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Overview

* Today
— Density estimation background
— Density estimation methods
— Global illumination algorithms based on density estimation
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Reading Materials

Basic:

* B.J. Walter, Density Estimation Techniques for Global
[llumination, PhD thesis, Cornell University, 1998

« P.Dutre, P. Bekaert, and K. Bala, Advanced Global
llumination, AK Peters 2003

Advanced:

* B.W. Silverman, Density Estimation for Statistics and
Data analysis, Chapman and Hall, 1986

* M.P.Wand and M.C. Jones, Kernel Smoothing,
Chapman and Hall, 1995
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Photon Transport Simulation

* Instead of simulating the exact system, an analog
system which is easier to simulate can be used
— must retain all the important characteristics of the original

system.

* Photons used in global illumination algorithms
are simplified analogs of photons (light particles)
in physics.

* The simplified photon characteristics

— emitted by light sources and carry some energy,

— travel in space obeying geometrical optics laws,

— traced in space until they are completely absorbed due to
reflections and refractions.

» Time factor is ignored

— itis assumed that photons are moving instantaneously.
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Global lllumination via Density Estimation

» A typical algorithm consists of three consecutive phases:
1 photon tracing (continuous random walk)
2 lighting reconstruction via density estimation,
3 lighting storage and rendering.
» The lighting function is available implicitly as the density of
photons hitting points
— Reconstructing illumination out of collected photons is a density estimation
problem.
» Various techniques are used to store/display lighting:
— illumination maps (textures), meshing, or a direct density estim ation at
chosen sample points.

particks | densiy
wacing et V| eslimation

The surfaces in the room are depicted “unfolded” in the three figures on the right.




Random Walks

Continuous vs. Discrete Random Walks
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Solves integral equations: Solves linear systems:
radiosity or rendering equations discretization error propagation

Realistic Image Synthesis — Density Estimation Philppe Bekaert




Light Source Sampling

Sample point on light source with probability
proportional to self-emitted radiosity:

S(x) = E(X)F

Realistic Image Synthesis — Density Estimation Philippe Bekaert



Roman
Text Box
x


Making the First Transition (1)

* No absorption at the origin
e Sample direction
according to directional
distribution of self-emitted
radiance.
Diffuse emission: pdf is

cos(G)/p

Realistic Image Synthesis — Density Estimation Philippe Bekaert




Making the First Transition (2)

» Shoot ray along
sampled
direction.

» Geometric
density factor:

cos(qy) / r%,
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Making the First Transition (3)

e Full transition
density T(x,y) is
product:

cos(g,)cos(ay) / (pr3,y)
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Further Transitions

1. Absorption /

survival test
according to
albedo
‘9.
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Further Transitions (2)

2. Sample direction
according to brdf
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Further Transitions (3)

3. Shoot ray
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Further Transitions (4)

e Full transition
density:
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Once More ...

1. Absorption /
survival test
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2. Sample direction
according to brdf
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3. Shoot ray
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e Full transition
density
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And Yet Once More

1. Absorption /
survival test
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2. Sample
direction
according to
brdf
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3. Shoot ray
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e [ull transition
density
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End of Game

1. Absorption
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Collision Density

* In general:
D(X /D Y)T(Y,X)dY
Path origins Visits to X
at X from elsewhere

 Random walk simulation yields points with density
which is solution of second kind Fredholm integral
equation
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Collision Density for Radiosity

* Radiosity integral equation:

c0s 6, cosf, .
B(z) = E(x) + /B(y) 5y (O: —vis(y, z) p(x) dA,
J 8

N T Tuz

Source density should be normalized,
S(X) = E(X)/F 1, but we’re almost there!
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Collision Density for Radiosity

* Divide by total self-emitted power:

B(z) E(x) B(y) cos6, cosl, .
o +-S o, — = vis(y, z) p(x) dA,
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Collision Density for Radiosity

B(z) |E(x) B(y) cosf, cosb,
= + - —vis(y, x x)dA
o Qr | Js ®r ow r2, vis(y, x) p(x) dA,

Source
density S(x)
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Collision Density for Radiosity

B(z) |E(x) B(y)|cos, cosb, .
= -+ - —vis(y, ) p(x)|dA
O O Js @r T T, (Y, 2) p(x)fdA,

Source  Transition density T(y,X):

density S(x) 1. sample cosine
distributed direction at y

2. shoot ray; ray hits x
3. survival test at x
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Collision Density for Radiosity

» Collision density proportional to radiosity

B(z)| |E(x) B(y)||cosf, cosb, . ,
By By +. oy - & ——Vis(y, x) p(x)|dA,

Yy

Source  Transition density T(y,X):

density S(X) 1. sample cosine
distributed direction at y

2. shoot ray; ray hits x
3. survival test at x

D(x) = B(X)/F ¢

Realistic Image Synthesis — Density Estimation Philippe Bekaert




Sampled Points

e 1,000 paths
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Sampled Points

* 10,000 paths
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Sampled Points

* 100,000 paths
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Sampled Points

» Collision density is related to radiosity!!
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Photon Tracing: Summary

For each photon repeat the following steps:

1 Choose probabilistically:
— the wavelength of the photon by sampling the emission
spectrum,
— the location of the photon on the emitter surface by sampling the
positional emission power distribution,
— the direction of propagation of the photon by sampling the
directional power distribution.

2 Assign the energy to the photon and trace it until it is
absorbed:
— find the first object hit by the photon (use ray tracing),
— decide on photon absorption or reflection by testing a random
number against surface albedo,
— if the photon is reflected:
 assign a reflected direction to the photon by sampling BRDF,
« update the outgoing photon flux and continue tracing the photon
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Handling Photon’s Power

» Assign the same power to every photon
— Draw a random number [0,1] from the uniform distribution and com pare
with the albedo of surface hit by the photon.
— If the photon “survives” the absorption test it is reflected and further
traced carrying the same power.
» Attenuate photon power for each surface hitting event
— Use the Russian roulette technique to avoid bias (systematic error) in
the solution. Once photon energy weight w has fallen below the
threshold, the photon is either absorbed with probability p or survives
(with probability 1-p), but then its weight is increased by multiplying by
1/(1-p). The expected value E(w) of the weight w after playing Russian
roulette is given by:

E(w) = Pr(absorption ) >0+ Pr(surviva ) ><1L = p0+(1- p)ll —w
-p -p

which is the original weight of the photon, i.e. on average the photon has
the right weight.
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Photon with Attenuated Energy

Left: Photon with the power 12 watts  Right: the resulting power stored in
is emitted by a patch on the floor the photon hit patches
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Density Estimation

* As aresult of continuous random walk the lighting
function is known implicitly as the density of photon
collision points

» The lighting function in explicit form must be
reconstructed
— This is a classic density estimation problem where an estimate of
the probability density function is constructed from the observed
data points.
» Basic approaches to density estimation

— Parametric: a family of distributions is known and only predefined
parameters must be found, e.g. mean p and variance s2 for the
normal distribution.

— Nonparametric: less rigid assumptions

» This is the case for the global illumination problem
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Density Estimation Methods

Histograms:

— A domain is subdivided into bins (buckets) in which the number of
photons and/or their accumulated energy is stored.

Naive estimator:
— Counts the number of collisions in a bin centered at point x.
Kernel estimators:

— The density is estimated as spatially spread energy distributions
around each photon collision point.

Nearest neighbor methods:

— The density at a point x is estimated by dividing the number of the
nearest neighbor photons k (usually fixed) by the area of a region
centered at x, in which these photons are collected.

Orthogonal series estimators:

— Higher order basis functions are used for lighting reconstruction in
each bin (generalization of histograms)
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Density Estimation

* For simplicity let us consider 1D case.

* Notation:

f (x) and f(x):reconstructed pdf and its esimate at point x
X; : photon cdllison location

n:the number of photon collisons

K(x): the kernel function
h: the kernd radius (caled dso bandwidth or smoothing parameter)

orthe bin width for higogram estimators
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Histograms

f(x) =%’ (no.of X; inthe same bin asx)

or more genera

£y 1. no.of X inthe samehbin asx

F(x)

n  width of bin contaning x

fA(X) strongly depends on h, the choice of an origin
and orientation of the grid of bins

e
-

Relative frequency

1 2 3 4 5 &
Eruption length (min)

The same distribution but
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Fig. 2.1 Histograms of eruption lengths of Old Faithful geyser.




The Naive Estimator

105 if 1
w(y) =1 0% <

10 otherwise
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Fig. 2.3 Naive extimpare consernened Shom Ohd Rl geyser dota, i =129
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The Kernel Estimator

Generalization of the naive estimator

B((x)dle

~ 14 - X,
f=—43 K (L

i h

« f(¥inherits all the continuity and differentiability
properties of the kernel K (usually a symmetric pdf)
* Well studied mathematically

* For afixed h might have tendency to excessive
smoothing f (xyregions with dense photon collisions X,

and leaving out visible noise in regions with low
density of X
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The Kernel Estimator

At first the kernel function is chosen (usually smooth and easy to
compute functions are used). Then the kernel radius h (the extent

of the kernel support) is decided. It can be done globally for the whole
surface or locally based on complexity of lighting distribution.

Finally, the kernel function is centered at every photon location, and

the photon energy is splatted (distributed) according to the kernel shape.
The final lighting is estimated by summing splatted energy from all
photons.

27
175 ¢
154
1.25

5
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The Kernel Estimator
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Bandwidth Sensitivity

Original bimodal density

distribution
_".1.1- i~
ngr
:'iu_-'-::: i ] o 10 7:-
* Right: Kernel estimates for

200 simulated data points
drawn from this bimodal
density for kernel widths
(a) 0.1, (b) 0.3, and (c) 0.6.
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The Nearest Neighbor Method
Jopm—
2nd, (X)
whered, (x) is such adistance that in the interval
[x- d,x+d,]k neareastcollisons X, is located
d(X) £dy(X) £... £d, (X)

 The amount of smoothing locally adapts to the density
of photon collisions X;

. Reconstructed f(¥ is not apdf since it does not
integrate to unity (problems with energy conservation)

» The generalized k-th nearest neighbor estimate

1 ¢ x- X

0,002 a0

f(x)=
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The Nearest Neighbor Method
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Generalization to Higher Dimensions

» All discussed methods have similar properties when
higher dimensional density estimation is considered

» 2Dis considered in the global illumination computation
— Histograms

f(x)—l no. of X; inthe samebin asx
areadf bin contaning x

— Kernel methods

Ej((x)dx:1

f(x)= a K{—(X X;)}

h2
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Histogram Method

» Break surfaces in small elements. Count photons
hitting each element:

f(x):l' no. of X, inthe samebin asx
n areacof bin contaning X
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Histogram Method
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Orthogonal Series Density Estimation

* Linear, bi-linear, quadratic, cubic, ... approximations

f (X) can bereconstructed using K
orthonormal basis functionsy  (x):

Quadrilaterals

f0=a fy. (v

with the projection coefficients f, :

~ 18
n =_ayn(xi)a(xi)
nizx
m=n

+¥ 1
: dx=d,, =
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Orthogonal Series
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Kernel Density Estimation

* Place finite-width density kernel at each sample point

C‘)K(x)dx:l

f () —ma K{—(X Xi)}
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Cylindrical Kernel
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Gaussian Kernel
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Comparison of Density Estimation Methods

Problems with energy conservation
— Nearest neighbor method
Discontinuities in reconstructed density
— Histogram, naive, and nearest neighbor methods
Complexity as a function of the photon number n
- O(n)

» Histogram - fast

* Naive and kernel estimators — average
— O(nlogn)

* Nearest neighbor method — slow
Adaptability to local density fluctuations

— Histogram, naive and kernel estimators — poor
— Nearest neighbor method — good
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Bias and Random Error

* The error between the illumination function f(x) and its
estimate f (x) can be expressed as:

f)=f(9- f(x)=fx)- E(f(x))+E(f(x)- f(x)
fbias(x) f

B (9 = Eg 8 KC = 8 BT =k CE D f(ay

random ()

 The bias is asmoothed version of the true density f
» Bias = convolution of fwith the kernel K scaled by the kernel size h

f(x) =smoothed versionof truedensity + randomerror

 The bias does not depend directly on the number of
photons

» Bias cannot be eliminated just by shooting more photons!
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Local Accuracy

* Mean Square Error (MSE)

MSE, (f)=E{f (x)- f(x)}*=
{EF(x) - f(X)}%+var f(X)

bias? variance

bias = Ef (x)- f(x):%(‘jqx'—hy)f(y)dy- £(x)
OV I BOP C b XY 0
VWf(X)—W%d( (T)f(Y)dy 8d<( - )f(Y)dyH_[v)

* The bias and variance equations depend on the
unknown f(x) and are not very intuitive
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Global Accuracy

* Mean Integrated Square Error (MISE)
MISE(f) = EG T (- f(0}2dx = §E(f (x)- f(x}%dx=

OMSE,(f)dx = JEF (x)- (X} dx+ gyar f(x)cx

* For asymmetric kernel function K such that:
OK(Mdt =1 GK(t)dt=0 FK(t)dt =k,

pias? (x)dx = %d((%)f(y)dy- f(x)g dx »%h“kf(j f )] dx

N 1 2
oyar f (9o —-GK (] dt

* The bias and random error depend strongly on each
other. The bias can be reduced when the region hin
which photons are processed to evaluate f(x) is
decreased. This results in the increasing random error.
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Optimal Bandwidth

* Through minimizing MISE in respect to h

pias? (x)dx+ cyar f (x)dx» % h'k2 Gj f €x)] dx +% FK @] dt
& KAyt &
gkong) f €x))%dx

h

opt

* hyconverges to zero as the number of photonsn
increases

h,rdepends directly on the density function f(x)

— The second derivative ' (x) is a measure of the rapidity of
fluctuations in f(x) and smaller h should be chosen for more
rapidly fluctuating densities.
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Optimal Kernel

* By substituting the value of hy in

cpiasz(x)dx+ yar f(x)ax »%h;ptkg

pt
1

ZC(K)éen—ﬁ(‘jfc(x)]deg where  C(K) = kZA(gj<2 )at F

* The optimal kernel can be found by minimizing C(K)
— Epanechnikov

4«/_(1- —t) for |f<+/5

» Even simple kernels such as gaussian or cylindrical
lead to only small increase of density estimation error.
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Boundary Bias

* Problem for kernel methods

Darkening near the surface boundary

e Solutions

Replicate photon collision points by virtually reflecting them across
the boundary

Extending surface by some virtual margin at which photon collisions
are still registered but it does not occlude the original photon path
Normalizing kernels

More advanced: local linear density estimation based on locally-
weighted linear least-squares regression

®
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Density Estimation in Global lllumination

Main problems:
* The parameters of density estimation are
usually decided globally for the whole scene or

surfaces
— This may result in uncontrolled smoothing/noise for
complex illumination patterns.
* Local estimate the lighting reconstruction
error would be useful to find h,, for a given
scene region.
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Local Error Estimate

» The lighting reconstruction error € in some
region H can be measured by the standard
norm: e=L,(f(x)- f(x))

* Rough estimate of this error:

8.8 (Foo- fox)fon

JH

82 £ M

Dh : elementary surface area
H =3 Dh

f()g) - estimate for region h,
centered around X

h =Hh; :random error

kept on thesamelevel
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Adaptive Density Estimation

Two stage approach:

* Use histograms to find crude approximation of lighting
distribution (photon density) function

 Based on this function find local hy

» Use more precise density estimation methods such as

— kernel methods with adaptively changing hy,
— nearest neighbor methods with adaptively changing kqy
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Variable Kernel Method (1)

lllumination textures (IT) used as histogram bins

Ah, for collecting photons

— Each texel stores the number of colliding photons

— Bias error: Photon collision points are discretized to the
nearest texel location.

The texel grid of IT is used to build summed area

table (SAT) in which photons are summed up

— Density estimation for any rectangular region is very fast
For every texel i of IT photon density is estimated
L times for the increasing size of the region h! in
which photons are counted using SAT.

For every texel i of IT, and for every h!, &2is
estimated. We search for the minimal g2 to
decide hyy;.
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Variable Kernel Method (2)

« Based on the size of h,,; the optimal radius kernel
Ropii IS computed for each texel i

« To remove outliers the median filter is applied to Ry;.

* Since R, is stored only for texel locations of IT,
bilinear interpolation is used to find the radius at
each photon location.

* To avoid energy leaks for kernels crossing IT
boundaries, the kernel can be re-scaled so that itsIT
volume sums to unity.
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Rendering lllumination Textures

* Thefinal step of IT processing does not depend on the
density estimation method.

» If the direct lighting is computed as the illumination
texture using the deterministic approach, then total
illumination must be summed up
— This may require re-sampling one texture to the resolution of the

other.

e Then illumination is converted to luminance taking into
account the surface reflectance function, and

transformed into displayable RGB using a tone
reproduction function.
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Lighting Textures: Color Treatment

 The most straightforward solution is to process

independently each color channel
— some “uncorrelated color oscillations” for small h; are possible.

Bruce Walter

* Another solution:
— Store for every photon a record of its normalized RGB components.
— Modify this record during photon tracing as a result of light reflection.
— Process SAT with total photons energy to compute Ry
— For the final density estimation scale kernel for each RGB
component. The kernel size R, remains the same for all color
channels.
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Estimated vs. Exact Reconstruction Errors

:actual error
€ : error estimate
e¢ error estimatefor k=500 photons

(¢

Distribution of the R
locally measured e and e
for the adaptive

nearest neighbor
method. The errors

are measured along

the scanline (128

pixels long) marked

in the figure below.

The average number

of photons per texel

is ~6.1.
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Distribution of R,

Distribution of the
optimal region size
o T Ropti al‘ong the scanline
o | intexels ; (128 pixels long)
i marked in the figure
below. The average
number of photons per

pixel is ~6.1.
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Adaptive vs. Fixed #Neighbor Photons

€ Adyptive e, Fxed e
Photons/

texel

%
BT ETEN
ETETIEN
NN
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Adaptive vs. Fixed #Neighbor Photons

€ Adgtive e e

adapt

Photons/
o .H.H.

ﬂ 100.
w w
1000
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Bias Compensation for the Nearest Neighbor Method

* Highlight case study

Photon density

— llumination estimate at the red
point

— Analysis of bias and noise as a
function of increased number
of nearest neighbor photons

0.05

—— Uniform

0.04 1 -s— Epanechnikov

—=— Silverman

0.03

0.02 X
e

0.01 | _._,-"_::,a.a"

-0.01

Mean bias (relative)

[¢] 1000 2000 3000 4000 5000
Bandwidth
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Bias Compensation for the Nearest Neighbor Method

e Algorithm R R
— For each point x perform estimate of illumination f (x,J),..., f (X,N,,)

for the number of nearest photons ranging from 1,..., N,
— Compute the expected value and variance of f(x,j) using some weighting
function w(j) R Ngin .
nTFOGNR)T=a w(i) % (x, ))

j=1

$ 7 F (% Np) = £2(x,Np)1- [ f (x, Np)]

— Recursively split the interval [N ;. N, ] at N =(N i N )/2 and decide
which interval to choose based on a density eStimate p. ... pesy esimse noise s

f(x, N,.q) usingN,,, photons N ;
N N N § 06 b $ .
e[ f (X, Nia)] = F(X,Nyig) - n{f (x,Np)] 2ol v/
with theprobability pthat misattributedtonoise: ~ *| | N ]
-62[{(X,NMd )]/2§2[{(X,Np)] oS 007 0005 Uw!;ﬂ 0005 007 00s

p=¢
Giauzsian

where basedon thecentrallimit theorem p isthelikelihood that e is dueto noise
Roland Schregle
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procedure biascomp(T, v, imay)

Nemin = il

Nemax = ML

gathar Nggy photons

for | = | to Ny, do
partition] . j + 1. Ny
get iradiance estimale fi(T. )} for § closast phatons
include £{3 L] In average p

end for

evaluate &

while Ny <2 Ny do
.‘f'mf = |-J.|"rr|1 J'"Jw.l

partiien Ny . Mo ﬁ"mv]

gat |rr.:-1d|an-::9 estimate f{T. Ny for N closast photons
= _r[ﬁ.-‘-’m“;_l—gr

= exp —g° 287

if randomn £ & [0 1] < pthen |e probably noise, recurse in [Mpi. Mg |

include f{T. N,y in average u
update &°
Niin = Nt

else | probably bias, recurse in [Nau. M|}
"'m"-.u = ?"J.urn‘

end if

end while
return 7. Nyl
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Bias Compensation for the Nearest Neighbor Method

Bias Case Study: Highlight
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Bias Compensation for the Nearest Neighbor Method

Bias Case Study: Highlight Cross-Section
14

— 2500 photons
— 50--2500 phatons

[

o

lIrradiance [me‘?]

2t

04 03 04
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Bias Compensation for the Nearest Neighbor Method

Bias compensation with
adaptive bandwidth for
50-5,000 nearest photons

Fixed bandwidth for
5,000 nearest photons
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Bias Compensation for the Nearest Neighbor Method

S

Fixed bandW|dth with Fixed bandwidth with Adaptive bandwidth with
50 nearest photons 500 nearest photons 50-500 nearest photons
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Bias Compensation for the Nearest Neighbor Method

Fixed bandwidth with Fixed bandwidth with Adaptive bandwidth with
50 nearest photons 2,000 nearest photons  50-2,000 nearest photons
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Simple Algorithm Example

* Histogram approach:

— Use fine mesh as bins and count the number of collisions
Keep separate counters for photons arriving directly and indirectly
from light sources

» At later stages of computation replace density based direct lighting
reconstruction by deterministically computed lighting

— adaptive mesh subdivision — view-independent approach
— for each pixel — view-dependent approach (better quality)
— Continuous Random Walks guarantees the rendering equation
solution, but the final lighting stored in the mesh is Lambertian only
— Graphics hardware can be used to display mesh-reconstructed
lighting, and walkthrough animation is possible at any stage of
computation
— The final gather step is not required to obtain images of good
quality
* Problem: mesh elements with small number of colliding photons may
look noisy
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lllumination Maps Filtering

Remove noise at expense of increasing bias

Average photon collision number for neighboring
mesh elements

Use static, balanced kd-tree with mesh vertices to
search neighboring mesh elements

» Mesh topology does not matter

« Mesh normal vectors should be roughly aligned
Adaptive selection of density estimation filter support
based on mathematically -sound local statistic

measures of illumination variation:
100%

o
where n :local number of collisons

» As solution converges the local filter support shrinks reducing bias.

relative standard deviation s ,, =
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Filtering Example (1)

Solution after 10 sec. of computation
R10,000 195 MHz processor

Without filtering ' With filtering
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Filtering Example (2)

Solution after 30 sec. of computation
R10,000 195 MHz processor

Without filtering With filtering

Scene complexity: 22,314 polygons, and 581 light sources
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Random Error Estimate

» Split photons into two halves Aand B
— For example A: even photons and B:odd photons

F00=28 v(x) ad (9 =28 v(X)

f(0=2 (.0 + fa00)

89=2 (F,9- fu)

E&X) =0

var&x) = %( var f A(X)+ var f 5(X)) = var f(x)

Unbiased estimate : E&(x)? = var &(x) = var f(x)
MISE = E@(x)*dXx
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Case Study Scene - Various Views

Geometry complexity: 131,700 polygons that are tessellated
into 350,600 mesh elements

Lighting complexity: 8 luminaires

Timings measured for a R10,000 195Mhz processor
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Progressive Rendering Example

Density estimation only
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Progressive Rendering Example

i determinis tic direct lighti |eft
density estimation +i erminis tic direct lighting (left)

, ray tracing (right)
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General BRDF and Caustics
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Validation Experiment

* An atrium of the University of Aizu:
— LEFT: ray traced image with indirect lighting computed via photon
bucketing

— RIGHT: photograph
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More Advance Algorithm Example

» Spectral color representation
» Kernel based density estimation
— Adaptive kernel support — fixed kernel size h; for each surface A
_ [CA
h_ i
np

— Reconstruction performed at vertices of dense mesh
* Mesh decimation

— Perception-driven (the Weber law is used to check visibility of

luminance changes across surface)
After mesh dscimjon

) Tk A P W
P S W W
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Processing Flow

» Software naturally divides
into independent modules

» Computation easy to

materials

perform in parallel W e
for all
— Communication required only surtaces
at the photon sorting stage -
sort by
+ well studied problem *"'"ﬂ“{
hit points
e - T surface
s = umber n
all hit points e [
for surface 4
number 1 —
density
" jmation

density

decimation
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Solution Convergence

* From left to right: increasing number of particles and
corresponding reduction of kernel bandwidth

CA
hnp

o e e
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Decimation

improved

undecimated

old decimation
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Comparison with other Rendering Techniques

density estimation path tracing Radiance

liberal decimation
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Realism

-
\<
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Performance: Pentium Il, 400MHz

» #polygons
13,729

* Particle
tracing
18.6hrs

« 300,000,000
collisions

» Sorting 0.7hrs

* Density
estimation
2,6hrs

e #triangles
3,441,944
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