Large Steps in Cloth Simulation

David Baraff, Andrew Witkin SIGGRAPH 98, Orlando, July 19-24

Overview

- Realistic cloth simulation
- Implicit integration method instead of explicit integration method
- Conjugate gradient method for solving sparse linear systems
- Enforcing constraints
- Large time steps instead of small ones
- Simulation system significantly faster

Introduction

- Physically-based cloth simulation formulated as a time-varying partial differential equation

$$
\ddot{\mathbf{x}}=\mathbf{M}^{-1}\left(-\frac{\partial E}{\partial \mathbf{x}}+\mathbf{F}\right)
$$

- Faster performance - choosing implicit integration method
- Cloth resists stretching motions, but not shearing and bending
- Computational costs of explicit methods limits realizable resolution of cloth

Introduction

Previous approaches

- Terzopoulos: cloth as rectangular mesh, implicit scheme, not very good damping forces
- Carignan: rectangular mesh, explicit integration scheme
- Volino: triangular mesh, collision detection, no damping forces, midpoint method

Introduction

- Cloth - triangular mesh; eliminates topological restrictions of rectangular meshes
- Deformation energies - quadratic, not quartic functions (Terzopoulos, Carignan)
- Directly imposing and mantaining constraints
- Dynamically varying time steps

Simulation overview

- Triangular mesh of n particles, x_{i} - position of i th particle, x - geometric state of all particles
- The same with force f
- Rest state of cloth: each particle has an unchanging coordinates (u, v) in plane
- 3 internal forces (stretch, shear, bend), 3 damping forces, additional forces

Simulation overview

- Shear force and stretch formulated on a per triangle basis, bend force on a per edge basis
- Stretch force - high coefficient of stiffness
- Combining all forces into force vector f
- Acceleration of i-th particle: $\ddot{x}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}} / \mathrm{m}_{\mathrm{i}}$
- Matrix of masses $\mathrm{M}: \ddot{x}=\mathrm{M}^{-1} \mathrm{f}(\mathrm{x}, \dot{x})$
- Constraints - user defined/automatic, in 1,2 or 3 dimensions

Implicit integration

- Position $\mathrm{x}\left(\mathrm{t}_{0}\right)$ and velocity $\dot{x}\left(\mathrm{t}_{0}\right)$ in time t_{0}
- Goal: determine new position and velocity in time $t_{0}+h$
- Define the system's velocity as $\mathrm{v}=\dot{x}$:

$$
\frac{d}{d t}\binom{\mathbf{x}}{\dot{\mathbf{x}}}=\frac{d}{d t}\binom{\mathbf{x}}{\mathbf{v}}=\binom{\mathbf{v}}{\mathbf{M}^{-1} \mathbf{f}(\mathbf{x}, \mathbf{v})}
$$

- change in notation $x_{0}=x\left(t_{0}\right), v_{0}=v\left(t_{0}\right)$, $\Delta \mathrm{x}=\mathrm{x}\left(\mathrm{t}_{0}+\mathrm{h}\right)-\mathrm{x}\left(\mathrm{t}_{0}\right), \Delta \mathrm{v}=\mathrm{v}\left(\mathrm{t}_{0}+\mathrm{h}\right)-\mathrm{v}\left(\mathrm{t}_{0}\right)$

Implicit integration

- Implicit backward Euler's method:

$$
\binom{\Delta \mathbf{x}}{\Delta \mathbf{v}}=h\binom{\mathbf{v}_{0}+\Delta \mathbf{v}}{\mathbf{M}^{-1} \mathbf{f}\left(\mathbf{x}_{0}+\Delta \mathbf{x}, \mathbf{v}_{0}+\Delta \mathbf{v}\right)}
$$

- Taylor series expansion to f and making firstorder approximation

$$
\mathbf{f}\left(\mathbf{x}_{0}+\Delta \mathbf{x}, \mathbf{v}_{\mathbf{0}}+\Delta \mathbf{v}\right)=\mathbf{f}_{0}+\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x}+\frac{\partial \mathbf{f}}{\partial \mathbf{v}} \Delta \mathbf{v}
$$

Implicit integration

■ Derivative $\partial \mathrm{f} / \partial \mathrm{x}$ is evaluated for the state $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, similarly for $\partial f / \partial v$

- Substituting into equation, substituting $\Delta \mathrm{x}=\mathrm{h}\left(\mathrm{v}_{0}+\Delta \mathrm{v}\right)$, considering identity matrix I:

$$
\left(\mathbf{I}-h \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{v}}-h^{2} \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \Delta \mathbf{v}=h \mathbf{M}^{-1}\left(\mathbf{f}_{0}+h \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_{0}\right)
$$

- This is solved for Δv
- Then $\Delta x=h\left(v_{0}+\Delta v\right)$ is computed

Forces

- Cloth's material behavior described in terms of a scalar potential energy function $\mathrm{E}(\mathrm{x})$
- Force f arising from this energy: $f=-\partial E / \partial x$
- Expressing energy as single function impractical
- Internal behavior defined by vector condition C(x)
- Associated energy: $\mathrm{k} / 2 \mathrm{C}(\mathrm{x})^{\top} \mathrm{C}(\mathrm{x})$, k -stiffness constant

Stretch force

- Every cloth particle has changing position x_{i} in space and unchanging coordinates (u, v) in plane
- w(u,v) - mapping function from plane coordinates to world space
- Stretch measured by examining $\mathrm{w}_{\mathrm{u}}=\partial \mathrm{w} / \partial \mathrm{u}$ and $\mathrm{w}_{\mathrm{v}}=\partial \mathrm{w} / \partial \mathrm{v}$ at a point
- $\left|\mathrm{w}_{\mathrm{u}}\right|$ - stretch/compression in u direction

Stretch force

- Apply stretch/compression measure to a triangle: (vertices=particles i, j, k)

$$
\left(\begin{array}{ll}
\mathbf{w}_{u} & \mathbf{w}_{v}
\end{array}\right)=\left(\begin{array}{ll}
\Delta \mathbf{x}_{1} & \Delta \mathbf{x}_{2}
\end{array}\right)\left(\begin{array}{ll}
\Delta u_{1} & \Delta u_{2} \\
\Delta v_{1} & \Delta v_{2}
\end{array}\right)^{-1} .
$$

$\Delta x 1=x j-x i, \Delta x 2=x k-x i, \Delta u 1=u j-u i, \Delta u 2=u k-u i$, similarly for $\Delta y 1, \Delta y 2$

- Condition for a stretch energy:

$$
\mathbf{C}(\mathbf{x})=a\binom{\left\|\mathbf{w}_{u}(\mathbf{x})\right\|-b_{u}}{\left\|\mathbf{w}_{v}(\mathbf{x})\right\|-b_{v}}
$$

where we treat wu and wv as functions of x ; they depend only on $\mathrm{xi}, \mathrm{xj}, \mathrm{xk}$

Shear and bend forces

- Extent to which cloth has sheared is $W_{u}{ }^{\top} W_{v}$
- Condition for shearing: $C(x)=\mathrm{aw}_{\mathrm{u}}(\mathrm{x})^{\top} \mathrm{w}_{\mathrm{v}}(\mathrm{x})$
- Bend - measured between pair of adjacent triangles
- Bend energy depends upon 4 particles defining two adjoining triangles
- $C(x)=\theta$
n_{1} and n_{2} : unit normals of the two triangles, e : unit vector parallel to the common edge, angle θ between two faces defined by: $\sin \theta=\left(n_{1} \times n_{2}\right)$.e and $\cos \theta=\mathrm{n}_{1} \cdot \mathrm{n}_{2}$

Damping

- Forces before - functions of position only
- Damping forces - functions of position and velocity
- I.e - strong stretch force must be accompanied by strong damping force (anomalous in-plane oscillations)
- Not formulated for $\mathrm{E}(\mathrm{x})$ by measuring velocity of the energy - nonsensical results
- Defined in terms of the condition $C(x)$

Damping

- Damping force d associated with a condition C :

$$
\mathbf{d}=-k_{d} \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}} \dot{\mathbf{C}}(\mathbf{x})
$$

- Add damping forces to internal forces, finding term that breaks symmetry, term omission
- Result:

$$
\frac{\partial \mathbf{d}_{i}}{\partial \mathbf{v}_{j}}=-k_{d} \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}_{i}} \frac{\partial \dot{\mathbf{C}}(\mathbf{x})^{T}}{\partial \mathbf{v}_{j}}=-k_{d} \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}_{i}} \frac{\partial \mathbf{C}(\mathbf{x})^{T}}{\partial \mathbf{x}_{j}}
$$

Constraints

- Automatically determined by user, or contact constraints generated by system
- At given step, particle is unconstrained/constrained in 1,2 or 3 dimensions
- 3 dimensions: explicitly setting velocity of particle
- 2 or 1 dimension: constraining velocity along either 2 or 1 mutually orthogonal axes

Constraints

Other enforcement mechanisms:

- Reduced coordinates - that are describing position and velocity, complicates system (size of matrices changes)
- Penalty method - stiff springs for preventing illegal motion; additional stiffness needed
- Lagrange multipliers - additional constraint forces; more variables

Constraints

- Build constraints directly into equation
- Inverse mass: M^{-1}, enforcing constraints by mass altering
- $\mathrm{W}=\operatorname{modified} \mathrm{M}, \mathrm{W}_{\mathrm{ii}}=\left(1 / \mathrm{M}_{\mathrm{i}}\right) * \mathrm{~S}_{\mathrm{i}}$

$$
\mathbf{S}_{i}= \begin{cases}\mathbf{I} & \text { if } \operatorname{ndof}(i)=3 \\ \left(\mathbf{I}-\mathbf{p}_{i} \mathbf{p}_{i}^{T}\right) & \text { if } \operatorname{ndof}(i)=2 \\ \left(\mathbf{I}-\mathbf{p}_{i} \mathbf{p}_{i}^{T}-\mathbf{q}_{i} \mathbf{q}_{i}^{T}\right) & \text { if } \operatorname{ndof}(i)=1 \\ \mathbf{0} & \text { if } \operatorname{ndof}(i)=0\end{cases}
$$

ndof(i) is number of degrees of freedom particle, pi and qi - prohibited directions; pi if $\operatorname{ndof}(\mathrm{i})=2$, qi if $\operatorname{ndof(}(\mathrm{i})=1$

Constraints

- For particle $\mathrm{i}, \mathrm{z}_{\mathrm{i}}=$ change in velocity we wish to enforce in the particle's constrained direction(s)
- Rewriting equation to directly enforce contraints

$$
\left(\mathbf{I}-h \mathbf{W} \frac{\partial \mathbf{f}}{\partial \mathbf{v}}-h^{2} \mathbf{W} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \Delta \mathbf{v}=h \mathbf{W}\left(\mathbf{f}_{0}+h \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_{0}\right)+\mathbf{z}
$$

- Solving for $\Delta \mathrm{v}$, completely constrained particle: $\Delta v_{i}=z_{i}$, partially: Δv_{i} whose component in the constrained direction(s) $=\mathrm{Z}_{\mathrm{i}}$

Implementation

- For small test systems - former equation (with constraints) solved directly
- For larger - iterative method (conjugate gradient)
- Problem - CG method requires symmetrical matrices
- Transforming equation -without constraints - to symmetric system:

$$
\left(\mathbf{M}-h \frac{\partial \mathbf{f}}{\partial \mathbf{v}}-h^{2} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \Delta \mathbf{v}=h\left(\mathbf{f}_{0}+h \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_{0}\right)
$$

Implementation

- Modify CG method so it can operate on equation from former slide
- Procedurally applying the constraints inherent in the matrix W
- Matrix A, vector b, residual vector r :

$$
\mathbf{A}=\left(\mathbf{M}-h \frac{\partial \mathbf{f}}{\partial \mathbf{v}}-h^{2} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \quad \mathbf{b}=h\left(\mathbf{f}_{0}+h \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_{0}\right) \text { and } \quad \mathbf{r}=\mathbf{A} \Delta \mathbf{v}-\mathbf{b} .
$$

- Component of r_{i} in the particle's unconstrained direction(s) will be $=0$
- Component of Δv_{i} in the particle's constrained direction(s) will be $=\mathrm{Z}_{\mathrm{i}}$

Modified CG method

- Takes matrix A, vector b, preconditioning matrix P and iteratively solves $A \Delta v=b$
- Termination criteria: $|\mathrm{b}-\mathrm{A} \Delta \mathrm{v}|<\mathrm{e} .|\mathrm{b}|$
- P speeds convergence (P^{-1} approximates A)
- Effect of matrix W - filter out velocity changes in constrained direction
- Define an invariant - component of Δv_{i} in constrained direction(s) of particle i is equal to z_{i}

Modified CG method

- Filter - take vector a and perform filtering operation as multiplying by W
- Method always converges -> it works
- Tried to use not modified CG method with penalty term
- No substantial changes in number of iterations
- Similar convergence behavior

Constraint forces

- Contact constraint (cloth - solid object)
- Need to know actual force, in order to determine when to terminate a contraint
- Frictional forces
- Computed at the end of modified CG: (A $\Delta v-\mathrm{b})$
- Releasing constraint: constraint force between a particle and a solid switches from repulsive force to attractive one

Constraint forces

Friction:

- Cloth-solid object contact: particle locked onto a surface
- Monitor constraint force
- If tangential force exceed some fraction of normal force - sliding on the surface allowed

Collisions

- Cloth-cloth: detected by checking pairs (p, t) and (e1,e2) for intersections
- Coherency based bounding box approach
- Collision detected -> insert a strong damped spring force to push them apart
- Friction forces for cloth contact - not solved

Collisions

- Cloth-solid object: testing each cloth particle with faces of object
- Faces of solid object grouped into hierarchical bounding box tree
- Leaves of tree are individual faces of object
- Creation of tree - recursive splitting along coordinate axes

Collision and constraints

- Cloth-solid object collision: enforcing constraint
- Cloth-cloth collision: adding penalty force (enforcing constraints expensive)
- Discrete steps of simulator -> collision between one step and next step
- Cloth-solid object: particle can remain embedded below surface of solid object

Collision and constraints

- Solution - altering the position of cloth particles
- Because using one-step backward Euler method - no problem
- Simple position change - disastrous results
- Large deformation energies in altered particle's neighborhood

Position alteration

- Consider particle collided with solid object
- Particle's position in next step: $\Delta \mathrm{x}_{\mathrm{i}}=\mathrm{h}\left(\mathrm{v}_{0 \mathrm{i}}+\Delta \mathrm{v}_{\mathrm{i}}\right)$
- Changing position after this step - particle's neighbors receive no advance notification of the change in position
- $\Delta \mathrm{x}_{\mathrm{i}}=\mathrm{h}\left(\mathrm{v}_{0 \mathrm{i}}+\Delta \mathrm{v}_{\mathrm{i}}\right)+\mathrm{y}_{\mathrm{i}}$
- y_{i} - arbitrary correction term

Position alteration

- y_{i} - move a particle to a desired location during the backward Euler step
- Modify symmetric system:

$$
\left(\mathbf{M}-h \frac{\partial \mathbf{f}}{\partial \mathbf{v}}-h^{2} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \Delta \mathbf{v}=h\left(\mathbf{f}_{0}+h \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_{0}+\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{y}\right) .
$$

- Control over position and velocity of a constrained particle in one step
- Cloth-cloth collision: correction term can also be added

Adaptive time stepping

- Take sizeable steps forward, without loss of stability
- Still times when step reduction needed (to avoid divergence)
- Other methods - focused on simulation accurrancy, not stability
- Stiffness - potential instability arises from strong stretch forces

Adaptive time stepping

- Each step - take Δx as proposed change in cloth's state
- Examine stretch term in every triangle in newly proposed state
- Drastic change in stretch -> discard proposed state, reduce time step, try again

Adaptive time stepping

- Parameter that indicates maximum allowable step size (less or equal to 1 frame)
- Simulator reduces time steps -> 2 successes -> try to increase time step
- Failure at larger step size ->waits for a longer time period -> retrying to increase time step

Results

- Estimate their simulator's performance as function of n (number of cloth particles)
- Cloth resolution(Fig.1): 500, 900, 2602, 7359 particles
- Running times: $0.23,0.46,2.23,10.3$ seconds/frame
- Slightly better than $O\left(\mathrm{n}^{1.5}\right)$ performance (standard CG method)

Results

figure	no. vertices/no. triangles		time/frame (CPU sec.)	$\begin{gathered} \text { step size } \\ \min / \max (\mathrm{ms}) \end{gathered}$	total frames/ total steps	task breakdown percentage			
	cloth	solid				EVAL	CG	C/C	C/S
1	2,602/4,9442	322/640	2.23	16.5/33	75/80	25.7	50.4	18.3	1.4
2	2,602/4,9442	322/640	3.06	16.5/33	75/80	17.9	63.6	15.3	0.2
3	6,450/12,654	9,941/18,110	7.32	16.5/33	50/52	18.9	37.9	30.9	2.6
4 (shirt)	6,450/12,654	9,941/18,110	14.5	2.5/20	430/748	16.7	29.9	46.1	2.2
(pants)	8,757/17,352	9,941/18,110	38.5	0.625/20	430/1214	16.4	35.7	42.5	1.7
5 (skirt)	2,153/4,020	7,630/14,008	3.68	5/20	393/715	18.1	30.0	44.5	1.5
(blouse)	5,108/10,016	7,630/14,008	16.7	5/20	393/701	11.2	26.0	57.7	1.3
6 (skirt)	4,530/8,844	7,630/14,008	10.2	10/20	393/670	20.1	36.8	29.7	2.6
(blouse)	5,188/10,194	7,630/14,008	16.6	1.25/20	393/753	13.2	30.9	50.2	1.4

System performance for simulations in figures 1-6. Minimum and maximum time steps are in milliseconds of simulation time. Time/frame indicates actual CPU time for each frame, averaged over the simulation. Percentages of total running time are given for four tasks: EVALforming the linear system of equation (18); CG solving equation (18); C/C-cloth/cloth collision detection; and C/S—cloth/solid collision detection

Results

Results

Results

