

Geometric Modeling in Graphics

Part 8: Volumes

Volumes

- 3D set of points, embedded in space E^{3}
- Representing also interior of object
- Discrete grid
- Sampling function values in grid points
- Function - binary, distance, intensities, function values, distance vectors, axial distance vectors, physical properties, ...
b Grid - uniform, octree, tetrahedral, ...
- Parametric volumes
- Set of all points $X \in E^{3}$ such that $X=f(u, v, w)$, $u \in\left\langle u_{0}, u_{1}\right\rangle, v \in\left\langle v_{0}, v_{1}\right\rangle, w \in\left\langle w_{0}, w_{1}\right\rangle$
- FREP
- Set of all points $X \in E^{3}$ such that $f(X) \leq 0$

Geometric Modeling in Graphics

Volumes

Geometric Modeling in Graphics

Distance function

- Function defined as distance of point to object
b d: $\boldsymbol{R}^{\mathbf{3}} \rightarrow \boldsymbol{R}^{+}$
- For set Σ, distance function without sign is

$$
\operatorname{dist}_{\Sigma}(\mathbf{p})=\inf _{\mathbf{x} \in \Sigma}\|\mathbf{x}-\mathbf{p}\|
$$

- Extension - distance vectors
- Distance to object with sign

$$
\mathrm{d}_{S}(\mathbf{p})=\operatorname{sgn}(\mathbf{p}) \inf _{\mathbf{x} \in \partial S}\|\mathbf{x}-\mathbf{p}\|
$$

where

$$
\operatorname{sgn}(\mathbf{p})=\left\{\begin{array}{cl}
-1 & \text { if } \mathbf{p} \in S \\
1 & \text { otherwise }
\end{array}\right.
$$

Distance function

Geometric Modeling in Graphics

Distance function

- Isosurface for isovalue $\tau: \quad\{\mathbf{p} \mid \mathrm{d}(\mathbf{p})=\tau\}$
- Surface, boundary of object is isosurface for isovalue 0
- Vector of first order derivative, gradient $\|\nabla \mathrm{d}\|=1$
- Perpendicular to isosurface at point - normal approximation
- Hessian

$$
H=\left(\begin{array}{lll}
\mathrm{d}_{x x} & \mathrm{~d}_{x y} & \mathrm{~d}_{x z} \\
\mathrm{~d}_{y x} & \mathrm{~d}_{y y} & \mathrm{~d}_{y z} \\
\mathrm{~d}_{z x} & \mathrm{~d}_{2 y} & \mathrm{~d}_{z z}
\end{array}\right)
$$

- Mean curvature

$$
\kappa_{M}=\frac{1}{2}\left(\mathrm{~d}_{x x}+\mathrm{d}_{y y}+\mathrm{d}_{z z}\right)
$$

- Gauss curvature

$$
\kappa_{G}=\left|\begin{array}{ll}
\mathrm{d}_{x x} & \mathrm{~d}_{x y} \\
\mathrm{~d}_{y x} & \mathrm{~d}_{y y}
\end{array}\right|+\left|\begin{array}{cc}
\mathrm{d}_{x x} & \mathrm{~d}_{x z} \\
\mathrm{~d}_{z x} & \mathrm{~d}_{z z}
\end{array}\right|+\left|\begin{array}{cc}
\mathrm{d}_{y y} & \mathrm{~d}_{y z} \\
\mathrm{~d}_{z y} & \mathrm{~d}_{z z}
\end{array}\right|
$$

Geometric Modeling in Graphics

Distance function

- Distance function is continuous - C^{0}
- Problem points - points that have same distance from at least two different points on object's surface - cut locus
- Function is C^{1} except points from cut locus
- For C^{k} surface, distance function is C^{k} in some neighborhood of point on surface

Discretization

- Distance function sampling - distance field
- Topology of sample points
- Uniform grid
- Octree
, Tetrahedral grid
- Octahedral grid
- Voxel, Cell - volume element of sampling grid
- Voxelization
- Criterion of representation - distance of all cut locus points is larger than sampling resolution
- Approximating gradient

$$
\begin{aligned}
g_{i, j, k}^{\bar{x}} & =d_{i+1, j, k}-d_{i-1, j, k} \\
g_{i, j, k} & =d_{i, j+1, k}-d_{i, j-1, k} \\
g_{i, j, k}^{z} & =d_{i, j, k+1}-d_{i, j, k-1} \\
n_{i, j, k} & =\frac{g_{i, j, k}}{\left\|g_{i, j, k}\right\|} .
\end{aligned}
$$

Geometric Modeling in Graphics

Voxelization

- Given surface of object S
- Definition and placement of grid points
- Topology of grid points - shape of grid
- For each grid point G, computation of distance G from S
- Based on representation of S
- Polyhedral mesh
> Point-polygon distance computation
- Implicit surface
- Direct approximation, numerical solution
- Parametric surface
- Numerical methods for distance computation
- Computation only near surface of S , then fast propagation of distance values to remaining grid points

Geometric Modeling in Graphics

Mesh voxelization

- Given closed triangular 2-manifold mesh
- Choosing triangle that is closest to given grid point
- Optimization using bounding volumes, grid, octrees
- Computation of grid point - triangle distance
- 7 cases of grid point projection to triangle plane


```
- given triangle ABC, given grid point S, looking for distance DST
- using barycentric cooridnates of point X in triangle plane, X = uA+vB+wC,u+v+w=1
- let }a=(A-C,A-C),b=(A-C,B-C),c=(B-C,B-C),d=(A-C,C-S),e=(B-C,C-S),f=(C-S,C-S
- let SX is projection of S to plane of triangle ABC, SX=sA+tB+(1-s-t)C
- s=(be-cd)/(ac-b2), t=(bd-ae)/(ac-b2)
- if 0\leqs\leq1,0\leqt\leq1,0\leq1-s-t\leq1, then SX is inside triangle ABC, and VZD=|S,SX|
- else if s<0 or s>1, then find point SXS as projection of point SX to line BC
    - SXS=pB+(1-p)C, p=(SX-C,B-C)/(B-C,B-C)
    - if p<0, then VZD=|S,C|
    - if 0\leqp\leq1, then VZD=|S,SXS 
    - if p>1, then VZD=|S,B|
- similarly for t<0,t>1,(1-s-t)<0,(1-s-t)>1
```

Geometric Modeling in Graphics

Mesh voxelization

- Local methods
- Computing exact distance only for grid points in close vicinity of mesh surface
- Extruded objects for vertices, edges and triangles of mesh
- Identifying grid points lying inside extruded objects
- Simple computation of distance for points inside extruded objects
(b)

(c)

(d)

Geometric Modeling in Graphics

Mesh voxelization

- Sign computation
- Determining if grid point is inside or outside of object
- Number of intersections between arbitrary ray from grid point and mesh boundary
- Odd number of intersections - inside
- Even number of intersection - outside
- For C^{1} surfaces, dot product of normal and distance vector
- If dot product is positive, grid point is inside
- Mesh - not C^{1} - using angle-weighted pseudo-normals for edges and vertices of mesh

Geometric Modeling in Graphics

Distance transforms

- Propagation of distance values in computed grid points to remaining unprocessed grid points
- Grid propagation:
- Sweeping - uniform slices propagation
- Wavefront - from surface to higher distances
- Computation for voxel:
, Chamfer:
- New distance in grid point is computed from already known distances in neighboring grid points
, Vector:
- New distance vector in grid point is computed from already known distance vectors in neighboring grid points
- Eikonal:
- Distance in grid points is filled using iterative solution of differential equation

Geometric Modeling in Graphics

Distance transforms

- Initialization - computation of distance for grid points near surface of object
$F(\mathbf{p})=\left\{\begin{array}{cc}0 & \mathbf{p} \text { is exterior } \\ \infty & \mathbf{p} \text { is interior },\end{array}\right.$
$F(\mathbf{p})=\left\{\begin{array}{cl}\mathrm{d}_{S}(\mathbf{p}) & \text { in the shell } \\ \infty & \text { elsewhere } .\end{array}\right.$
- Chamfer methods
- Sweeping

```
/* Forward Pass */
FOR(z = 0; z < fz; z++)
    FOR(y = 0; y < fy; y++)
        FOR(x = 0; x < frx; x++)
            F[\textrm{x},\textrm{y},\textrm{z}]=
    inf
/* Backward Pass */
FOR(z = fz-1; z \geq0; z--)
    FOR(y = fy -1; y \geq0; y--)
        FOR(x = frx -1; x \geq0; x--)
            F[x,y,z] =
    inf }\mp@subsup{|}{\foralli,j,k\inbp}{}(\textrm{F}[\textrm{x}+\textrm{i},\textrm{y}+\textrm{j},\textrm{z}+\textrm{k}]+\textrm{m}[\textrm{i},\textrm{j},\textrm{k}]
```


Backward pass

	f		f		
f	e	d	e	f	
	d		d		
f	e	d	e	f	
	f		f		
z					

- Wavefront - priority queue for grid points with minimal distance

Geometric Modeling in Graphics

Fast marching method

- Eikonal distance transform
- Simulating expanding surface with constant speed inflating balloon
- Time of surface (balloon) arrival to grid point - distance
- T - time of arrival to grid point x
- F - speed of surface expansion in x

$$
\|\nabla T(\mathrm{x})\| F(\mathrm{x})=1
$$

- F is constant

Geometric Modeling in Graphics

Fast marching method

- „frozen" point - final distance was computed for point
- „narrow band" point - there is some distance computed, but is not final
- H - set of ,,narrow band" points, priority queue

```
Initialization()
{
    for each voxel v in I
    {
        Freeze v;
        for each neighbour vn of v
        {
            compute distance d at vn;
            if vn is not in narrow band
                tag vn as narrow band;
                insert (d,vn) in H;
                }
            else
                decrease key of vn in H to d;
        }
    }
}
```

```
Loop()
{
    while H is not empty
    {
        Extract v from top of H;
        Freeze v;
        for each neighbour vn of v
            if vn is not frozen
                {
            compute distance d at vn;
            if vn is not in narrow band
                {
                tag vn as narrow band;
                insert (d,vn) in H;
            }
            else
                                    decrease key of vn in H to d;
            }
    }
}
```

Geometric Modeling in Graphics

Fast marching method

Computation of distance for grid point from neighboring point distances using constant gradient

$$
\begin{aligned}
D_{2}^{-x} G & =\frac{3 G[x, y, z]-4 G[x-1, y, z]+G[x-2, y, z]}{2} \\
D_{2}^{+x} G & =-\frac{3 G[x, y, z]-4 G[x+1, y, z]+G[x+2, y, z]}{2}
\end{aligned}
$$

Geometric Modeling in Graphics

Parametric surface voxelization

- Conversion to polyhedral or implicit representation
- Minimization of $\mathrm{d}(u, v)=\|\mathbf{S}(u, v)-\mathrm{p}\|$ using numerical iterative solutions

Geometric Modeling in Graphics

Implicit surface voxelization

- Isosurface of function $\left\{X \in E^{3} ; f(X)=0\right\}$
- For some surface, it is sufficient to sample just f
- Sampling function $\frac{f}{\|\nabla f\|}$
- Iteratively find closest point to grid point on implicit surface in the gradient direction
- Let $\left(x_{0}, y_{0}, z_{0}\right)$ is given grid point
- $\left(x_{i+1}, y_{i+1}, z_{i+1}\right)=$ $\left(x_{i}, y_{i}, z_{i}\right)-$

$$
\frac{f\left(x_{i}, y_{i}, z_{i}\right)}{f_{x}\left(x_{i}, y_{i}, z_{i}\right)^{2}+f_{y}\left(x_{i} y_{i}, z_{i}\right)^{2}+f_{z}\left(x_{i}, y_{i}, z_{i}\right)^{2}}\left(f_{x}\left(x_{i}, y_{i}, z_{i}\right), f_{y}\left(x_{i}, y_{i}, z_{i}\right), f_{z}\left(x_{i}, y_{i}, z_{i}\right)\right)
$$

- Finish when one iteration does not change position of approximation so much

Geometric Modeling in Graphics

Interpolation

- Approximation of distance function for arbitrary space point from grid values - interpolating grid values
- Nearest neighbor interpolation
- Given space point C, find grid point G that is closest to C
, $d(C)=d(G)$
- Trilinear interpolation
- Given space point C, find voxel \mathbf{V} where it is located
- Compute C as linear combination V's corner points
- $\lambda_{1}=\left(C-C_{000}, C_{100}-C_{000}\right)$
- $\lambda_{2}=\left(C-C_{000}, C_{010}-C_{000}\right)$
- $\lambda_{3}=\left(C-C_{000}, C_{001}-C_{000}\right)$
b $C=w_{000} C_{000}+w_{100} C_{100}+\ldots+w_{111} C_{111}$
${ }^{\nu} w_{i j k}=\left(1-\lambda_{1}\right)^{1-i} \lambda_{1}{ }^{i}\left(1-\lambda_{2}\right)^{1-j} \lambda_{2}{ }^{j}\left(1-\lambda_{3}\right)^{1-k} \lambda_{3}{ }^{k}$
> $w_{000}+w_{100}+\ldots+w_{111}=1$
$d(C)=w_{000} d\left(C_{000}\right)+w_{100} d\left(C_{100}\right)+\ldots+w_{111} d\left(C_{111}\right)$
- Tricubic interpolation

Geometric Modeling in Graphics

Visualization

- Conversion to other representations
- Polyhedral representation - marching cubes
- Point clouds - projections of grid point onto surface in the opposite direction of gradient
- Direct visualization
, Slicing
- Raytracing
- Traversal of grid along ray
- Finding first voxel containing isosurface

- Using distance function interpolation to find more accurate intersection
, Using subsampled values for finer approximation
- Points sampling
- Approximation of closest point on surface $\mathrm{p}_{f}=\mathbf{p}-\nabla d_{S}(\mathbf{p}) d_{S}(\mathbf{p})$

Geometric Modeling in Graphics

Raytracing

http://dcgi.felk.cvut.cz/_media/en/events/praguecvut-jamriska-ondrej.pdf

Geometric Modeling in Graphics

Marching cubes

- Generating set of triangles that approximate isosurface of distance function for given isovalue τ
- Generating triangles for each voxel separately
- Get 8 grid values in corners of voxel
- Mark each corner C as inside or outside by comparing distance value in corner and isovalue τ
- Outside $-d(C) \geq \tau$
- Inside $-d(C)<\tau$
- For each edge $A B$ of voxel, if it connect inside and outside corner, construct edge vertex using linear interpolation
, $\quad V_{A B}=\frac{d(B)-\tau}{d(B)-d(A)} A+\frac{\tau-d(A)}{d(B)-d(A)} B$
- Interpolating gradients in A, B to get normal in $V_{A B}$
, Connect all edge vertices in voxel forming several triangles based on configuration of inside and outside corners
Geometric Modeling in Graphics

Marching cubes

- Basic configurations of inside, outside corners

- 256 total configurations (rotation, mirroring)
- Implementation
- http://paulbourke.net/geometry/polygonise/

- Preparing vertex code - marking each corner as inside or outside, 8bit
- Computing edge vertex for each of 12 edges, if necessary
- Connecting edge vertices into triangles based on vertex code, using lookup table with 256 records, each record has list of edge indices pointing to edge vertices
Geometric Modeling in Graphics

Skeleton, medial axis

- Simple primitives (line segments) representing shape of whole object with same topological properties
- Detecting cut locus points - discontinuities in derivation of distance function
- Finding extremal values inside object
- Comparison of distance vectors
- Used for skeleton animation, parametrization, ...

[^0]
Fonts representation

- http://www.valvesoftware.com/publications/2007/SIGGRAP H2007 AlphaTestedMagnification.pdf
- Using 2D distance field for representation of each glyph
- More precise representation of border
- Easier rendering of border effects

(a) 64×64 texture, alpha-blended

(b) 64×64 texture, alpha tested

(c) 64×64 texture using our technique

Geometric Modeling in Graphics

Fonts representation

NO TRESPASSING

(a) High resolution input

(b) 64×64 Distance field

Geometric Modeling in Graphics

Morphing

- Interpolation between two objects in time
- Compacting representation of given objects - same sampling grid points for both representations
- Linear interpolation of two values in each grid points

Geometric Modeling in Graphics

Morphology

- Operations for discrete signal processing
- Erosion

$$
X \ominus B=\left\{\mathbf{p} \mid B_{\mathbf{p}} \subset X\right\}
$$

- Dilatation $X \oplus B=\left\{p \mid P_{\cap} \cap X \neq 0\right\}$
- Opening $\quad x \bullet B=(X \oplus B) \ominus B$
- Closing $\quad X \circ B=(X \ominus B) \oplus B$.

Geometric Modeling in Graphics

CSG operations

- Simple and fast Boolean operations on two objects
- Distance fields of objects must be compacted - must have same sampling grid points
- Approximation and alias near sharp features
- Union - D=min(DI,D2)
- Intersection - $D=\max (\mathrm{DI}, \mathrm{D} 2)$
- Difference - D=max(DI,-D2)

Geometric Modeling in Graphics

CSG operations repair

- http://www.sccg.sk/~novotny/doc/vg05.pdf
- Improvement of representation after Boolean operation
- Detecting and repairing distance function near sharp features with insufficient sampling density

Geometric Modeling in Graphics

Hypertextures

- Adding rendering details over object surface
- Defining region over surface for texture mapping

$$
D(p)= \begin{cases}1 & \text { if } \mathrm{d}(p)^{2} \leq r_{i}^{2} \\ 0 & \text { if } \mathrm{d}(p)^{2} \geq r_{o}^{2} \\ \frac{r_{o}^{2}-\mathrm{d}(p)^{2}}{r_{o}^{2}-r_{i}^{2}} & \text { otherwise }\end{cases}
$$

- Using $\mathrm{D}(\mathrm{p})$ to obtain data from 3D texture or to generate other properties such like direction, density, tangent plane

Geometric Modeling in Graphics

Object modeling

- Surface smoothing
- Subdivision
- Parametrization
- Error computation
- Objects comparison
- Collision detection
- Simulations, animation
- Reconstruction

After 92s

After 3680s

After 1932s

After 17020s

Geometric Modeling in Graphics

The End for today

[^0]: Geometric Modeling in Graphics

