Rigid body Collisions and Joints

Lesson 09 Outline

* Problem definition and motivations
* Simplified collision model
* Impulse based collision resolution
\rightarrow Friction-less collision resolution
\rightarrow Algebraic collision resolution for Coulomb friction
*Linear and angular joint formulations
* Demos / tools / libs

Contact Types

*Bodies either collide, rest or separate depending on their relative velocity of contact points
\rightarrow Assuming no rotational motion all 3 collision scenarios are:

Colliding Contact

$$
\Delta v_{n}<0
$$

Resting Contact

$$
\Delta v_{n}=0
$$

Separating contact $\Delta v_{n}>0$

Simplified collision model

* Perfect rigidity
\rightarrow Bodies are perfectly rigid. There are no plastic or elastic deformations, where kinetic energy is dissipated. Thus our impact models must artificially decrease the kinetic energy
* Very short collision interval
\rightarrow We model highly elastic behavior, making the collision interval Δt very short requiring the repulsive forces to be very strong, to maintain the non-penetration constraint.
* Direct velocity change
\rightarrow We need to integrate response forces during the collision interval into impulses and change objects velocities directly, causing discontinuities of motion.

Simplified collision model

* Non-impulsive forces are ignored
\rightarrow We can neglect all non-impulsive forces (e.g. gravity), because they are too small compared to the impulsive forces and have no time to accumulate during collision
* Point contact
\rightarrow We reduce the contact region to a set of point contacts treated either as a sequence of single collisions or as a simultaneous multiple impact similar to resting contact
* Constant state
\rightarrow We assume position, orientation, inertia tensor, contact point and contact normal constant, since their change during the collision is negligible. Velocities change strongly

Impulse based Collision Resolution

Collision Resolution

* Rigid body collision resolution is described as

Collision Laws composed of

* Impact Model
\rightarrow Describes rules which preserve the non-penetration constraints of colliding bodies
*Friction Model - is responsible for creating frictional effects as
\rightarrow Sticking - bodies rest on each other due to friction forces
\rightarrow Rolling - bodies start to roll due to friction forces
\rightarrow Sliding - bodies slow down sliding due to friction forces

Collision Resolution Strategies

* Algebraic Collision Resolution
\rightarrow Final velocities (impulse) are calculated using only algebraic relations between pre and post collision variables (velocities, energies...). No numerical ODE solvers \rightarrow fast
* Incremental Collision Resolution
\rightarrow Evolution of the impulsive forces are described with some (ordinary) differential equation with initial and final conditions formed for compression and restitution phases.
*Full Deformation Collision Resolution
\rightarrow Most accurate collision laws accounting with subtle stress and strain processes during the impact. Usually solved using finite element methods. Slow, not suitable for real-time apps.

Impact Model

* In real world objects are never perfectly rigid.
\rightarrow First, their shape is compressed.
\rightarrow If they are elastic their shape is then restituted.
\rightarrow If they are plastic their shape is then plasticlly deformed.
* Impact model as a part of some collision law
\rightarrow Determines the post-collision velocities (positions, orientations...) which prevent bodies to penetrate.
\rightarrow Models as realistic as possible the process during the compression and restitution.
* Time of maximum compression (t_{m})
\rightarrow Time when compression ends and restitution starts.
\rightarrow Time when repulsive forces have maximal length

Impact Model

Newton's Impact Model

* Newton's Impact Model states simple algebraic linear relation between
\rightarrow Pre-collision relative normal velocity $u_{n}\left(t_{0}\right)$
\rightarrow Post-collision relative normal velocity $u_{n}(t)$
\rightarrow Based on coefficient of restitution ε_{n}
*Formally: $u_{n}(t)=-\varepsilon_{n} u_{n}\left(t_{0}\right) \equiv n^{\top} u(t)=-\varepsilon_{n} n^{\top} u\left(t_{0}\right)$
* Main drawbacks
\rightarrow it "blindly" finds some impulse, which cancels the relative velocity, but have no idea about restitution force accumulation during the compression and restitution phase
\rightarrow Can add kinetic energy during collision.

Other Impact Models

* Poisson's Impact Model
\rightarrow Total impulse applied during compression $j_{n}\left(t_{m}\right)$ is proportional to the impulse applied during restitution $j_{n}(t)-j_{n}\left(t_{m}\right)$
\rightarrow Formally: $j_{n}\left(t_{1}\right)-j_{n}\left(t_{m}\right)=\varepsilon_{n} j_{n}\left(t_{m}\right)$
\rightarrow In friction-less case it is equal to Newton's model
* Stronge's Impact Model
\rightarrow Directly relates the work of repulsive forces during compression $W_{n}\left(t_{m}\right)$ and restitution $W_{n}\left(t_{1}\right)-W_{n}\left(t_{m}\right)$
\rightarrow Formally: $W_{n}\left(t_{1}\right)-W_{n}\left(t_{m}\right)=-\varepsilon_{n}^{2} W_{n}\left(t_{m}\right)$
\rightarrow Kinetic energy can not be increased
\rightarrow Coefficient of normal restitution ε_{n} is a property of material.

Coulomb Friction Model

* In the real-world, microscopic interaction between colliding surfaces exerts frictional forces.
\rightarrow This process depends on many different factors, as microscopic structure of the surfaces, relative velocity, contact geometry, and other material properties.
* Assume f is the repulsive force between bodies acting on contact point ρ and u is relative velocity
*Both f and u can be split into
\rightarrow Normal components $\left(f_{n}, u_{n}\right)$ parallel to contact normal
\rightarrow Tangential components $\left(f_{t}, u_{t}\right)$ being inside contact plane
* $f=f_{n}+f_{t}$ and $u=u_{n}+u_{t}$

Coulomb Friction Model

* Coulomb Friction Law
\rightarrow Friction force has opposite direction to relative tangential velocity and is proportional to normal repulsive force.
\rightarrow If the relative tangential velocity vanishes (is zero), we know only that the length of frictional component is less than μ times to the normal component.
$\Rightarrow \mu$ is the coefficient of friction and depends only on material
* Sliding: $u_{t}!=0 \rightarrow f_{t}=-\mu\left|f_{n}\right| u_{t} /\left|u_{t}\right| \rightarrow\left|f_{t}\right|=\mu\left|f_{n}\right|$
* Sticking: $u_{t}==0 \rightarrow\left|f_{t}\right| \leq \mu\left|f_{n}\right|$
* In both cases $\left|f_{t}(t)\right| \leq \mu\left|f_{n}(t)\right|$ thus for any direction friction force must lie in the friction cone

Coulomb Friction Model

* Similar relation $\left|j_{t}\right| \leq \mu\left|j_{n}\right|$ holds for impulses

$$
\Rightarrow\left|j_{t}\right|=\left|\int_{t 00}^{t} f_{t}(\lambda) d \lambda\right| \leq \int_{t 0}^{t}\left|f_{t}(\lambda)\right| d \lambda \leq \mu \int_{t 0}^{t}\left|f_{t}(\lambda)\right| d \lambda=\mu\left|j_{n}\right|
$$

Impulse base Collision Scenario

* Collision Frame
\rightarrow Origin is the contact point
$\rightarrow Z$ axis is the contact normal
*Relative velocity u on contact point is: $u=u_{1}-u_{2}$
*Local body positions of contact point are: r_{1} and r_{2}
* Velocities are changed during collision due to applying collision impulses (+j) and (-j)

Collision Impulse

* Collision Impulse j is the time integral of the repulsive force f over the collision interval $\left(t_{0}, t\right)$ $\rightarrow j=j(t):=\int_{t_{0}}^{t} f(\lambda) d \lambda$
* We define a delta operator " Δ " which for a given function " Ω " calculates the integral of its time derivative $\Omega^{\prime}(=d \Omega / d t)$ over collision interval $\left(t_{0}, t\right)$ $\rightarrow \Delta(\Omega):=\int_{{ }_{\text {to }}} \Omega^{\prime}(\lambda) d \lambda=\Omega(t)-\Omega\left(t_{0}\right)$
* Due to Newton's Third (action-reaction) Law during the collision there are finite (but huge) repulsive forces which together with the opposite reactive forces are pushing bodies apart

Collision Impulse

* Suppose some repulsive force +f (-f) pushes first (second) body at contact point ρ
* We can express f using Newton-Euler equation

$$
\begin{array}{ll}
(+f)=P_{1}^{\prime}=\left(M_{1} v_{1}\right)^{\prime} & r_{1} \times(+f)=L_{1}^{\prime}=\left(J_{1} \omega_{1}\right)^{\prime} \\
(-f)=P_{2}^{\prime}=\left(M_{2} v_{2}\right)^{\prime} & r_{2} \times(-f)=L_{2}^{\prime}=\left(J_{2} \omega_{2}\right)^{\prime}
\end{array}
$$

* Using the " Δ " operator we can express impulse j

$$
\begin{array}{ll}
(+j)=\Delta P_{1}=M_{1} \Delta v_{1} & r_{1} \times(+j)=\Delta L_{1}=J_{1} \Delta \omega_{1} \\
(-j)=\Delta P_{2}=M_{2} \Delta v_{2} & r_{2} \times(-j)=\Delta L_{2}=J_{2} \Delta \omega_{2}
\end{array}
$$

Collision Impulse

* The velocity change due to applying an impulse is

$$
\begin{array}{ll}
\Delta v_{1}=M_{1}^{-1}(+j) & \Delta \omega_{1}=J_{1}^{-1}\left(r_{1} \times(+j)\right) \\
\Delta v_{2}=M_{2}^{-1}(-j) & \Delta \omega_{2}=J_{2}^{-1}\left(r_{2} \times(-j)\right)
\end{array}
$$

* If we express current velocities $\mathrm{u}_{1}, \mathrm{u}_{2}$ and their "change" $\Delta \mathrm{u}_{1}, \Delta \mathrm{u}_{2}$ at the contact point $\rho(\mathrm{t})$

$$
\begin{array}{ll}
u_{1}=v_{1}+\omega_{1} \times r_{1} & \Delta u_{1}=\Delta v_{1}+\Delta \omega_{1} \times r_{1} \\
u_{2}=v_{2}+\omega_{2} \times r_{2} & \Delta u_{2}=\Delta v_{2}+\Delta \omega_{2} \times r_{2}
\end{array}
$$

Collision Impulse

*The final "change" of velocities after the collision

$$
\begin{aligned}
& \Rightarrow \Delta u_{1}=M_{1}^{-1}(+j)+J_{1}^{-1}\left(r_{1} \times(+j)\right) \times r_{1}=\ldots=\left(M_{1}^{-1} 1+r_{1}^{x} J_{1}^{-1} r_{1}^{x}\right)(+j)=K_{1}(+j) \\
& \Rightarrow \Delta u_{2}=M_{2}^{-1}(-j)+J_{2}^{-1}\left(r_{2} \times(-j)\right) \times r_{2}=\ldots=\left(M_{2}^{-1} 1+r_{2}^{x} J_{2}^{-1} r_{2}^{x}\right)(-j)=K_{2}(-j)
\end{aligned}
$$

*Final impulse-based collision equation is

* $\Delta \mathrm{u}=\Delta \mathrm{u}_{1}-\Delta \mathrm{u}_{2}=\mathrm{K}_{1}(+\mathrm{j})-\mathrm{K}_{2}(-\mathrm{j})=\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) \mathrm{j}=\mathrm{K} \mathrm{j}(\mathrm{t})$
$\rightarrow \mathrm{K}_{1}$ and K_{2} are "Collision Matrices" of body 1 and 2
$\rightarrow K$ is "Relative Collision Matrix" - symmetric positive definite
* Impulse-momentum equation is thus
* $\mathrm{j}=\mathrm{K}^{-1} \Delta \mathrm{u}=\mathrm{K}^{-1}\left(\mathrm{u}(\mathrm{t})-\mathrm{u}\left(\mathrm{t}_{0}\right)\right)$
$* u(t)=u(t 0)+K j(t)$

Friction-less Collision Resolution

* Using Newton's impact model collision impulse is
$\rightarrow \mathrm{Kj}=\Delta \mathrm{u}=\mathrm{u}(\mathrm{t})-\mathrm{u}\left(\mathrm{t}_{0}\right)$ and $\mathrm{j}=|\mathrm{j}| \mathrm{j}$.
$\rightarrow n^{\top} K|j| j .=n^{\top} u(t)-n^{\top} u\left(t_{0}\right)=-\varepsilon_{n} n^{\top} u\left(t_{0}\right)-n^{\top} u\left(t_{0}\right)=-\left(1+\varepsilon_{n}\right) n^{\top} u\left(t_{0}\right)$
$\rightarrow|j|=-\left(1+\varepsilon_{n}\right) n^{\top} u\left(t_{0}\right) / n^{\top} K j$.
$\rightarrow \mathrm{j}$. is unit direction vector of impulse (parallel with impulse)
* Collision impulse is related to pre-collision velocity
\rightarrow In friction-less case repulsive forces acts only in the normal direction (to stop penetration), thus impulse is parallel to contact normal: j. (t) = n
* $\mathbf{j}(t)=|\mathbf{j}(t)| \boldsymbol{n}=\frac{-\left(1+\epsilon_{n}\right) \mathbf{n}^{\top} \mathbf{u}\left(t_{0}\right)}{\mathbf{n}^{\top} K n} n$

Collision Resolution with Friction

* Considering friction we don't know the direction of the impulse.
* Any collision impulse must be admissible
\rightarrow It must preserve non-penetration, satisfy the friction cone condition and dissipate energy
*Friction cone Test
$\rightarrow j(t)=j_{n}(t)+j_{t}(t)$ and $j_{n}(t)=n^{\top} j(t) n$
$\rightarrow\left|j(t)-n^{\top} j(t) n\right|=\left|j_{t}(t)\right| \leq \mu\left|j_{t}(t)\right|=n^{\top} j(t)$
* test $(j)=\left|j-n^{\top} j n\right|-n^{\top} j(t)$
\rightarrow If test $(\mathrm{j}) \leq 0 \rightarrow$ impulse is in friction cone
\rightarrow If test $(\mathrm{j})>0 \rightarrow$ impulse is not in friction cone

Algebraic Resolution Law I

* Given some positive real c and any vectors A, B we define "projection" function "kappa" as

$$
\operatorname{koppa}(c, A, B)=\frac{c \mu n^{\top} A}{\left|B-n^{\top} B n\right|+\mu n^{\top}(B-A)}
$$

* We define impulses $P_{I} P_{\text {II }}$ and P
\rightarrow Plastic sliding

$$
P_{I}=\frac{-\left(1+\epsilon_{n}\right) n^{\top} u\left(t_{0}\right)}{n^{\top} K n} n=\frac{-n^{\top} u\left(t_{0}\right)}{n^{\top} K n} n
$$

\rightarrow Plastic sticking

$$
\mathbf{P}_{I I}=\mathbf{K}^{-1}\left(\mathbf{u}(t)-\mathbf{u}\left(t_{0}\right)\right)=-\mathbf{K}^{-1} \mathbf{u}\left(t_{0}\right)
$$

\rightarrow Predicted impulse

$$
\mathbf{P}=\left(1+\epsilon_{n}\right) \mathbf{P}_{I}+\left(1+\epsilon_{t}\right)\left(\mathbf{P}_{I I}-\mathbf{P}_{I}\right)
$$

* Final impulse is

$$
\mathbf{j}=\left(1+\epsilon_{n}\right) \mathbf{P}_{I}+\kappa\left(\mathbf{P}_{I I}-\mathbf{P}_{I}\right) \quad \kappa=\left\{\begin{array}{ll}
\left(1+\epsilon_{t}\right) & \operatorname{test}(\mathbf{P}) \leqslant 0 \\
\operatorname{kappa}\left(1+\epsilon_{n}, \mathbf{P}_{I}, \mathbf{P}_{I}\right) & \text { test }(\mathbf{P})>0
\end{array}\right\}
$$

Linear Angular

Joint Formulations

Linear and Angular Joints

* 3 basic types of Linear joints
$\rightarrow 0,1,2,3$ DOF for relative linear motion
\rightarrow Angular motion is unconstrained (= 3 angular DOF)
* 3 basic types of Angular joints
$\rightarrow 0,1,2,3$ DOF for relative angular motion
\rightarrow Linear motion is unconstrained ($=3$ linear DOF)
* Any 0-6 DOF joint constraint can be constructed as a combination of one linear and one angular joint
\rightarrow Ball Joint $=0$ linear and 3 angular DOF (= 3 DOF)
\rightarrow Hinge Joint $=0$ linear and 1 angular DOF ($=1$ DOF)
\rightarrow Point on Plane Joint $=2$ linear and 3 angular DOF (= 5 DOF)
\rightarrow Other joints ...

0-DOF Linear Joint

* 0 linear DOF = Relative linear motion of bodies is fully constrained at some joint point ρ
\Rightarrow Let ρ_{A} and ρ_{B} be on bodies A and B where the joint is applied.
* To satisfy this joint, distance between ρ_{A} and ρ_{B} should be zero (within tolerance): $\left|\rho_{A}-\rho_{B}\right| \rightarrow 0$
\rightarrow Suppose at t_{0} the joint is satisfied. After Δt of free motion distance $d=\rho_{A}-\rho_{B}$ can become non-zero.
\rightarrow Simplifying the relative motion of ρ_{A} and ρ_{B} is linear their relative velocity is simply $\Delta u=d / \Delta t$
* From Impulse-momentum equation
* $\mathrm{j}=\mathrm{K}^{-1} \Delta \mathrm{u}=\mathrm{K}^{-1}(\mathrm{~d} / \Delta \mathrm{t})$

1-DOF Linear Joint

* 1 linear DOF = Relative linear motion of bodies is allowed along some line defined in one body \rightarrow Let $l_{A}=\left(c_{A}, a_{A}\right)$ be the allowed line on A and ρ_{B} joint point on B
* To satisfy this joint distance between I_{A} and ρ_{B} should be zero: $d\left(l_{A}, \rho_{B}\right) \rightarrow 0$
* Similarly to previous joint we find the distance vector d between l_{A} and ρ_{B} and compute impulse
* $\mathrm{j}=\mathrm{K}^{-1} \Delta \mathrm{u}=\mathrm{K}^{-1}(\mathrm{~d} / \Delta \mathrm{t})$

2-DOF Linear Joint

*2 linear DOF = Relative linear motion of bodies is allowed along some plane defined in one body \rightarrow Let $\beta_{A}=\left(c_{A}, n_{A}\right)$ be the allowed plane on $A ; \rho_{B}$ joint point on B

* To satisfy this joint distance between β_{A} and ρ_{B} should be zero: $d\left(\beta_{A}, \rho_{B}\right) \rightarrow 0$
* Similarly to previous joint we find the distance vector d between β_{A} and ρ_{B} and compute impulse

$$
* \mathrm{j}=\mathrm{K}^{-1} \Delta \mathrm{u}=\mathrm{K}^{-1}(\mathrm{~d} / \Delta \mathrm{t})
$$

3-DOF Linear Joint

* 3 linear DOF = Relative linear motion of bodies is unconstrained.
* We do not need to apply any impulse here
\rightarrow Assuming 3 angular DOF, the proposed joint has all DOF \rightarrow Both relative linear and angular motion of bodies is unconstrained \rightarrow there is no constraint at all. Bodies can freely move.

0-DOF Angular Joint

* 0 angular DOF = Relative angular motion of bodies is fully constrained
\rightarrow Let $\mathrm{a}_{A 0}$ and $\mathrm{a}_{B 0}$ be initial orientation of A and B
\rightarrow Relative orientation of A and B is $\Delta q=\left(q_{B 0}^{-1} q_{B}\right)^{-1}\left(q_{A 0}^{-1} q_{A}\right)$
$\rightarrow \Delta q$ is converted into axis-angle notation (α, α)
* To satisfy this joint relative orientation Δq should be zero: $\Delta \mathrm{q} \rightarrow 0$
\rightarrow If relative angular motion is linearized relative angular velocity $\omega=\left(\omega_{A}-\omega_{B}\right)$ is proportional to the angle α along direction a during Δt : $\omega=\alpha . a / \Delta t$
* Angular momentum change is: $\Delta \mathrm{L}=\left(\mathrm{J}_{1}^{-1}+\mathrm{J}_{2}^{-1}\right)^{-1} \omega$
\rightarrow Change angular momentums: $\mathrm{L}_{A}+=+\Delta \mathrm{L}$ and $\mathrm{L}_{B}+=-\Delta \mathrm{L}$

1-DOF Angular Joint

* 1 angular DOF = Bodies are allowed to rotate around one common axis (defined in both bodies)
\rightarrow Let a_{A} and a_{B} be the common unit axis in body A and B
\rightarrow Define the relative angular axis change as $d=a_{A} \times a_{B}$
\rightarrow Angular velocity change is proportional to d
* To satisfy this joint relative orientation change d should be zero: $\mathrm{d} \rightarrow 0$
\rightarrow Similarly to previous joint relative angular velocity $\omega=d / \Delta t$
* Angular momentum change is: $\Delta \mathrm{L}=\left(\mathrm{J}_{1}^{-1}+\mathrm{J}_{2}^{-1}\right)^{-1} \omega$
\rightarrow Change angular momentums: $L_{A}+=+\Delta L$ and $L_{B}+=-\Delta L$

2-DOF Angular Joint

*2 angular DOF = Bodies are allowed to rotate around two linearly independent axes.
\rightarrow Let a_{A} and b_{B} be unit rotation axes in body A and B
\rightarrow Define rotation change axis as $c=a_{A} \times b_{B}$
\rightarrow Angle $\varphi(t)=\arccos \left(a_{A}(t), b_{B}(t)\right)$ between a_{A} and b_{B} must be constant during simulation
\rightarrow Relative orientation change is $d(t)=(\varphi(t)-\varphi(0)) c$

* To satisfy this joint relative orientation change d should be zero: $d \rightarrow 0$
\rightarrow Similarly to previous joint, relative angular velocity $\omega=d / \Delta t$
* Angular momentum change is: $\Delta \mathrm{L}=\left(\mathrm{J}_{1}{ }_{1}+\mathrm{J}_{2}^{-1}\right)^{-1} \omega$
\rightarrow Change angular momentums: $L_{A}+=+\Delta L$ and $L_{B}+=-\Delta L$

3-DOF Angular Joint

* 3 angular DOF = Relative angular motion of bodies is unconstrained.
* We do not need to change angular momentum
\rightarrow Assuming 3 linear DOF, the proposed joint has all DOF \rightarrow Both relative linear and angular motion of bodies is unconstrained \rightarrow there is no constraint at all. Bodies can freely move.

