{t} \in<\mathrm{a}, \mathrm{b}>$
, V_{0} - control point, $\mathrm{V}_{1}, . ., \mathrm{V}_{\mathrm{n}}$ - control vectors
- Not very suitable for geometric modeling
- Newton, Lagrange interpolation basis
- Bernstein basis, Bezier curve
- $f(t)=B^{n}(t)=V_{0} B^{n}(t)+\ldots V_{n} B_{n}(t), t \in<0, l>$
- $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ - control points

$$
B_{i}^{n}(t)=\binom{n}{i}^{f}(1-t)^{n-i}
$$

- Hermite basis, Cubic Hermite curve
- $\mathrm{f}(\mathrm{t})=\mathrm{H}^{3}(\mathrm{t})=\mathrm{V}_{0} \mathrm{H}^{3}{ }_{0}(\mathrm{t})+\mathrm{T}_{0} \mathrm{H}^{3}{ }_{1}(\mathrm{t})+\mathrm{T}_{1} \mathrm{H}^{3}{ }_{2}(\mathrm{t})+\mathrm{V}_{1} \mathrm{H}_{3}{ }_{3}(\mathrm{t}), \mathrm{t} \in<0, \mathrm{l}>$
- $\mathrm{V}_{0}, \mathrm{~V}_{1}$ - interpolated control points, $\mathrm{T}_{0}, \mathrm{~T}_{1}$ - tangent vectors
- $\mathrm{H}^{3}(\mathrm{t})=2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+\mathrm{I}, \mathrm{H}^{3},(\mathrm{t})=\mathrm{t}^{3}-2 \mathrm{t}^{2}+\mathrm{t}, \mathrm{H}_{2}{ }_{2}(\mathrm{t})=\mathrm{t}^{3}-\mathrm{t}^{2}, \mathrm{H}_{3}{ }_{3}(\mathrm{t})=-2 \mathrm{t}^{3}+3 \mathrm{t}^{2}$

Geometric Modeling in Graphics

Bezier curve

- Approximation curve - mimicking shape of control polyline
- First and last control points $\left(V_{0}, V_{n}\right)$ are interpolated
- $\mathrm{n} .\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right)$, $\mathrm{n} .\left(\mathrm{V}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}-1}\right)$ are tangent vectors in $\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{n}}$
- De Casteljau algorithm
- Recursively computing point on curve for parameter t
- $V_{i}^{0}(t)=V_{i}, I=0, \ldots, n$
- $V_{i}(t)=(I-t) V_{i-1}^{i-}(t)+t V_{i-1}^{i}{ }_{i+1}(t), i=0, \ldots, n-j, j=I, \ldots n$,
- $\mathrm{B}^{\mathrm{n}}(\mathrm{t})=\mathrm{V}_{\mathrm{n}}(\mathrm{t})$
- $\mathrm{V}^{n-1}(\mathrm{t})-\mathrm{V}^{\mathrm{V}-1}(\mathrm{t})$ is tangent vector at $\mathrm{B}^{n}(\mathrm{t})$
- Decomposing curve to 2 Bezier curves, subdivision algorithm
- $\mathrm{V}_{0}^{0}(\mathrm{t}), \mathrm{V}^{1}(\mathrm{t}) \mathrm{V}^{2}{ }_{0}(\mathrm{t}), \ldots, \mathrm{V}^{n_{0}}(\mathrm{t})$
$>\mathrm{V}_{0}(\mathrm{t}), \mathrm{V}^{\mathrm{n}-1}{ }_{1}, \mathrm{~V}^{\mathrm{n}-2}{ }_{2}(\mathrm{t}) \ldots, \mathrm{V}_{\mathrm{n}}(\mathrm{t})$
Geometric Modeling in Graphics

Bezier curve

Geometric Modeling in Graphics

Spline curve

- Simple polynomial curve \& many control points = high order of polynomials = slow computation
- Sticking together polynomial curves of small order piecewise polynomial curve, consists of polynomial segments, segments meet at knots
- Representing each segment separately vs whole spline curve representation
- Expecting order of continuity at knots
- C^{0} - end point of first segment is equal to start point of second
- C^{\prime} - tangent vector at end point of first segment is equal to tangent vector at start point of second segment
- G^{\prime} - tangent vector at end point of first segment is multiplication of tangent vector at start point of second segment
Geometric Modeling in Graphics

Spline curve

$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Bezier spline curve

- Each segment is represented as Bezier curve
- Usually linear, quadratic or cubic segments
- C^{0} continuous Bezier spline - polybezier, beziergon
- C^{\prime} continuous Bezier cubic spline
- Given vertices $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}, \mathrm{n}=3 \mathrm{k}$
- $\mathrm{V}_{0}, \mathrm{~V}_{3}, \mathrm{~V}_{6}, \ldots, \mathrm{~V}_{3 \mathrm{k}}$ - interpolated vertices
, $\mathrm{V}_{3 \mathrm{k}}=0.5 \mathrm{~V}_{3 \mathrm{k}-1}+0.5 \mathrm{~V}_{3 \mathrm{k}+1}$
- Used in PostScript, PDF, .ttf, OpenType, SVG, ...

Geometric Modeling in Graphics

Hermite cubic spline curve

- Given vertex points $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$, tangent vectors $\mathrm{T}_{0}, \mathrm{~T}_{1}, \ldots$, T_{n} and knot parameters $\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{n}}$
- Interpolation curve, interpolating each given vertex V_{i} and maintaining T_{i} as tangent vector at V_{i}
- Interpolation of tangents - C^{\prime} continuity
- Used mainly for animation curves
- Each segment is polynomial and represented in Hermite cubic curve form
- For $\mathrm{t} \in\left\langle\mathrm{t}_{0}, \mathrm{t}_{\mathrm{n}}\right\rangle$, pick span j such that $\mathrm{t} \in\left\langle\mathrm{t}_{\mathrm{j}, \mathrm{t}_{\mathrm{j}+1}}\right\rangle$
, $\mathrm{s}=\left(\mathrm{t}-\mathrm{t}_{\mathrm{j}}\right) /\left(\mathrm{t}_{\mathrm{j}+1}-\mathrm{t}_{\mathrm{j}}\right)$
- $\mathrm{H}(\mathrm{t})=\mathrm{S}_{\mathrm{j}}(\mathrm{s})=\mathrm{V}_{\mathrm{j}} \mathrm{H}^{3}{ }_{0}(\mathrm{~s})+\mathrm{T}_{\mathrm{j}} \mathrm{H}^{3}{ }_{1}(\mathrm{~s})+\mathrm{T}_{\mathrm{j}+1} \mathrm{H}_{\mathrm{j}}^{3}(\mathrm{~s})+\mathrm{V}_{\mathrm{j}+1} \mathrm{H}_{3}{ }_{3}(\mathrm{~s})$

Geometric Modeling in Graphics

Hermite cubic spline curve

- Automatic computation of tangent vectors from given points and knot parameters
- Finite difference
$T_{k}=0.5\left(\frac{V_{k+1}-V_{k}}{t_{k+1}-t_{k}}-\frac{V_{k}-V_{k-1}}{t_{k}-t_{k-1}}\right)$
- Cardinal spline
$T_{k}=(1-c) \frac{V_{k+1}-V_{k-1}}{t_{k+1}-t_{k-1}}$
- c - tension
- Catmull-Rom spline
, $T_{k}=\frac{V_{k+1}-V_{k-1}}{t_{k+1}-t_{k-1}}$
- Kochanek-Bartels spline
$T_{k}=\frac{(1-t)(1+b)(1+c)}{2}\left(T_{k}-T_{k-1}\right)+\frac{(1-t)(1-b)(1-c)}{2}\left(T_{k+1}-T_{k}\right)$
$\Rightarrow c$ - continuity, b - bias, t - tension
Geometric Modeling in Graphics

Hermite cubic spline curve

- Computation of knot parameters
- Uniform: $\mathrm{t}_{\mathrm{k}}=\mathrm{k}$
- Length: $\mathrm{t}_{0}=0, \mathrm{t}_{\mathrm{k}}=\mathrm{t}_{\mathrm{k}-1}+\left|\mathrm{V}_{\mathrm{k}}-\mathrm{V}_{\mathrm{k}-1}\right|$

Cardinal spline

Finite difference spline

Geometric Modeling in Graphics

B-spline curve

- Compact representation of approximating spline curves
- Input
- Polynomials degree d
- Control points $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
, Vector of knot parameters $t_{0}, t_{1}, \ldots, t_{m}, m=n+d+1$
- Knot vector represents polynomial segments (non-empty intervals in domain interval) and also order of continuity between segments (multiplicity of knot parameters)
- $\left.B S^{d}(t)=\sum_{i=0}^{n} V_{i} N^{d}{ }_{i}(t) \quad t \in<t_{d}, t_{n+1}\right)$
- B-spline basis functions

$$
\begin{aligned}
& \left.N^{0}{ }_{i}(t)=1, t \in<t_{i}, t_{i+1}\right) \\
& \left.N_{i}^{0}(t)=0, t \notin<t_{i}, t_{i+1}\right) \\
& N^{k}{ }_{i}(t)=\frac{t-t_{i}}{t_{i+k}-t_{i}} N^{k-1}{ }_{i}(t)+\frac{t_{i+k+1}-t}{t_{i+k+!}-t_{i+1}} N^{k-1}{ }_{i+1}(t) \\
& \quad i=0, I, \ldots, m-k-l \quad k=l, 2, \ldots, d
\end{aligned}
$$

- If some denominator is zero, whole fraction is equal to zero

B-spline curve

Geometric Modeling in Graphics

B-spline curve

- If $\mathrm{t}_{0}=\mathrm{t}_{1}=\ldots=\mathrm{t}_{\mathrm{d}}$, curve starts at V_{0}
- If $\mathrm{t}_{\mathrm{n}+1}=\mathrm{t}_{\mathrm{n}+2}=\ldots=\mathrm{t}_{\mathrm{m}}$, limit of curve end is V_{n}
- Each segment is polynomial of maximal degree d
- If some knot parameter tj from domain has multiplicity q , then spline curve is $\mathrm{C}^{\mathrm{d}-\mathrm{q}}$ at that knot
- Number of polynomial segments is equal to number of different knot parameters in domain
- If each knot parameter has multiplicity $\mathrm{d}+\mathrm{I}$, control points are also control points of Bezier spline curve
- Local control - change of one control vertex affects only d segments in close vicinity of changed vertex
- Convex hull - whole curve lies in convex hull of its control points
Geometric Modeling in Graphics

B-spline curve

- http://web.mit.edu/hyperbook/Patrikalakis-MaekawaCho/nodel8.html
- De Boor evaluation algorithm
- Recursive algorithm for curve point evaluation
, Fast and numerically stable
- Similar to de Casteljau algorithm
- Boehm knot insertion algorithm
> Inserts one knot parameter into knot vector, refining knot vector and control points
, Curve remains same, but its representation changes
- Knot removal algorithm
- Removes one knot parameter from knot vector
, Refines control points
, Can change shape of curve
Geometric Modeling in Graphics

B-spline curve

- Define quadratic uniform B-spline curve, $\mathrm{d}=2$
- Having control polygon $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
- Using uniform knot vector $0,1,2, \ldots, \mathrm{n}+\mathrm{d}+\mathrm{I}$
- At one step, insert one knot into middle of each nonempty domain interval in knot vector
- Knot insertion algorithm defines Chaikin subdivision scheme for control polygon

B-spline curve

- Define cubic uniform B-spline curve, d=3
- Having control polygon $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
- Using uniform knot vector $0,1,2, \ldots, \mathrm{n}+\mathrm{d}+\mathrm{I}$
- At one step, insert one knot into middle of each nonempty domain interval in knot vector
- Knot insertion algorithm defines Catmull-Clark subdivision scheme for control polygon

Geometric Modeling in Graphics

Rational curves

- Curve or its segments are made of rational functions
- Expanding class of representable curves
- Representation of conic sections
- Originated from projection of curve

Geometric Modeling in Graphics

NURBS

- Non-Uniform Rational B-spline
- Defining weights (real numbers) for each control point
- Embedding curve into space with additional dimension into projective, homogenous space
- $V_{i}=\left(x_{i}, y_{i} z_{i}\right), w_{i} \rightarrow P V_{i}=\left(w_{i} x_{i}, w_{i} y_{i}, w_{i} z_{i}, w_{i}\right)$
- Evaluation, algorithms in projective space
- Projection of result point back to affine space
- $P X=(x, y, z, w) \rightarrow X=(x / w, y / w, z / w)$

$$
S(t)=\frac{\sum_{i=0}^{n} w V_{i}^{d}(t)}{\sum_{i=0}^{n} w_{i} N_{i}^{d}(t)}
$$

Conic sections

- Representing conic sections
- Circle as quadratic NURBS curve

- Ellipse, parabola, hyperbola segments as rational Bezier curve

Geometric Modeling in Graphics

Implicit curve

- Algebraic curves
- 2D: Set of all points $X \in E 2$ such that $f(X)=0$
- Circle: $x^{2}+y^{2}-r^{2}=0$
- 3D: Set of all points $X \in E 3$ such that $f(X)=0, g(X)=0$
- Circle: $x^{2}+y^{2}+z^{2}-r^{2}=0, x+y+z=0$
- Easy computation if some point is on curve
- Defining interior, exterior regions by sign of f
- Hard to generate points on curve - hard visualization
- Used for smooth approximation of geometric objects

Geometric Modeling in Graphics

Implicit curve

- Visualization algorithms
- Points generation
- For space point $\mathrm{Q}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, iteratively find point close enough to curve
- Finding solution in the direction of gradient (first derivation)
- Newton method for solving $f\left(\mathrm{Q}+\mathrm{t} .\left(\mathrm{f}_{x}(\mathrm{Q}), \mathrm{f}_{y}(\mathrm{Q})\right)\right)=0$
, $\left(x_{i+1}, y_{i+1}\right)=\left(x_{i}, y_{i}\right)-\frac{f\left(x_{i}, y_{i}\right)}{f_{x}\left(x_{i}, y_{i}\right)^{2}+f_{y}\left(x_{i} y_{i}\right)^{2}}\left(f_{x}\left(x_{i}, y_{i}\right), f_{y}\left(x_{i}, y_{i}\right)\right)$
- Finish iteration when change after one step is small
- Tracing algorithm
- Find starting point near curve Q_{1}
- Determine point P_{1} from Q_{1} using Newton method
b Determine tangent vector T_{1} in P_{1} and compute $Q_{2}=P_{1}+s T_{1}$ (s-step)
- Repeat until we are back in P_{1}
- Polyline $P_{1}, P_{2}, \ldots, P_{n}$ is approximation of implicit curve

Geometric Modeling in Graphics

Implicit curve

- Visualization algorithms
- Marching squares
- Divide space using uniform grid
- For each grid point, compute value of f
- For each cell in grid, generate line segments based on values of f in cell's corners
- Using linear interpolation to compute end points of segments
- Render generated line segments

Geometric Modeling in Graphics

Implicit curve

- Approximation of blending, intersection
- $f(X)=g_{1}(X) \cdot g_{2}(X) \ldots g_{n}(X)-c$

Geometric Modeling in Graphics

Differential geometry

- Parametric curve
- Tangent vector $-\mathrm{T}=\frac{\partial f(t)}{\partial t}$
- Normal vector $-\mathrm{N}=\frac{\partial^{2} f(t)}{\partial t^{2}}$
- Curvature - fitting best circle at point
, Curvature - $k=\frac{\left.\frac{\partial f(t)}{\partial t} \times \frac{\partial^{2} f(t)}{\partial{ }^{2}} \right\rvert\,}{\left|\frac{\partial f(t)}{\partial t}\right|^{3}}$
- Implicit curve
- Gradient, normal vector $-\nabla \mathrm{f}=\mathrm{N}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(f_{x}, f_{y}\right)$
- Curve is regular at point if gradient is not zero vector
- Tangent vector $-\mathrm{T}=\left(-\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right)$
- Curvature $-k=\frac{-f_{y}^{2} f_{x x}+2 f_{x} f_{y} f_{x y}-f_{x}{ }^{2} f_{y y}}{\left(f_{x}{ }^{2}+f_{y}^{2}\right)^{1,5}}$

Geometric Modeling in Graphics

The End for today

