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Contact Types

 Bodies either collide, rest or separate depending 
on their relative velocity of contact points
 Assuming no rotational motion all 3 collision scenarios are:
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Simplified collision model

 Perfect rigidity
 Bodies are perfectly rigid. There are no plastic or elastic 

deformations, where kinetic energy is dissipated. Thus our 
impact models must artificially decrease the kinetic energy

 Very short collision interval
 We model highly elastic behavior, making the collision 

interval ∆t very short requiring the repulsive forces to be 
very strong, to maintain the non-penetration constraint.

 Direct velocity change
 We need to integrate response forces during the collision 

interval into impulses and change objects velocities directly, 
causing discontinuities of motion.



    

Simplified collision model

 Non-impulsive forces are ignored
 We can neglect all non-impulsive forces (e.g. gravity), 

because they are too small compared to the impulsive 
forces and have no time to accumulate during collision

 Point contact
 We reduce the contact region to a set of point contacts 

treated either as a sequence of single collisions or as a 
simultaneous multiple impact similar to resting contact 

 Constant state
 We assume position, orientation, inertia tensor, contact 

point and contact normal constant, since their change 
during the collision is negligible. Velocities change strongly
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Collision Resolution

 Rigid body collision resolution is described as 
Collision Laws composed of

 Impact Model
 Describes rules which preserve the non-penetration 

constraints of colliding bodies

 Friction Model - is responsible for creating 
frictional effects as
 Sticking – bodies rest on each other due to friction forces
 Rolling – bodies start to roll due to friction forces
 Sliding – bodies slow down sliding due to friction forces



    

Collision Resolution Strategies

 Algebraic Collision Resolution
 Final velocities (impulse) are calculated using only algebraic 

relations between pre and post collision variables 
(velocities, energies… ). No numerical ODE solvers → fast

 Incremental Collision Resolution
 Evolution of the impulsive forces are described with some 

(ordinary) differential equation with initial and final 
conditions formed for compression and restitution phases.

 Full Deformation Collision Resolution
 Most accurate collision laws accounting with subtle stress 

and strain processes during the impact. Usually solved using 
finite element methods. Slow, not suitable for real-time apps.



    

Impact Model

 In real world objects are never perfectly rigid. 
 First, their shape is compressed.
 If they are elastic their shape is then restituted.
 If they are plastic their shape is then plasticlly deformed.

 Impact model as a part of some collision law
 Determines the post-collision velocities (positions, 

orientations… ) which prevent bodies to penetrate.
 Models as realistic as possible the process during the 

compression and restitution.

 Time of maximum compression (t
m
)

 Time when compression ends and restitution starts.
 Time when repulsive forces have maximal length



    

Impact Model
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Newton’s Impact Model

 Newton’s Impact Model states simple algebraic 
linear relation between
 Pre-collision relative normal velocity u

n
(t

0
)

 Post-collision relative normal velocity u
n
(t)

 Based on coefficient of restitution ε
n

 Formally: u
n
(t) = -ε

n
u

n
(t

0
)   ≡   nTu(t) = -ε

n
nTu(t

0
)

 Main drawbacks
 it “blindly” finds some impulse, which cancels the relative 

velocity, but have no idea about restitution force 
accumulation during the compression and restitution phase

 Can add kinetic energy during collision.



    

Other Impact Models

 Poisson’s Impact Model
 Total impulse applied during compression j

n
(t

m
) is proportional 

to the impulse applied during restitution j
n
(t1) − j

n
(t

m
)

 Formally: j
n
(t

1
) − j

n
(t

m
) = ε

n
j

n
(t

m
)

 In friction-less case it is equal to Newton's model

 Stronge’s Impact Model
 Directly relates the work of repulsive forces during 

compression W
n
(t

m
) and restitution W

n
(t

1
) - W

n
(t

m
)

 Formally: W
n
(t

1
) - W

n
(t

m
) = -ε2

n
W

n
(t

m
)

 Kinetic energy can not be increased
 Coefficient of normal restitution ε

n
 is a property of material.



    

Coulomb Friction Model

 In the real-world, microscopic interaction between 
colliding surfaces exerts frictional forces.
 This process depends on many different factors, as 

microscopic structure of the surfaces, relative velocity, 
contact geometry, and other material properties.

 Assume f is the repulsive force between bodies 
acting on contact point p and u is relative velocity

 Both f and u can be split into
 Normal components (fn, un) parallel to contact normal

 Tangential components (ft, ut) being inside contact plane

 f = fn + ft and u = un + ut



    

Coulomb Friction Model

 Coulomb Friction Law
 Friction force has opposite direction to relative tangential 

velocity and is proportional to normal repulsive force.
 If the relative tangential velocity vanishes (is zero), we know 

only that the length of frictional component is less than µ 
times to the normal component.

 µ is the coefficient of friction and depends only on material

 Sliding:   ut  != 0  →  ft = -µ|fn|ut / |ut| →  |ft| = µ|fn|

 Sticking: ut == 0  →  |ft| ≤ µ|fn|

 In both cases |ft(t)| ≤ µ|fn(t)| thus for any 
direction friction force must lie in the friction cone



    

Coulomb Friction Model
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 Similar relation |jt| ≤ µ|jn| holds for impulses
 |jt| = |∫t

t0
ft(λ)dλ| ≤ ∫t

t0
|ft(λ)|dλ ≤ µ∫t

t0
|ft(λ)|dλ = µ|jn|



    

Impulse base Collision Scenario
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 Collision Frame
 Origin is the contact point
 Z axis is the contact normal

 Relative velocity u on contact 
point is:  u = u

1
 - u

2

 Local body positions of 
contact point are:  r

1
 and r

2
 

 Velocities are changed during 
collision due to applying 
collision impulses (+j) and (-j)



    

Collision Impulse

 Collision Impulse j is the time integral of the 
repulsive force f over the collision interval (t

0
, t)

 j = j(t) := ∫t
to

f(λ)dλ

 We define a delta operator “Δ” which for a given 
function ”Ω” calculates the integral of its time 
derivative Ω' (= dΩ/dt) over collision interval (t

0
, t)

 Δ(Ω) := ∫t
to

Ω'(λ)dλ = Ω(t) - Ω(t
0
)

 Due to Newton’s Third (action-reaction) Law 
during the collision there are finite (but huge) 
repulsive forces which together with the opposite 
reactive forces are pushing bodies apart



    

Collision Impulse

 Suppose some repulsive force +f (-f) pushes first  
(second) body at contact point p

 We can express f using Newton-Euler equation

(+f) = P'
1
 = (M

1 
v

1
)'               r

1
 x (+f) = L'

1
 = (J

1 
ω

1
)'

(-f) = P'
2
 = (M

2 
v

2
)'              r

2
 x (-f) = L'

2
 = (J

2 
ω

2
)'

 Using the “Δ” operator we can express impulse j

(+j) = ΔP
1
 = M

1 
Δv

1
               r

1
 x (+j) = ΔL

1
 = J

1 
Δω

1

(-j) = ΔP
2
 = M

2 
Δv

2
              r

2
 x (-j) = ΔL

2
 = J

2 
Δω

2



    

Collision Impulse

 The velocity change due to applying an impulse is

Δv
1 
= M

1
-1 (+j) 

 
                   Δω

1 
= J

1
-1 (r

1
 x (+j))

Δv
2 
= M

2
-1 (-j) 

 
                   Δω

2 
= J

2
-1 (r

2
 x (-j))

 If we express current velocities u
1
, u

2
 and their 

”change” ∆u
1
, ∆u

2
 at the contact point p(t)

u
1
 = v

1
 + ω

1
 x r

1
                  Δu

1
 = Δv

1
 + Δω

1
 x r

1

u
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Collision Impulse

 The final ”change” of velocities after the collision 
 Δu

1
 = M

1
-1 (+j) + J

1
-1 (r

1
 x (+j)) x r

1 
= … = (M

1
-1 1 + r

1
xJ

1
-1r

1
x)(+j) = K

1
(+j)

 Δu
2
 = M

2
-1 (-j) + J

2
-1 (r

2
 x (-j)) x r

2 
= … = (M

2
-1 1 + r

2
xJ

2
-1r

2
x)(-j) = K

2
(-j)

 Final impulse-based collision equation is

 ∆u = ∆u
1
 - ∆u

2
 = K

1
(+j) - K

2
(-j) = (K

1
 + K

2
)j = K j(t)

 K
1
 and K

2
 are “Collision Matrices” of body 1 and 2

 K is “Relative Collision Matrix” - symmetric positive definite

 Impulse-momentum equation is thus

 j = K-1 ∆u = K-1(u(t)-u(t
0
))

 u(t) = u(t0) + K j(t)



    

Friction-less Collision Resolution

 Using Newton's impact model collision impulse is
 Kj = ∆u = u(t) - u(t

0
)    and    j = |j|j~

 nTK|j|j~ = nTu(t) - nTu(t
0
) = -ε

n
nTu(t

0
) - nTu(t

0
) = -(1 + ε

n
)nTu(t

0
)

 |j| = -(1 + ε
n
)nTu(t

0
) / nTKj~

 j~ is unit direction vector of impulse (parallel with impulse)

 Collision impulse is related to pre-collision velocity
 In friction-less case repulsive forces acts only in the normal 

direction (to stop penetration), thus impulse is parallel to 
contact normal: j~(t) = n

 jt  = ∣jt ∣n =
− 1n n

T ut 0

nT K n
n



    

Collision Resolution with Friction

 Considering friction we don’t know the direction 
of the impulse.

 Any collision impulse must be admissible
 It must preserve non-penetration, satisfy the friction cone 

condition and dissipate energy

 Friction cone Test
 j(t) = jn(t) + jt(t)      and     jn(t) = nTj(t)n

 |j(t) - nTj(t)n| = |jt(t)| ≤ µ|jt(t)| = nTj(t)

 test(j) = |j – nT j n| - nTj(t)
 If test(j) ≤ 0 → impulse is in friction cone
 If test(j) > 0 → impulse is not in friction cone



    

Algebraic Resolution Law I

 Given some positive real c and any vectors A, B we 
define “projection” function “kappa” as

 We define impulses P
I
 P

II
 and P

 Plastic sliding

 Plastic sticking

 Predicted impulse

 Final impulse is

PI =
− 1n n

T u t 0

nT K n
n =

−nT u t 0

nT K n
n

PII = K− 1u t −u t 0 = −K−1 u t 0

P = 1n  PI1t PII−PI 

j =  1n  PI  P II−PI   = { 1t  test P0
kappa 1n , PI , PII  test P0}

kappac , A , B = c nT A
∣B−nT B n∣nT B−A 



    
Joint Formulations

Linear Angular



    

Linear and Angular Joints

 3 basic types of Linear joints 
 0,1,2,3 DOF for relative linear motion
 Angular motion is unconstrained (= 3 angular DOF) 

 3 basic types of Angular joints
 0,1,2,3 DOF for relative angular motion
 Linear motion is unconstrained (= 3 linear DOF) 

 Any 0-6 DOF joint constraint can be constructed as 
a combination of one linear and one angular joint
 Ball Joint = 0 linear and 3 angular DOF (= 3 DOF)
 Hinge Joint = 0 linear and 1 angular DOF (= 1 DOF)
 Point on Plane Joint = 2 linear and 3 angular DOF (= 5 DOF)
 Other joints …



    

0-DOF Linear Joint

 0 linear DOF = Relative linear motion of bodies is 
fully constrained at some joint point p
 Let p

A
 and p

B
 be on bodies A and B where the joint is applied.

 To satisfy this joint, distance between p
A
 and p

B
 

should be zero (within tolerance):  |p
A
 – p

B
| → 0

 Suppose at t
0
 the joint is satisfied. After Δt of free motion 

distance d = p
A
 – p

B
 can become non-zero.

 Simplifying the relative motion of p
A
 and p

B
 is linear their 

relative velocity is simply Δu = d / Δt

 From Impulse-momentum equation

 j = K-1 ∆u = K-1 (d / ∆t) +j -j

d
p

A
p

BA

B



    

1-DOF Linear Joint

 1 linear DOF = Relative linear motion of bodies is 
allowed along some line defined in one body
 Let l

A
 = (c

A
, a

A
) be the allowed line on A and p

B
 joint point on B

 To satisfy this joint distance between l
A
 and p

B
 

should be zero: d(l
A
, p

B
) → 0

 Similarly to previous joint we find the distance 
vector d between l

A
 and p

B
 and compute impulse

 j = K-1 ∆u = K-1 (d / ∆t)



    

2-DOF Linear Joint

 2 linear DOF = Relative linear motion of bodies is 
allowed along some plane defined in one body
 Let β

A
 = (c

A
, n

A
) be the allowed plane on A; p

B
 joint point on B

 To satisfy this joint distance between β
A
 and p

B
 

should be zero: d(β
A
, p

B
) → 0

 Similarly to previous joint we find the distance 
vector d between β

A
 and p

B
 and compute impulse

 j = K-1 ∆u = K-1 (d / ∆t)



    

3-DOF Linear Joint

 3 linear DOF = Relative linear motion of bodies is 
unconstrained.

 We do not need to apply any impulse here
 Assuming 3 angular DOF, the proposed joint has all DOF → 

Both relative linear and angular motion of bodies is 
unconstrained → there is no constraint at all. Bodies can 
freely move.



    

0-DOF Angular Joint
 0 angular DOF = Relative angular motion of bodies 

is fully constrained
 Let q

A0
 and q

B0
 be initial orientation of A and B

 Relative orientation of A and B is Δq = (q-1
B0 

q
B
)-1(q-1

A0 
q

A
)

 Δq is converted into axis-angle notation (a, α)

 To satisfy this joint relative orientation Δq should 
be zero: Δq → 0
 If relative angular motion is linearized relative angular 

velocity ω = (ω
A
 - ω

B
) is proportional to the angle α along 

direction a during Δt: ω = α.a / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums: L
A
 += +ΔL and L

B
 += -ΔL



    

1-DOF Angular Joint

 1 angular DOF = Bodies are allowed to rotate 
around one common axis (defined in both bodies)
 Let a

A
 and a

B
 be the common unit axis in body A and B 

 Define the relative angular axis change as d = a
A
 x a

B

 Angular velocity change is proportional to d

 To satisfy this joint relative orientation change d 
should be zero: d → 0
 Similarly to previous joint relative angular velocity ω = d / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums:  L
A
 += +ΔL and L

B
 += -ΔL



    

2-DOF Angular Joint

 2 angular DOF = Bodies are allowed to rotate 
around two linearly independent axes.
 Let a

A
 and b

B
 be unit rotation axes in body A and B 

 Define rotation change axis as c = a
A
 x b

B

 Angle φ(t) = arccos(a
A
(t) , b

B
(t)) between a

A
 and b

B
 must be 

constant during simulation
 Relative orientation change is d(t) = (φ(t) – φ(0)) c

 To satisfy this joint relative orientation change d 
should be zero: d → 0
 Similarly to previous joint, relative angular velocity ω = d / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums:  L
A
 += +ΔL and L

B
 += -ΔL



    

3-DOF Angular Joint

 3 angular DOF = Relative angular motion of bodies 
is unconstrained.

 We do not need to change angular momentum
 Assuming 3 linear DOF, the proposed joint has all DOF → Both 

relative linear and angular motion of bodies is 
unconstrained → there is no constraint at all. Bodies can 
freely move.



    

The End


