Rigid Body Dynamics

Lesson

Juroj Onderik Londerik@scc9.sk

Lesson 08 Outline

- * Problem definition and motivations
- Dynamics of rigid bodies
- The equation of unconstrained motion (ODE)
- User and time control
- Demos / tools / libs

Rigid Body Concepts

Concept of Rigid Bodies

- Assumption of Rigidity: The shape of rigid body never undergoes any deformation during simulation
- Motion concept: Due to rigidity overall motion of body is a composition of
- * 1) Linear motion of the center of mass (CoM)
- * 2) Angular motion rotation of body shape around center of mass

Position and Orientation

- * Position is represented as vector c = (x, y, z)
- * Orientation can by represented using:
- * 1) Euler Angles: $\mathbf{q} = (\varphi, \theta, \psi)$
 - This is the minimal 6 (3+3) DOF representation of body.
 - Problems of gimbal lock (non-uniqueness)
- * 2) Rotation Matrices: **R** = $(R_{i,i}) \subseteq R^{3\times 3}$
 - Overdetermined representation. Must by orthogonalized.
- * 3) Unit Quaternions: q = (x, y, z, w)
 - 7 (3+4) DOF representation solved by simple normalization.
 Very suitable for angular velocity integration

 Linear velocity v(t) is simply the time derivative of position

→ Formally: \vee (t) = c'(t) = dc(t)/dt

- Angular velocity ω(t) is a vector parallel to rotational axis with the length equal to spin velocity
 - Spin velocity = total radians body spin around rotational axis per second.
 - → Formally: q'(t) = 0.5 Q ω (t) (see later for details)

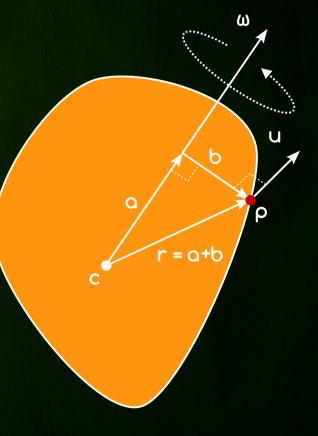
* Assume some body point p = c + r

Local displacement r = a + b can be decomposed into axis parallel "a" and axis perpendicular "b"

Current velocity u of point p is

- Perpendicular to rotation axis
- Proportional to length of angular velocity |ω| and distance from rotation axis |b|
- → Formally $|u| = |\omega| |b| \rightarrow u = \omega \times b$
- * Since $\omega \times \alpha = 0$

$$*u = \omega \times b = \omega \times a + \omega \times b = \omega \times r (= r')$$



Cross product matrix a^x for vector a = (a_x, a_y, a_z) is
 antisymmetric 3x3 matrix

$$\mathbf{a} \times \mathbf{b} = \mathbf{a}^{\times} \mathbf{b} = \begin{pmatrix} 0 & -\mathbf{a}_{z} & +\mathbf{a}_{y} \\ +\mathbf{a}_{z} & 0 & -\mathbf{a}_{x} \\ -\mathbf{a}_{y} & +\mathbf{a}_{x} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{b}_{x} \\ \mathbf{b}_{y} \\ \mathbf{b}_{z} \end{pmatrix}$$

* Rotation matrix R is a orthonormal 3x3 matrix

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{xx} & \mathbf{R}_{xy} & \mathbf{R}_{xz} \\ \mathbf{R}_{yx} & \mathbf{R}_{yy} & \mathbf{R}_{yz} \\ \mathbf{R}_{zx} & \mathbf{R}_{zy} & \mathbf{R}_{zz} \end{pmatrix}$$

* Time derivative of rotation matrix R with respect to angular velocity ω is (assuming r' = $\omega \times r = \omega^{\times} r$) $\dot{\mathbf{R}} = (\dot{\mathbf{R}}_{x} \quad \dot{\mathbf{R}}_{y} \quad \dot{\mathbf{R}}_{z}) = (\omega^{\times} \mathbf{R}_{x} \quad \omega^{\times} \mathbf{R}_{y} \quad \omega^{\times} \mathbf{R}_{z}) = \omega^{\times} (\mathbf{R}_{x} \quad \mathbf{R}_{y} \quad \mathbf{R}_{z}) = \omega^{\times} \mathbf{R}$

Time derivative of orientation quaternion
 q=(x,y,z,w) is

$$\dot{\mathbf{q}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{w} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} +w & -z & +y \\ +z & +w & -x \\ -y & +x & +w \\ -x & -y & -z \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \frac{1}{2} \mathbf{Q} \boldsymbol{\omega}$$

→ Q is 4x3 "quaternion matrix"

Center of Mass

- Consider rigid body as a collection of particles with their positions p, and masses m,
- * Center of mass "c" is a weighted average of all particles $\mathbf{c} = \frac{\sum m_i \mathbf{p}_i}{\sum m_i} = \frac{\sum m_i \mathbf{p}_i}{M}$
 - \rightarrow where M = Σ m, is total mass of body
- * Relative position r, of i-th particle satisfies $p_i = c + r_i$
- * Current i-th particle position is $p_i = c + R r_{o_i}$
 - \rightarrow R is current rotation matrix of body
 - \rightarrow r_{0i} is initial local-space position of i-th particle

Linear and Angular Momentum

- Assuming each particle has its own mass m_i and velocity u_i = ω x r_i + v, we define its linear momentum "P_i" and i-th angular momentum "L_i" as
 P_i = m_i u_i
 - \rightarrow L_i = r_i x P_i = m_ir_i x u_i
- * Summing up Pi and Li over all particles we get total linear momentum "P" and angular momentum "L"

$$*P = \Sigma P_i = \Sigma m_i u_i = \Sigma m_i (\omega \times r_i + v) = \dots = M v$$

* L = Σ L_i = Σ m_i r_i x u_i = Σ m_i r_i x (ω x r_i + v) = ... = J ω

where matrix J is the current inertia tensor

Mass and Inertia Tensor

Total mass M and inertial tensor J are defined as

$$M = \sum m_i$$

$$\mathbf{J} = -\sum m_i \mathbf{r}_i^{\times} \mathbf{r}_i^{\times} = \sum m_i \begin{pmatrix} \mathbf{r}_{iy}^2 + \mathbf{r}_{iz}^2 & -\mathbf{r}_{ix} \mathbf{r}_{iy} & -\mathbf{r}_{ix} \mathbf{r}_{iz} \\ -\mathbf{r}_{iy} \mathbf{r}_{ix} & \mathbf{r}_{ix}^2 + \mathbf{r}_{iz}^2 & -\mathbf{r}_{iy} \mathbf{r}_{iz} \\ -\mathbf{r}_{iz} \mathbf{r}_{ix} & -\mathbf{r}_{iz} \mathbf{r}_{iy} & \mathbf{r}_{iz}^2 + \mathbf{r}_{iy}^2 \end{pmatrix}$$

Unlike scalar mass M, inertia tensor J is time dependent

- * Initial inertia is $J_0 = -\Sigma m_i r_{0i} r_{0i} r_{0i}$
 - Bodies never deform, thus current inertia can be expressed in terms of initial inertia J₀ and current rotation matrix R

* J =
$$RJ_0R^T$$
 and $J^{-1} = RJ_0^{-1}R^T$

Mass and Inertia Tensor

- * J₁ = Inertia tensor of sphere with radius r and mass m
- * J₂ = Inertia tensor of solid box with mass m and width w, height h and depth d

$$\mathbf{J_1} = \begin{pmatrix} \frac{2mr^2}{5} & 0 & 0\\ 0 & \frac{2mr^2}{5} & 0\\ 0 & 0 & \frac{2mr^2}{5} \end{pmatrix} \qquad \mathbf{J_2} = \begin{pmatrix} \frac{m}{12}(h^2 + d^2) & 0 & 0\\ 0 & \frac{m}{12}(w^2 + d^2) & 0\\ 0 & 0 & \frac{m}{12}(w^2 + h^2) \end{pmatrix}$$

Mass and Inertia Tensor

- * Translated inertia tensor by offset r is
- $* J = J_0 + m(r^T r 1 rr^T)$
 - where 1 is 3x3 identity matrix and r is a column vector, ie. transposed r^T = (r_x, r_y, r_z) is row vector, thus
 - → r^Tr (inner or dot product) is scalar
 - → rr^T (outer product) is a 3x3 matrix
- Given body with n solid parts with mass m_i, center
 of mass c_i and inertia tensor J_{oi}, total body
 - \rightarrow Mass m = Σ m_i
 - → Inertia J = Σ J_i = Σ (J_{0i} + m_i(c_i^Tc_i 1 c_ic_i^T))
 - Center of mass c = $(\Sigma m_i c_i) / (\Sigma m_i)$

Linear and Angular Acceleration

- * The time derivative of inertia J (and J^{-1}) is
- * $J' = (RJ_0R^T)' = R'J_0R^T + RJ_0R'^T = \dots = \omega^{\times} J J \omega^{\times}$
- * $J'^{-1} = (RJ^{-1}_{0}R^{T})' = R'J^{-1}_{0}R^{T} + RJ^{-1}_{0}R'^{T} = \dots = \omega^{\times} J^{-1} J^{-1} \omega^{\times}$
- Linear acceleration "a" is defined as

*
$$a = v' = (M^{-1}P)' = M^{-1}P' = M^{-1}f$$

Where f is force - time derivative of linear momentum P

* Angular acceleration " α " is defined as

* $\alpha = \omega' = (J^{-1}L)' = J^{-1}L + J^{-1}L' = \dots = 0 - J^{-1}\omega^{\times}J\omega + J^{-1}T$

Where T is torque - time derivative of angular momentum L

Force and Torque

- * Force fi and torque ti of i-th particle are
- * f_i = m_ia_i (i-th force)
- * т, = r, x f, = m,r, x a, (i-th torque)
- Summing up over all particles we get the famous Newton-Euler equations for total force and torque
- * $f = \Sigma f_i = \Sigma m_i a_i = ... = M v' = P'$

* $T = \Sigma T_i = \Sigma m_i r_i \times a_i = \dots = J\omega + \omega^{\times} J\omega = \dots = L'$

Summary of Rigid Body Concepts

 We can summarize main physical properties (quantities) of rigid bodies as either

- Kinematical (pure geometrical, mass "independent")
- Dynamical (physical, mass "dependent")

	Kinematical Properties		Dynamical Properties	
lin	Position	$c(t) \in R^{3 \times 1}$	Mass	$M \in \mathbf{R}^{1\times 1}$
ang	Orientation	$\mathbf{q}(t) \in \mathbf{R}^{4 \times 1}$	Inertia Tensor	$\mathbf{J}(\mathbf{t}) \in \mathbf{R}^{3 \times 3}$
lin	Linear velocity	$\mathbf{v}(t) \in \mathbf{R}^{3 \times 1}$	Linear Momentum	$\mathbf{P}(t) \subseteq \mathbf{R}^{3 \times 1}$
ang	Angular velocity	$\boldsymbol{\omega}(t) \in \mathbf{R}^{3\times 1}$	Angular Momentum	$L(t) \subseteq R^{3\times 1}$
lin	Linear acceleration	$a(t) \in \mathbf{R}^{3\times 1}$	Force	$f(t) \in \mathbf{R}^{3 \times 1}$
ang	Angular acceleration	$\boldsymbol{\alpha}(t) \in \mathbf{R}^{3\times 1}$	Torque	$\mathbf{T}(\mathbf{t}) \in \mathbf{R}^{3\times 1}$

Rigid Body Equation of Motion

 The rigid body equation of unconstrained motion can be summarized as the following ODE

$$\frac{d}{dt}\mathbf{x}(t) = \frac{d}{dt} \begin{pmatrix} \mathbf{c}(t) \\ \mathbf{q}(t) \\ \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{cases} \mathbf{v}(t) \\ \frac{1}{2}\mathbf{Q}(t)\boldsymbol{\omega}(t) \\ \frac{1}{2}\mathbf{Q}(t)\boldsymbol{\omega}(t) \\ \mathbf{f}(t) \\ \mathbf{\tau}(t) \end{cases}$$

* Where auxiliary variables are

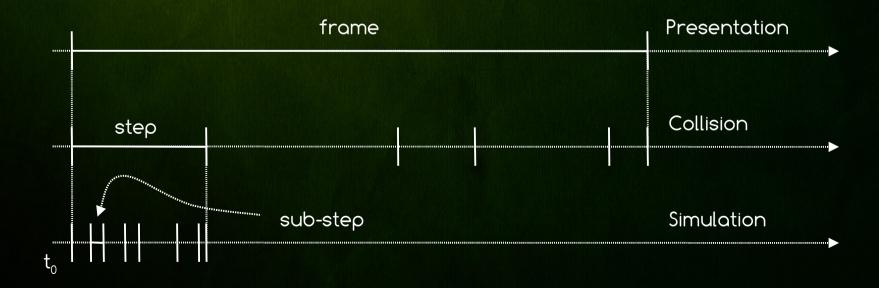
$$\mathbf{Q}(t) = \begin{pmatrix} +\mathbf{q}_{w}(t) & -\mathbf{q}_{z}(t) & +\mathbf{q}_{y}(t) \\ +\mathbf{q}_{z}(t) & +\mathbf{q}_{w}(t) & -\mathbf{q}_{x}(t) \\ -\mathbf{q}_{y}(t) & +\mathbf{q}_{x}(t) & +\mathbf{q}_{w}(t) \\ -\mathbf{q}_{x}(t) & -\mathbf{q}_{y}(t) & -\mathbf{q}_{z}(t) \end{pmatrix}$$

$$\mathbf{v}(t) = M^{-1}\mathbf{P}(t)$$
$$\boldsymbol{\omega}(t) = \mathbf{J}^{-1}(t)\mathbf{L}(t)$$
$$\mathbf{J}^{-1}(t) = \mathbf{R}(t)\mathbf{J}_{0}^{-1}\mathbf{R}^{\mathrm{T}}(t)$$

User and Time control

User and Time control

- According to the time control of the simulation, we can split the overall simulation process into three nested layers
 - The Presentation Layer
 - The Collision Layer
 - The Simulation Layer.



Time control: Presentation Layer

- From users point-of-view the overall simulation must be present (rendered) in a sequence of animation frames
- * The size of the frame is obviously application dependent:
- In time-critical and interactive applications (VR) it is usually fixed and defined by the user/device (min. 25 frames per seconds)
- In large, complex offline simulations it can vary upon the computational expenses

Time control: Collision Layer

- Within each frame the motion solver perform some sub-steps to advance the motion correctly.
- Due to collision and constraint resolution discontinuities arise in the motion
- Depending on the time of collision detection (resolution) the number (size) of "collision steps" can be fixed or adaptive
- When handling multiple penetrating objects in one step fixed time stepping is usually suitable
- If only one collision is resolved at once adaptive time stepping technique should be used

Backtracking Approach

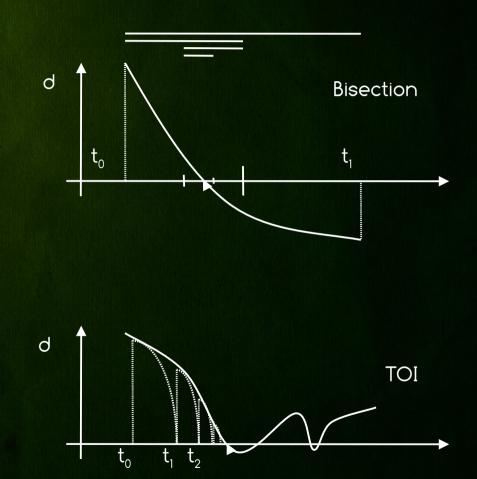
- We want to advance the simulation form t_0 to t_1
- * Use bisection to find the first collision occurrence
 - \rightarrow First check for collisions at t₁, next at mid time t_m = 0.5(t₀+t₁)
 - \rightarrow If there is some collision proceed similar back in (t_0, t_m)
 - \rightarrow Otherwise proceed in second half interval (t_m, t₁)
 - Proceed similar until desired number of iterations
- if we know the time derivative of the separation distance the search can be even faster
- It is simple, robust, can have slow convergence and tunneling problem (some collisions are missed)

One-Side Approach

- The One-Side Approach is a more conservative technique. We always advance the simulation forward in time.
 - This is possible, since between collisions objects move along ballistic trajectories and we can estimate the lower bound of their Time of Impact (TOI)
- Given upper bounds on angular and linear velocities we can estimate maximal translation of any surface point (on both estimated bodies) w.r.t. some direction axis d
- * Find earliest time when bodies may penetrate. If no collision occurs, we advance bodies

User and Time control

- During both methods full collision detection is performed on estimated times
- Alternative solution is to use continuous collision detection



Time control: Simulation Layer

- Within each "collision" step the motion solver must integrate the motion equation
- Numerical ODE solver usually requires several integration steps to achieve desired accuracy and stability
- Again we can choose a fixed or adaptive time stepping scheme

