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Concept of Rigid Bodies

 Assumption of Rigidity: The shape of rigid body 
never undergoes any deformation during 
simulation

 Motion concept: Due to rigidity overall motion of 
body is a composition of

 1) Linear motion of the center of mass (CoM)

 2) Angular motion - rotation of body shape around 
center of mass



    

Position and Orientation

 Position is represented as vector c = (x, y, z)

 Orientation can by represented using:

 1) Euler Angles: q = (φ, θ, ψ)
 This is the minimal 6 (3+3) DOF representation of body.
 Problems of gimbal lock (non-uniqueness)

 2) Rotation Matrices: R = (R
i,j
)  R∈ 3x3

 Overdetermined representation. Must by orthogonalized.

 3) Unit Quaternions: q = (x, y, z, w)
 7 (3+4) DOF representation solved by simple normalization. 

Very suitable for angular velocity integration



    

Linear and Angular Velocity

 Linear velocity v(t) is simply the time derivative of 
position
 Formally: v(t) = c'(t) = dc(t)/dt

 Angular velocity ω(t) is a vector parallel to 
rotational axis with the length equal to spin velocity
 Spin velocity = total radians body spin around rotational axis 

per second.
 Formally: q'(t) = 0.5 Q ω(t)    (see later for details)



    

Linear and Angular Velocity

 Assume some body point p = c + r
 Local displacement r = a + b can be 

decomposed into axis parallel “a” and 
axis perpendicular “b”

 Current velocity u of point p is
 Perpendicular to rotation axis
 Proportional to length of angular  

velocity |ω| and distance from rotation 
axis |b|

 Formally |u| = |ω||b| → u = ω x b

 Since ω x a = 0

 u = ω x b = ω x a + ω x b = ω x r (= r')

ω

a

b
u

c

p

r = a+b



    

Linear and Angular Velocity

 Cross product matrix ax for vector a = (a
x
, a

y
, a

z
) is 

 antisymmetric 3x3 matrix

 Rotation matrix R is a orthonormal 3x3 matrix

R=R x R y R z =Rxx R xy R xz

R yx R yy R yz

R zx R zy R zz


a ×  b=a×  b= 0 −az a y
a z 0 −ax
−a y a x 0 bxby

bz



    

Linear and Angular Velocity

 Time derivative of rotation matrix R with respect to 
angular velocity ω is (assuming r' = ω x r = ωx r)

 Time derivative of orientation quaternion 
q=(x,y,z,w) is

 Q is 4x3 “quaternion matrix” 

q̇= ẋẏżẇ=12 
w −z  y
z w −x
−y x w
−x − y −z x

y

z
=12Q

Ṙ=Ṙ x Ṙ y Ṙ z=× R x × R y × R z=× R x R y R z=× R



    

Center of Mass

 Consider rigid body as a collection of particles 
with their positions p

i
 and masses m

i

 Center of mass “c” is a weighted average of all 
particles

 where M = Σ mi is total mass of body

 Relative position ri of i-th particle satisfies pi = c + ri

 Current i-th particle position is pi = c + R r0i 
 R is current rotation matrix of body
 r

0i
 is initial local-space position of i-th particle

c = ∑ mi pi
∑ mi

= ∑ mi pi
M



    

Linear and Angular Momentum

 Assuming each particle has its own mass mi and 
velocity ui = ω x ri + v, we define its linear 
momentum “Pi” and i-th angular momentum ”Li” as
 Pi = mi ui

 Li = ri x Pi = miri x ui 

 Summing up Pi and Li over all particles we get total 
linear momentum “P” and angular momentum “L”

 P = Σ Pi = Σ mi ui = Σ mi (ω x ri + v) = … = M v

 L = Σ Li = Σ mi ri x ui = Σ mi ri x (ω x ri + v) = … = J ω
 where matrix J is the current inertia tensor



    

Mass and Inertia Tensor

 Total mass M and inertial tensor J are defined as

 Unlike scalar mass M, inertia tensor J is time dependent

 Initial inertia is J
0
 = -Σ mi r0i

x r
0i

x 
 Bodies never deform, thus current inertia can be expressed 

in terms of initial inertia J
0
 and current rotation matrix R

 J = RJ
0
RT and J-1 = RJ-1

0
RT

M = ∑ mi

J = −∑ mir i
× r i

× = ∑ mir iy
2 r iz

2 −r ix r iy −r ixr iz
−r iy r ix r ix

2 riz
2 −r iy riz

−r iz r ix −riz r iy r ix
2 r iy

2 



    

Mass and Inertia Tensor

 J
1
 = Inertia tensor of sphere with radius r and 

mass m

 J
2
 = Inertia tensor of solid box with mass m and 

width w, height h and depth d

J1 =  2mr
2

5
0 0

0 2mr 2

5
0

0 0 2mr2

5
 J2 = 

m
12

h2d 2 0 0

0 m
12

w2d 2 0

0 0 m
12

w2h2



    

Mass and Inertia Tensor

 Translated inertia tensor by offset r is

 J = J
0
 + m(rTr 1 – rrT)

 where 1 is 3x3 identity matrix and r is a column vector, ie. 
transposed rT = (r

x
, r

y
, r

z
) is row vector, thus

 rTr (inner or dot product) is scalar
 rrT (outer product) is a 3x3 matrix

 Given body with n solid parts with mass m
i
, center 

of mass c
i
 and inertia tensor J

0i
, total body

 Mass m = Σ mi 

 Inertia J = Σ Ji = Σ (J
0i
 + m

i
(c

i
Tc

i
 1 – c

i
c

i
T))

 Center of mass c = (Σ mi ci
) / (Σ mi)



    

Linear and Angular Acceleration

 The time derivative of inertia J (and J-1) is

 J' = (RJ
0
RT)' = R'J

0
RT + RJ

0
R'T = … = ωx J - J ωx

 J'-1 = (RJ-1
0
RT)' = R'J-1

0
RT + RJ-1

0
R'T = … = ωx J-1 - J-1 ωx

 Linear acceleration “a” is defined as

 a = v' = (M-1P)' = M-1P' = M-1f
 Where f is force - time derivative of linear momentum P 

 Angular acceleration “α” is defined as 

 α = ω' = (J-1L)' = J'-1L + J-1L' = … = 0 - J-1ωxJω + J-1τ
 Where τ is torque - time derivative of angular momentum L



    

Force and Torque

 Force fi and torque τi of i-th particle are

 fi = miai (i-th force)

 τi = ri x fi = miri x ai (i-th torque)

 Summing up over all particles we get the famous 
Newton-Euler equations for total force and 
torque

 f = Σfi = Σmiai = … = M v' = P'

 τ = Στi = Σmiri x ai = … = Jω + ωx Jω = … = L'



    

Summary of Rigid Body Concepts

Kinematical Properties Dynamical Properties

lin Position c(t)  ∈ R3x1 Mass M  ∈ R1x1

ang Orientation q(t)  ∈ R4x1 Inertia Tensor J(t)  ∈ R3x3

lin Linear velocity v(t)  ∈ R3x1 Linear Momentum P(t)  ∈ R3x1

ang Angular velocity ω(t)  ∈ R3x1 Angular Momentum L(t)  ∈ R3x1

lin Linear acceleration a(t)  ∈ R3x1 Force f(t)  ∈ R3x1

ang Angular acceleration α(t)  ∈ R3x1 Torque τ(t)  ∈ R3x1

 We can summarize main physical properties 
(quantities) of rigid bodies as either
 Kinematical (pure geometrical, mass “independent”)
 Dynamical (physical, mass “dependent”)



    

Rigid Body Equation of Motion

 The rigid body equation of unconstrained motion 
can be summarized as the following ODE

 Where auxiliary variables are 

d
dt

x t  = d
dt c t 

q t 
Pt 
Lt  =  v t 

1
2

Qt t 

f t 
t 


Q t  = qw t  −qz t  q y t 

qz t  qw t  −q x t 
−q yt  qx t  qw t 
−qx t  −q y t  −qz t 

 v t  = M−1P t 
t  = J−1t Lt 

J−1t  = R t J0
−1 RTt 



    

 User and
 Time control



    

User and Time control

Presentation

Collision

Simulation

frame

step

sub-step

t0

 According to the time control of the simulation, we 
can split the overall simulation process into three 
nested layers
 The Presentation Layer
 The Collision Layer
 The Simulation Layer.



    

Time control: Presentation Layer

 From users point-of-view the overall simulation 
must be present (rendered) in a sequence of 
animation frames

 The size of the frame is obviously application 
dependent:

 In time-critical and interactive applications (VR) it 
is usually fixed and defined by the user/device 
(min. 25 frames per seconds)

 In large, complex offline simulations it can vary 
upon the computational expenses



    

Time control: Collision Layer

 Within each frame the motion solver perform 
some sub-steps to advance the motion correctly.

 Due to collision and constraint resolution  
discontinuities arise in the motion

 Depending on the time of collision detection 
(resolution) the number (size) of ”collision steps” 
can be fixed or adaptive

 When handling multiple penetrating objects in one 
step fixed time stepping is usually suitable

 If only one collision is resolved at once adaptive 
time stepping technique should be used



    

Backtracking Approach

 We want to advance the simulation form t
0
 to t

1

 Use bisection to find the first collision occurrence
 First check for collisions at t

1
 , next at mid time t

m
 = 0.5(t

0
+t

1
)

 If there is some collision proceed similar back in (t
0
,t

m
)

 Otherwise proceed in second half interval (t
m
, t

1
)

 Proceed similar until desired number of iterations

 if we know the time derivative of the separation 
distance the search can be even faster

 It is simple, robust, can have slow convergence and 
tunneling problem (some collisions are missed)



    

One-Side Approach

 The One-Side Approach is a more conservative 
technique. We always advance the simulation 
forward in time.
 This is possible, since between collisions objects move along 

ballistic trajectories and we can estimate the lower bound of 
their Time of Impact (TOI)

 Given upper bounds on angular and linear 
velocities we can estimate maximal translation of 
any surface point (on both estimated bodies) 
w.r.t. some direction axis d

 Find earliest time when bodies may penetrate. If 
no collision occurs, we advance bodies



    

User and Time control

t0

t0 t1

t1 t2

Bisection

TOI

d

d

 During both methods 
full collision detection 
is performed on 
estimated times

 Alternative solution is 
to use continuous 
collision detection



    

Time control: Simulation Layer

 Within each ”collision” step the motion solver must 
integrate the motion equation

 Numerical ODE solver usually requires several 
integration steps to achieve desired accuracy and 
stability

 Again we can choose a fixed or adaptive time 
stepping scheme



    

The
End


