
Geometric

Modeling

 in Graphics

Martin Samuelčík

www.sccg.sk/~samuelcik

samuelcik@sccg.sk

Part 6: Curves

Curve

 1D set of points, embedded in space X (E2, E3)

 f: R → X

 Parametric curves

 Set of all points X ϵ X such that X = f(t), t ϵ <a,b>

 Line: X = S +tD, t ϵ R, S - start point, D - direction vector

 Circle in 2D: X= (r.cos t, r.sin t), t ϵ <0,2π>, r – radius

 Implicit curves

 Set of all points X ϵ E2 such that f(X)=0

 Line: (X-P).N=0, P - any point on line, N - normal of line, inner
product

 Line in 2D: ax+by+c = 0

 Circle: |X-C|-r=0, C-center, r-radius

 Circle in 2D: (x-cx)2+(y-cy)2-r=0

 Geometric Modeling in Graphics

Parametric curve
 Suitable for many modeling algorithms

 Given parametrization – easy „walk“ on curve, easy to
generate points on curve

 Visualization

 Approximation with piecewise linear curve – polyline

 Given domain interval <a,b>, choose sample values a=t0 < t1 <
t2 < …< tm=b

 Compute sample curve points F0=f(t0), F1=f(t1),…,Fm=f(tm),
draw polyline F0, F1,…,Fm

 Parameter m – quality of sampling, approzimation, visualization

 Uniform sampling: ti = a+i(b-a)/m, i=0,1,…,m

 Adaptive sampling: compute ti based on curve parameters, for
example curvature

Geometric Modeling in Graphics

Curve adaptive sampling
 1. Starting with domain – interval <a,b>

 2.For current interval <u,v>, choose value w at random,
w=u+d.(v-u), d is picked at random from <0.45,0.55>

 Store u,v as sampling values

 Check if curve for <u,v> is flat enough by computing P=f(u),
Q=f(v), R=f(w) and using criterion

 Area of triangle PQR is small

 Angle PRQ is large enough

 R is close to chord PQ

 Tangents of curve at P,Q,R are approximately parallel

 If curve is not flat enough at <u,v>, divide it into two intervals
<u,w>,<w,v> and recursivly call 2. for both

 3. Organize generated sampling values in one sequence

Geometric Modeling in Graphics

Parametric curve sampling

Geometric Modeling in Graphics

Uniform sampling Adaptive sampling

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves
https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves

Polynomial curve

 Parametric curve where f is polynomial function

 Popular parametric representation due to fast and easy

computation

 In modelling, usually only order up to 3 is used

 Extended to rational curve – fraction of two polynomials

 Circle in 2D: f(t)=((1-t2)/(1+t2), 2t/(1+t2)), t ϵ R

Geometric Modeling in Graphics

Polynomial curve
 Several forms of polynomial basis

 Monomial basis

 f(t)=V0+V1t+V2t
2+…+Vnt

n, t ϵ <a,b>

 V0 - control point, V1,..,Vn - control vectors

 Not very suitable for geometric modeling

 Newton, Lagrange interpolation basis

 Bernstein basis, Bezier curve

 f(t)=Bn(t)=V0B
n
0(t)+…VnB

n
n(t), t ϵ <0,1>

 V0,V1,…,Vn – control points

 Hermite basis, Cubic Hermite curve

 f(t)=H3(t)=V0H
3
0(t)+T0H

3
1(t)+T1H

3
2(t)+V1H

3
3(t), t ϵ <0,1>

 V0,V1 - interpolated control points, T0, T1 – tangent vectors

 H3
0(t)=2t3-3t2+1, H3

1(t)=t3-2t2+t, H3
2(t)=t3-t2, H3

3(t)=-2t3+3t2

 Geometric Modeling in Graphics

Bezier curve

 Approximation curve – mimicking shape of control polyline

 First and last control points (V0,Vn) are interpolated

 n.(V1-V0), n.(Vn-Vn-1) are tangent vectors in V0,Vn

 De Casteljau algorithm

 Recursively computing point on curve for parameter t

 V0
i(t)=Vi, I = 0,…,n

 Vj
i(t)=(1-t)Vj-1

i(t)+tVj-1
i+1(t), i=0,…,n-j, j=1,…n,

 Bn(t)=Vn
0(t)

 Vn-1
1(t)-V

n-1
0(t) is tangent vector at Bn(t)

 Decomposing curve to 2 Bezier curves, subdivision algorithm

 V0
0(t), V

1
0(t)V

2
0(t),…,Vn

0(t)

 Vn
0(t),V

n-1
1,V

n-2
2(t)…,V0

n(t)

 Geometric Modeling in Graphics

Bezier curve

Geometric Modeling in Graphics

Spline curve
 Simple polynomial curve & many control points = high

order of polynomials = slow computation

 Sticking together polynomial curves of small order -
piecewise polynomial curve, consists of polynomial
segments, segments meet at knots

 Representing each segment separately vs whole spline
curve representation

 Expecting order of continuity at knots

 C0 – end point of first segment is equal to start point of second

 C1 – tangent vector at end point of first segment is equal to
tangent vector at start point of second segment

 G1 – tangent vector at end point of first segment is
multiplication of tangent vector at start point of second
segment

 Geometric Modeling in Graphics

Spline curve

Geometric Modeling in Graphics

Bezier spline curve
 Each segment is represented as Bezier curve

 Usually linear, quadratic or cubic segments

 C0 continuous Bezier spline – polybezier, beziergon

 C1 continuous Bezier cubic spline

 Given vertices V0, V1, V2,…, Vn, n=3k

 V0,V3,V6,…,V3k – interpolated vertices

 V3k=0.5V3k-1+0.5V3k+1

 Used in PostScript, PDF, .ttf, OpenType, SVG, …

Geometric Modeling in Graphics

Hermite cubic spline curve

Geometric Modeling in Graphics

 Given vertex points V0, V1, …, Vn, tangent vectors T0,T1, …,

Tn and knot parameters t0 < t1 < … < tn

 Interpolation curve, interpolating each given vertex Vi and

maintaining Ti as tangent vector at Vi

 Interpolation of tangents - C1 continuity

 Used mainly for animation curves

 Each segment is polynomial and represented in Hermite

cubic curve form

 For t ϵ <t0,tn>, pick span j such that t ϵ <tj,tj+1>

 s = (t-tj)/(tj+1-tj)

 H(t)=Sj(s)= VjH
3
0(s)+TjH

3
1(s)+Tj+1H

3
j(s)+Vj+1H

3
3(s)

Hermite cubic spline curve

Geometric Modeling in Graphics

 Automatic computation of tangent vectors from given
points and knot parameters

 Finite difference

 𝑇𝑘 = 0.5
𝑉𝑘+1−𝑉𝑘

𝑡𝑘+1−𝑡𝑘
−
𝑉𝑘−𝑉𝑘−1

𝑡𝑘−𝑡𝑘−1

 Cardinal spline

 𝑇𝑘 = (1 − 𝑐)
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1

 c - tension

 Catmull-Rom spline

 𝑇𝑘 =
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1

 Kochanek-Bartels spline

 𝑇𝑘 =
1−𝑡 1+𝑏 1+𝑐

2
𝑇𝑘 − 𝑇𝑘−1 +

1−𝑡 1−𝑏 1−𝑐

2
(𝑇𝑘+1 − 𝑇𝑘)

 c – continuity, b – bias, t – tension

Hermite cubic spline curve

Geometric Modeling in Graphics

 Computation of knot parameters

 Uniform: tk = k

 Length: t0 = 0, tk = tk-1+|Vk-Vk-1|

Finite difference spline

Kochanek-Bartels spline

Cardinal spline

B-spline curve

Geometric Modeling in Graphics

 Compact representation of approximating spline curves

 Input
 Polynomials degree d

 Control points V0, V1, …, Vn

 Vector of knot parameters t0,t1, …, tm, m=n+d+1

 Knot vector represents polynomial segments (non-empty
intervals in domain interval) and also order of continuity
between segments (multiplicity of knot parameters)

 𝐵𝑆𝑑 𝑡 = 𝑉𝑖𝑁
𝑑
𝑖 𝑡 𝑡 ∈< 𝑡𝑑 , 𝑡𝑛+1)

𝑛
𝑖=0

 B-spline basis functions
 𝑁0𝑖 𝑡 = 1, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1)
 𝑁0𝑖 𝑡 = 0, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1)

 𝑁𝑘𝑖 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−𝑡𝑖
𝑁𝑘−1𝑖 𝑡 +

𝑡𝑖+𝑘+1−𝑡

𝑡𝑖+𝑘+!−𝑡𝑖+1
𝑁𝑘−1𝑖+1 𝑡

 𝑖 =0,1,…,m-k-1 k=1,2,…,d

 If some denominator is zero, whole fraction is equal to zero

B-spline curve

Geometric Modeling in Graphics

B-spline curve

Geometric Modeling in Graphics

 If t0=t1=…=td, curve starts at V0

 If tn+1=tn+2=…=tm, limit of curve end is Vn

 Each segment is polynomial of maximal degree d

 If some knot parameter tj from domain has multiplicity q,
then spline curve is Cd-q at that knot

 Number of polynomial segments is equal to number of
different knot parameters in domain

 If each knot parameter has multiplicity d+1, control points
are also control points of Bezier spline curve

 Local control – change of one control vertex affects only d
segments in close vicinity of changed vertex

 Convex hull – whole curve lies in convex hull of its control
points

B-spline curve

Geometric Modeling in Graphics

 http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-
Cho/node18.html

 De Boor evaluation algorithm

 Recursive algorithm for curve point evaluation

 Fast and numerically stable

 Similar to de Casteljau algorithm

 Boehm knot insertion algorithm

 Inserts one knot parameter into knot vector, refining knot vector and
control points

 Curve remains same, but its representation changes

 Knot removal algorithm

 Removes one knot parameter from knot vector

 Refines control points

 Can change shape of curve

http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html

B-spline curve

Geometric Modeling in Graphics

 Define quadratic uniform B-spline curve, d=2

 Having control polygon V0,V1,…,Vn

 Using uniform knot vector 0,1,2,…,n+d+1

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector

 Knot insertion algorithm defines Chaikin subdivision
scheme for control polygon

B-spline curve

Geometric Modeling in Graphics

 Define cubic uniform B-spline curve, d=3

 Having control polygon V0,V1,…,Vn

 Using uniform knot vector 0,1,2,…,n+d+1

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector

 Knot insertion algorithm defines Catmull-Clark subdivision
scheme for control polygon

Rational curves

Geometric Modeling in Graphics

 Curve or its segments are made of rational functions

 Expanding class of representable curves

 Representation of conic sections

 Originated from projection of curve

NURBS

Geometric Modeling in Graphics

 Non-Uniform Rational B-spline

 Defining weights (real numbers) for each control point

 Embedding curve into space with additional dimension –
into projective, homogenous space

 Vi=(xi, yi, zi), wi → PVi=(wixi, wiyi, wizi, wi)

 Evaluation, algorithms in projective space

 Projection of result point back to affine space

 PX=(x, y, z, w) → X=(x/w, y/w, z/w)

Conic sections

Geometric Modeling in Graphics

 Representing conic sections

 Circle as quadratic NURBS curve

 Ellipse, parabola, hyperbola segments as rational Bezier
curve

knotvector=[0,0,0,1,1,2,2,3,3,3] knotvector=[0,0,0,1,1,2,2,3,3,4,4,4]

w=1 parabola

w<1 ellipse

w>1 hyperbola

Implicit curve

Geometric Modeling in Graphics

 Algebraic curves

 2D: Set of all points X ϵ E2 such that f(X)=0

 Circle: x2+y2-r2=0

 3D: Set of all points X ϵ E3 such that f(X)=0, g(X)=0

 Circle: x2+y2+z2-r2=0, x+y+z=0

 Easy computation if some point is on curve

 Defining interior, exterior regions by sign of f

 Hard to generate points on curve – hard visualization

 Used for smooth approximation of geometric objects

a=1.1

c=1

Implicit curve

Geometric Modeling in Graphics

 Visualization algorithms

 Points generation

 For space point Q=(x0,y0), iteratively find point close enough to curve

 Finding solution in the direction of gradient (first derivation)

 Newton method for solving f(Q+t.(fx(Q),fy(Q)))=0

 𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 −
𝑓 𝑥𝑖,𝑦𝑖

𝑓𝑥 𝑥𝑖,𝑦𝑖
2+𝑓𝑦 𝑥𝑖,𝑦𝑖

2 (𝑓𝑥 𝑥𝑖 , 𝑦𝑖 , 𝑓𝑦 𝑥𝑖 , 𝑦𝑖)

 Finish iteration when change after one step is small

 Tracing algorithm

 Find starting point near curve Q1

 Determine point P1 from Q1 using Newton method

 Determine tangent vector T1 in P1 and compute Q2=P1+sT1 (s-step)

 Repeat until we are back in P1

 Polyline P1,P2,…,Pn is approximation of implicit curve

Implicit curve

Geometric Modeling in Graphics

 Visualization algorithms

 Marching squares

 Divide space using uniform grid

 For each grid point, compute value of f

 For each cell in grid, generate line segments based on values of f
in cell’s corners

 Using linear interpolation to compute end points of segments

 Render generated line segments

Implicit curve

Geometric Modeling in Graphics

 Approximation of blending, intersection

 f(X)=g1(X).g2(X)…gn(X)-c

Differential geometry

Geometric Modeling in Graphics

 Parametric curve

 Tangent vector – T =
𝜕𝑓 𝑡

𝜕𝑡

 Normal vector – N =
𝜕2𝑓 𝑡

𝜕𝑡2

 Curvature – fitting best circle at point

 Curvature - 𝑘 =

𝜕𝑓 𝑡

𝜕𝑡
×
𝜕2𝑓 𝑡

𝜕𝑡2

𝜕𝑓 𝑡

𝜕𝑡

3

 Implicit curve

 Gradient, normal vector - 𝛻f = N =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
= (𝑓𝑥, 𝑓𝑦)

 Curve is regular at point if gradient is not zero vector

 Tangent vector - T = (−
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑥
)

 Curvature - 𝑘 =
−𝑓𝑦

2𝑓𝑥𝑥+2𝑓𝑥𝑓𝑦𝑓𝑥𝑦−𝑓𝑥
2𝑓𝑦𝑦

(𝑓𝑥
2+𝑓𝑦

2)1,5

The End
for today

Geometric Modeling in Graphics

