RAY CASTING

IDE \& Vectors

\square Visual Studio 2010
\square Sharp develop
\square Mono develop
\square Basic vector operations are implemented
\square * serves as dot product
\square \% serves as cross product

Ray Casting

Template

\square Read camera parameters and render image
\square Image is rendered by casting rays from camera through each pixel
\square Pixel color is determined by ray intersection color

$$
r(t)=P+t \boldsymbol{d}
$$

\square Ray r(t)
\square Ray origin P
\square Ray direction d
\square Ray parameter \dagger
\square Ray hits an object if $\dagger>=0$

Plane

$$
(X-Q) \cdot \boldsymbol{n}=0
$$

$\square \mathrm{X}$ is arbitrary point
$\square Q$ is a point on the plane
$\square \mathbf{n}$ is plane normal
\square Ray-plane intersection needs to be calculated in order to determine pixel color

Ray - Plane Intersection

$$
\begin{gathered}
r(t)=P+t \boldsymbol{d} \\
(X-Q) \cdot \boldsymbol{n}=0 \\
(P+t \boldsymbol{d}-Q) \cdot \boldsymbol{n}=0 \\
t \boldsymbol{d} \cdot \boldsymbol{n}=-(P-Q) \cdot \boldsymbol{n} \\
t \boldsymbol{d} \cdot \boldsymbol{n}=(Q-P) \cdot \boldsymbol{n} \\
t=\frac{(Q-P) \cdot \boldsymbol{n}}{\boldsymbol{d} \cdot \boldsymbol{n}}
\end{gathered}
$$

Camera

$\square \mathrm{P}$ is position of camera
\square Camera looks at target T

- Camera up vector: $\mathrm{v}=(0,0,1)$
\square Look at direction of camera: $\mathbf{u}=\mathrm{T}-\mathrm{P}$
\square Camera right vector is: $\mathbf{w}=\mathbf{u} \times \mathbf{v}$
\square Width and height determine screen size and aspect ratio
\square Field of view Y determines visible space

Camera

Vector4 dir = (w * W + h * V + U). Normalized;

Camera Pixel Translation


```
//parameter initialization
Double h = tan;
Double w = -aspect * tan;
//delta computation
Double dx = 2.0 * aspect * tan / (Double)Width;
Double dy = 2.0 * tan / (Double)Height;
//parameter increment
w += dx;
h -= dy;
```


SiSP Sútaž o účast' na CESCG

$\square h t t p: / / w w w . s c c g . s k / s k / s u t a z /$

