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Curve 

 1D set of points, embedded in space X (E2, E3) 

 f: R → X 

 Parametric curves 

 Set of all points X ϵ X such that X = f(t), t ϵ <a,b> 

 Line: X = S +tD, t ϵ R, S - start point, D - direction vector 

 Circle in 2D: X= (r.cos t, r.sin t), t ϵ <0,2π>, r – radius 

 Implicit curves 

 Set of all points X ϵ E2 such that f(X)=0 

 Line: (X-P).N=0,  P - any point on line, N - normal of line, inner 
product 

 Line in 2D: ax+by+c = 0 

 Circle: |X-C|-r=0, C-center, r-radius 

 Circle in 2D: (x-cx)2+(y-cy)2-r=0 
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Parametric curve 
 Suitable for many modeling algorithms 

 Given parametrization – easy „walk“ on curve, easy to 
generate points on curve 

 Visualization 

 Approximation with piecewise linear curve – polyline 

 Given domain interval <a,b>, choose sample values a=t0 < t1 < 
t2 < …< tm=b 

 Compute sample curve points F0=f(t0), F1=f(t1),…,Fm=f(tm), 
draw polyline F0, F1,…,Fm 

 Parameter m – quality of sampling, approzimation, visualization 

 Uniform sampling: ti = a+i(b-a)/m, i=0,1,…,m 

 Adaptive sampling: compute ti based on curve parameters, for 
example curvature 
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Curve adaptive sampling 
 1. Starting with domain – interval <a,b> 

 2.For current interval <u,v>, choose value w at random, 
w=u+d.(v-u), d is picked at random from <0.45,0.55> 

 Store u,v as sampling values 

 Check if curve for <u,v> is flat enough by computing P=f(u), 
Q=f(v), R=f(w) and using criterion 

 Area of triangle PQR is small 

 Angle PRQ is large enough 

 R is close to chord PQ 

 Tangents of curve at P,Q,R are approximately parallel 

 If curve is not flat enough at <u,v>, divide it into two intervals 
<u,w>,<w,v> and recursivly call 2. for both 

 3. Organize generated sampling values in one sequence 
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Parametric curve sampling 
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Uniform sampling Adaptive sampling 

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves 

 

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves
https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves


Polynomial curve 

 Parametric curve where f is polynomial function 

 Popular parametric representation due to fast and easy 

computation 

 In modelling, usually only order up to 3 is used 

 Extended to rational curve – fraction of two polynomials 

 Circle in 2D: f(t)=((1-t2)/(1+t2), 2t/(1+t2)), t ϵ R 
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Polynomial curve 
 Several forms of polynomial basis 

 Monomial basis 

 f(t)=V0+V1t+V2t
2+…+Vnt

n, t ϵ <a,b> 

 V0 - control point, V1,..,Vn - control vectors 

 Not very suitable for geometric modeling 

 Newton, Lagrange interpolation basis 

 Bernstein basis, Bezier curve 

 f(t)=Bn(t)=V0B
n
0(t)+…VnB

n
n(t), t ϵ <0,1> 

 V0,V1,…,Vn – control points 

 Hermite basis, Cubic Hermite curve 

 f(t)=H3(t)=V0H
3
0(t)+T0H

3
1(t)+T1H

3
2(t)+V1H

3
3(t), t ϵ <0,1> 

 V0,V1 - interpolated control points, T0, T1 – tangent vectors 

 H3
0(t)=2t3-3t2+1, H3

1(t)=t3-2t2+t, H3
2(t)=t3-t2, H3

3(t)=-2t3+3t2 
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Bezier curve 

 Approximation curve – mimicking shape of control polyline 

 First and last control points (V0,Vn) are interpolated 

 n.(V1-V0), n.(Vn-Vn-1) are tangent vectors in V0,Vn 

 De Casteljau algorithm 

 Recursively computing point on curve for parameter t 

 V0
i(t)=Vi, I = 0,…,n 

 Vj
i(t)=(1-t)Vj-1

i(t)+tVj-1
i+1(t), i=0,…,n-j, j=1,…n, 

 Bn(t)=Vn
0(t) 

 Vn-1
1(t)-V

n-1
0(t) is tangent vector at Bn(t) 

 Decomposing curve to 2 Bezier curves, subdivision algorithm 

 V0
0(t), V

1
0(t)V

2
0(t),…,Vn

0(t) 

 Vn
0(t),V

n-1
1,V

n-2
2(t)…,V0

n(t) 
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Bezier curve 
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Spline curve 
 Simple polynomial curve & many control points = high 

order of polynomials = slow computation 

 Sticking together polynomial curves of small order - 
piecewise polynomial curve, consists of polynomial 
segments, segments meet at knots 

 Representing each segment separately vs whole spline 
curve representation 

 Expecting order of continuity at knots 

 C0 – end point of first segment is equal to start point of second 

 C1 – tangent vector at end point of first segment is equal to 
tangent vector at start point of second segment 

 G1 – tangent vector at end point of first segment is 
multiplication of tangent vector at start point of second 
segment 
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Spline curve 
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Bezier spline curve 
 Each segment is represented as Bezier curve 

 Usually linear, quadratic or cubic segments 

 C0 continuous Bezier spline – polybezier, beziergon 

 C1 continuous Bezier cubic spline 

 Given vertices V0, V1, V2,…, Vn, n=3k 

 V0,V3,V6,…,V3k – interpolated vertices 

 V3k=0.5V3k-1+0.5V3k+1 

 Used in PostScript, PDF, .ttf, OpenType, SVG, …  
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Hermite cubic spline curve 
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 Given vertex points V0, V1, …, Vn, tangent vectors T0,T1, …, 

Tn and knot parameters t0 < t1 < … < tn 

 Interpolation curve, interpolating each given vertex Vi and 

maintaining Ti as tangent vector at Vi  

 Interpolation of tangents - C1 continuity 

 Used mainly for animation curves 

 Each segment is polynomial and represented in Hermite 

cubic curve form 

 For t ϵ <t0,tn>, pick span j such that t ϵ <tj,tj+1> 

 s = (t-tj)/(tj+1-tj) 

 H(t)=Sj(s)= VjH
3
0(s)+TjH

3
1(s)+Tj+1H

3
j(s)+Vj+1H

3
3(s) 



Hermite cubic spline curve 
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 Automatic computation of tangent vectors from given 
points and knot parameters 

 Finite difference 

 𝑇𝑘 = 0.5
𝑉𝑘+1−𝑉𝑘

𝑡𝑘+1−𝑡𝑘
−
𝑉𝑘−𝑉𝑘−1

𝑡𝑘−𝑡𝑘−1
 

 Cardinal spline 

 𝑇𝑘 = (1 − 𝑐)
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1
 

 c - tension 

 Catmull-Rom spline 

 𝑇𝑘 =
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1
 

 Kochanek-Bartels spline 

 𝑇𝑘 =
1−𝑡 1+𝑏 1+𝑐

2
𝑇𝑘 − 𝑇𝑘−1 +

1−𝑡 1−𝑏 1−𝑐

2
(𝑇𝑘+1 − 𝑇𝑘) 

 c – continuity, b – bias, t – tension 



Hermite cubic spline curve 
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 Computation of knot parameters 

 Uniform: tk = k 

 Length: t0 = 0, tk = tk-1+|Vk-Vk-1| 

 

Finite difference spline 

Kochanek-Bartels spline 

Cardinal spline 



B-spline curve 
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 Compact representation of approximating spline curves 

 Input 
 Polynomials degree d 

 Control points V0, V1, …, Vn 

 Vector of knot parameters t0,t1, …, tm, m=n+d+1 

 Knot vector represents polynomial segments (non-empty 
intervals in domain interval) and also order of continuity 
between segments (multiplicity of knot parameters) 

 𝐵𝑆𝑑 𝑡 =  𝑉𝑖𝑁
𝑑
𝑖 𝑡         𝑡 ∈< 𝑡𝑑 , 𝑡𝑛+1)

𝑛
𝑖=0  

 B-spline basis functions 
 𝑁0𝑖 𝑡 = 1, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1) 
 𝑁0𝑖 𝑡 = 0, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1) 

 𝑁𝑘𝑖 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−𝑡𝑖
𝑁𝑘−1𝑖 𝑡 +

𝑡𝑖+𝑘+1−𝑡

𝑡𝑖+𝑘+!−𝑡𝑖+1
𝑁𝑘−1𝑖+1 𝑡      

 𝑖 =0,1,…,m-k-1     k=1,2,…,d 

 If some denominator is zero, whole fraction is equal to zero 

 

 



B-spline curve 
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B-spline curve 
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 If t0=t1=…=td, curve starts at V0 

 If tn+1=tn+2=…=tm, limit of curve end is Vn 

 Each segment is polynomial of maximal degree d 

 If some knot parameter tj from domain has multiplicity q, 
then spline curve is Cd-q at that knot 

 Number of polynomial segments is equal to number of 
different knot parameters in domain 

 If each knot parameter has multiplicity d+1, control points 
are also control points of Bezier spline curve 

 Local control – change of one control vertex affects only d 
segments in close vicinity of changed vertex 

 Convex hull – whole curve lies in convex hull of its control 
points 

 



B-spline curve 
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 http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-
Cho/node18.html 

 De Boor evaluation algorithm 

 Recursive algorithm for curve point evaluation 

 Fast and numerically stable 

 Similar to de Casteljau algorithm 

 Boehm knot insertion algorithm 

 Inserts one knot parameter into knot vector, refining knot vector and 
control points 

 Curve remains same, but its representation changes 

 Knot removal algorithm 

 Removes one knot parameter from knot vector 

 Refines control points 

 Can change shape of curve 

 

http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html


B-spline curve 
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 Define quadratic uniform B-spline curve, d=2 

 Having control polygon V0,V1,…,Vn 

 Using uniform knot vector 0,1,2,…,n+d+1 

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector 

 Knot insertion algorithm defines Chaikin subdivision 
scheme for control polygon 



B-spline curve 
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 Define cubic uniform B-spline curve, d=3 

 Having control polygon V0,V1,…,Vn 

 Using uniform knot vector 0,1,2,…,n+d+1 

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector 

 Knot insertion algorithm defines Catmull-Clark subdivision 
scheme for control polygon 



Rational curves 
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 Curve or its segments are made of rational functions 

 Expanding class of representable curves 

 Representation of conic sections 

 Originated from projection of curve 



NURBS 
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 Non-Uniform Rational B-spline 

 Defining weights (real numbers) for each control point 

 Embedding curve into space with additional dimension – 
into projective, homogenous space 

 Vi=(xi, yi, zi), wi → PVi=(wixi, wiyi, wizi, wi) 

 Evaluation, algorithms in projective space 

 Projection of result point back to affine space 

 PX=(x, y, z, w) → X=(x/w, y/w, z/w) 



Conic sections 
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 Representing conic sections 

 Circle as quadratic NURBS curve 

 

 

 

 

 

 Ellipse, parabola, hyperbola segments as rational Bezier 
curve 

knotvector=[0,0,0,1,1,2,2,3,3,3] knotvector=[0,0,0,1,1,2,2,3,3,4,4,4] 

w=1 parabola 

w<1 ellipse 

w>1 hyperbola 



Implicit curve 
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 Algebraic curves 

 2D: Set of all points X ϵ E2 such that f(X)=0 

 Circle: x2+y2-r2=0 

 3D: Set of all points X ϵ E3 such that f(X)=0, g(X)=0 

 Circle: x2+y2+z2-r2=0, x+y+z=0 

 Easy computation if some point is on curve 

 Defining interior, exterior regions by sign of f 

 Hard to generate points on curve – hard visualization 

 Used for smooth approximation of geometric objects 

a=1.1 

c=1 



Implicit curve 
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 Visualization algorithms 

 Points generation 

 For space point Q=(x0,y0), iteratively find point close enough to curve 

 Finding solution in the direction of gradient (first derivation) 

 Newton method for solving f(Q+t.(fx(Q),fy(Q)))=0 

 𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 −
𝑓 𝑥𝑖,𝑦𝑖

𝑓𝑥 𝑥𝑖,𝑦𝑖
2+𝑓𝑦 𝑥𝑖,𝑦𝑖

2 (𝑓𝑥 𝑥𝑖 , 𝑦𝑖 , 𝑓𝑦 𝑥𝑖 , 𝑦𝑖 ) 

 Finish iteration when change after one step is small 

 Tracing algorithm 

 Find starting point near curve Q1 

 Determine point P1 from Q1 using Newton method 

 Determine tangent vector T1 in P1 and compute Q2=P1+sT1 (s-step) 

 Repeat until we are back in P1 

 Polyline P1,P2,…,Pn is approximation of implicit curve 

 

 



Implicit curve 
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 Visualization algorithms 

 Marching squares 

 Divide space using uniform grid 

 For each grid point, compute value of f 

 For each cell in grid, generate line segments based on values of f 
in cell’s corners 

 Using linear interpolation to compute end points of segments 

 Render generated line segments 

 



Implicit curve 
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 Approximation of blending, intersection 

 f(X)=g1(X).g2(X)…gn(X)-c 

 



Differential geometry 
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 Parametric curve 

 Tangent vector – T =
𝜕𝑓 𝑡

𝜕𝑡
 

 Normal vector – N =
𝜕2𝑓 𝑡

𝜕𝑡2
 

 Curvature – fitting best circle at point 

 Curvature - 𝑘 =

𝜕𝑓 𝑡

𝜕𝑡
×
𝜕2𝑓 𝑡

𝜕𝑡2

𝜕𝑓 𝑡

𝜕𝑡

3  

 Implicit curve 

 Gradient, normal vector - 𝛻f = N =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
= (𝑓𝑥, 𝑓𝑦) 

 Curve is regular at point if gradient is not zero vector 

 Tangent vector - T = (−
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑥
) 

 Curvature - 𝑘 =
−𝑓𝑦

2𝑓𝑥𝑥+2𝑓𝑥𝑓𝑦𝑓𝑥𝑦−𝑓𝑥
2𝑓𝑦𝑦

(𝑓𝑥
2+𝑓𝑦

2)1,5
 



The End 
for today 
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