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Realistic Image Synthesis – Density Estimation

Basic:
• B.J. Walter, Density Estimation Techniques for Global 

Illumination, PhD thesis, Cornell University, 1998
• P. Dutre, P. Bekaert, and K. Bala, Advanced Global 

Illumination, AK Peters 2003

Advanced:
• B.W. Silverman, Density Estimation for Statistics and 

Data analysis, Chapman and Hall, 1986
• M.P. Wand and M.C. Jones, Kernel Smoothing, 

Chapman and Hall, 1995

Reading Materials

Realistic Image Synthesis SS04 – Density Estimation

Photon Transport Simulation

• Instead of simulating the exact system, an analog
system which is easier to simulate can be used 
– must retain all the important characteristics of the original 

system.

• Photons used in global illumination algorithms 
are simplified analogs of photons (light particles) 
in physics.

• The simplified photon characteristics
– emitted by light sources and carry some energy,
– travel in space obeying geometrical optics laws,
– traced in space until they are completely absorbed due to 

reflections and refractions.

• Time factor is ignored
– it is assumed that photons are moving instantaneously.

Karol Myszkowski
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Realistic Image Synthesis SS04 – Density Estimation

Global Illumination via Density Estimation
• A typical algorithm consists of three consecutive phases:

1 photon tracing (continuous random walk)
2 lighting reconstruction via density estimation, 
3 lighting storage and rendering.

• The lighting function is available implicitly as the density of 
photons hitting points
– Reconstructing illumination  out of collected photons is a density estimation 

problem. 
• Various techniques are used to store/display lighting:

– illumination maps (textures), meshing, or a direct density estim ation at 
chosen sample points. 

 The surfaces in the room are depicted “unfolded” in the three figures on the right. 

Realistic Image Synthesis SS04 – Density Estimation

Random Walks

Solves integral equations:
radiosity or rendering equations

Philippe Bekaert

Continuous vs. Discrete Random Walks

Solves linear systems:
discretization error propagation
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Realistic Image Synthesis – Density Estimation

Light Source Sampling

Sample point on light source with probability 
proportional to self-emitted radiosity:

S(x) = E(x)/ΦT

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Making the First Transition (1)
• No absorption at the origin
• Sample direction 

according to directional 
distribution of self-emitted 
radiance.
Diffuse emission: pdf is 

cos(θx)/π

Philippe Bekaert
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Realistic Image Synthesis – Density Estimation

Making the First Transition (2)
• Shoot ray along 

sampled 
direction.

• Geometric 
density factor:
cos(θy) / r2

xy

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Making the First Transition (3)
• Full transition 

density T(x,y) is 
product:

cos(θx)cos(θy) / (π r2
xy)

Philippe Bekaert
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Realistic Image Synthesis – Density Estimation

Further Transitions
1. Absorption / 

survival test 
according to 
albedo

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Further Transitions (2)
2. Sample direction 

according to brdf
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Further Transitions (3)
3. Shoot ray

Philippe Bekaert
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Further Transitions (4)
• Full transition 

density:
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Once More …
1. Absorption / 

survival test

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

2. Sample direction 
according to brdf
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3. Shoot ray3. Shoot ray
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•• Full transition Full transition 
densitydensity
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And Yet Once More

1. Absorption / 1. Absorption / 
survival testsurvival test
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direction direction 
according to according to 
brdfbrdf
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End of Game
1. Absorption

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Collision Density

• In general:

• Random walk simulation yields points with density 
which is solution of second kind Fredholm integral 
equation

Path origins
at X

Visits to X
from elsewhere

Philippe Bekaert
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Realistic Image Synthesis – Density Estimation

Collision Density for Radiosity
• Radiosity integral equation:

Source density should be normalized,Source density should be normalized,
S(xS(x) = ) = E(xE(x)/)/ΦΦTT, but we’re almost there!, but we’re almost there!

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Collision Density for Radiosity
• Divide by total self-emitted power:

Philippe Bekaert
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Collision Density for Radiosity

SourceSource
density density S(xS(x))

Philippe Bekaert
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Collision Density for Radiosity

SourceSource
density density S(xS(x))

Transition density Transition density T(y,xT(y,x):):
1. sample cosine 

distributed direction at y
2. shoot ray; ray hits x
3. survival test at x

Philippe Bekaert
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Collision Density for Radiosity
• Collision density proportional to radiosity
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Sampled Points

• 1,000 paths
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Sampled Points

• 10,000 paths

Philippe Bekaert
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Sampled Points

• 100,000 paths
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Sampled Points

• Collision density is related to radiosity!!

Philippe Bekaert

Realistic Image Synthesis SS04 – Density Estimation

Photon Tracing: Summary
For each photon repeat the following steps:
1 Choose probabilistically:

– the wavelength of the photon by sampling the emission 
spectrum,

– the location of the photon on the emitter surface by sampling the 
positional emission power distribution, 

– the direction of propagation of the photon by sampling the 
directional power distribution.

2 Assign the energy to the photon and trace it until it is 
absorbed:
– find the first object hit by the photon (use ray tracing),
– decide on photon absorption or reflection by testing a random 

number against surface albedo, 
– if the photon is reflected:

• assign a reflected direction to the photon by sampling BRDF,
• update the outgoing photon flux and continue tracing the photon

Karol Myszkowski
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Handling Photon’s Power

• Assign the same power to every photon
– Draw a random number [0,1] from the uniform distribution and com pare 

with the albedo of surface hit by the photon. 
– If the photon “survives” the absorption test it is reflected and further 

traced carrying the same power.

• Attenuate photon power for each surface hitting event
– Use the Russian roulette technique to avoid bias (systematic error) in 

the solution. Once photon energy weight w has fallen below the 
threshold, the photon is either absorbed with probability p or survives 
(with probability 1-p), but then its weight is increased by multiplying by 
1/(1-p). The expected value E(w) of the weight w after playing Russian 
roulette is given by:

w
p

wpp
p

wwE =
−

−+⋅=
−

⋅+⋅=
1

)1(0
1

)survivalPr(0)absorptionPr()(

which is the original weight of the photon, i.e. on average the photon has 
the right weight.

Realistic Image Synthesis SS04 – Density Estimation

Photon with Attenuated Energy

Left: Photon with the power 12 watts 
is emitted by a patch on the floor  

Right: the resulting power stored in
the photon hit patches  

Karol Myszkowski
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Photon with Attenuated Energy
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Density Estimation
• As a result of continuous random walk the lighting 

function is known implicitly as the density of photon 
collision points

• The lighting function in explicit form must be 
reconstructed
– This is a classic density estimation problem where an estimate of 

the probability density function is constructed from the observed 
data points. 

• Basic approaches to density estimation
– Parametric: a family of distributions is known and only predefined 

parameters must be found, e.g. mean µ and variance s2 for the 
normal distribution.

– Nonparametric: less rigid assumptions
• This is the case for the global illumination problem 

Roman Durikovic

Realistic Image Synthesis SS04 – Density Estimation

Density Estimation Methods
• Histograms: 

– A domain is subdivided into bins (buckets) in which the number of 
photons and/or their accumulated energy is stored.

• Naïve estimator: 
– Counts the number of collisions in a bin centered at point x.

• Kernel estimators: 
– The density is estimated  as spatially spread energy distributions 

around each photon collision point.

• Nearest neighbor methods: 
– The density at a point x is estimated by dividing  the number of the 

nearest neighbor photons k (usually fixed) by the area of a region 
centered at x, in which these photons are collected. 

• Orthogonal series estimators: 
– Higher order basis functions are used for lighting reconstruction in 

each bin (generalization of histograms)

Karol Myszkowski
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Density Estimation
• For simplicity let us consider 1D case. 
• Notation:

    estimators  histogramfor    bin  width  or the    
parameter) smoothingor  bandwidth  also (called  radius kernel the: 

function  kernel the:
   collisionsphoton    ofnumber    the: 

location collision photon  :

point at    estimate  its  and  pdf  tedreconstruc:)(ˆand)(

h
K(x)
n
X

xxfxf

i

Roman Durikovic

Realistic Image Synthesis SS04 – Density Estimation

Histograms

• strongly depends on h, the choice of an origin 
and orientation of the grid of bins 

)(ˆ
 contaningbin  ofwidth 

 asbin  same in the  of no.1
)(ˆ

general moreor 

) asbin  same in the  of no.(1)(ˆ

xf

x
xX

n
xf

xX
nh

xf

i

i

×=

×=

The same distribution but                   …  different histograms
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The Naïve Estimator
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The Kernel Estimator
• Generalization of the naïve estimator 

• inherits all the continuity and differentiability 
properties of the kernel K (usually a symmetric pdf)

• Well studied mathematically
• For a fixed h might have tendency to excessive 

smoothing       regions with dense photon collisions Xi
and leaving out visible noise in regions with low 
density of Xi
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The Kernel Estimator
At first the kernel function is chosen (usually smooth and easy to 
compute functions are used). Then the kernel radius h (the extent  
of the kernel support) is decided. It can be done globally for the whole 
surface or locally based on complexity of lighting distribution.
Finally, the kernel function is centered at every photon location, and 
the photon energy is splatted (distributed) according to the kernel shape.
The final lighting is estimated by summing splatted energy from all
photons.

Roman Durikovic
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The Kernel Estimator
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The Kernel Estimator
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Bandwidth Sensitivity
• Original bimodal density 

distribution

•   Right: Kernel estimates for 
200 simulated data points 
drawn from this bimodal 
density for kernel widths 
(a) 0.1, (b) 0.3, and (c) 0.6.

Realistic Image Synthesis SS04 – Density Estimation

The Nearest Neighbor Method

• The amount of smoothing locally adapts to the density 
of photon collisions Xi

• Reconstructed          is not a pdf since it does not 
integrate to unity (problems with energy conservation)

• The generalized k-th nearest neighbor estimate 
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The Nearest Neighbor Method

Roman Durikovic
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Generalization to Higher Dimensions
• All discussed methods have similar properties when 

higher dimensional density estimation is considered
• 2D is considered in the global illumination computation

– Histograms

– Kernel methods 
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Histogram Method
• Break surfaces in small elements. Count photons 

hitting each element:
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Orthogonal Series Density Estimation
• Linear, bi-linear, quadratic, cubic, … approximations
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Kernel Density Estimation
• Place finite-width density kernel at each sample point 

Philippe Bekaert
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Gaussian Kernel

Philippe Bekaert
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Comparison of Density Estimation Methods
• Problems with energy conservation

– Nearest neighbor method

• Discontinuities in reconstructed density
– Histogram, naïve, and nearest neighbor methods

• Complexity as a function of the photon number n
– O(n)

• Histogram  - fast
• Naïve and kernel estimators  – average

– O(n logn)
• Nearest neighbor method – slow

• Adaptability to local density fluctuations
– Histogram, naïve and kernel estimators – poor
– Nearest neighbor method – good

Karol Myszkowski
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Gaussian Kernel
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Comparison of Density Estimation Methods
• Problems with energy conservation

– Nearest neighbor method

• Discontinuities in reconstructed density
– Histogram, naïve, and nearest neighbor methods

• Complexity as a function of the photon number n
– O(n)

• Histogram  - fast
• Naïve and kernel estimators  – average

– O(n logn)
• Nearest neighbor method – slow

• Adaptability to local density fluctuations
– Histogram, naïve and kernel estimators – poor
– Nearest neighbor method – good
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Bias and Random Error
• The error between the illumination function f(x) and its 

estimate         can be expressed as:

• The bias is a smoothed version of the true density f
Ø Bias = convolution of f with the kernel K scaled by the kernel size h

• The bias does not depend directly on the number of 
photons 
ØBias cannot be eliminated just by shooting more photons!
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Local Accuracy
• Mean Square Error (MSE)

• The bias and variance equations depend on the 
unknown f(x) and are not very intuitive
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Global Accuracy
• Mean Integrated Square Error (MISE)

• For a symmetric kernel function K such that:

• The bias and random error depend strongly on each 
other. The bias can be reduced when the region h in 
which photons are processed to evaluate          is 
decreased. This results in the increasing random error.
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Optimal Bandwidth
• Through minimizing MISE in respect to h

• hoptconverges to zero as the number of photons n 
increases

• hopt depends directly on the density function f(x)
– The second derivative f”(x) is a measure of the rapidity of 

fluctuations in f(x) and smaller h should be chosen for more 
rapidly fluctuating densities.
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Optimal Kernel
• By substituting the value of hopt in 

• The optimal kernel can be found by minimizing C(K)
– Epanechnikov

• Even simple kernels such as gaussian or cylindrical 
lead to only small increase of density estimation error.
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Boundary Bias
• Problem for kernel methods

– Darkening near the surface boundary

• Solutions
– Replicate photon collision points by virtually reflecting them across 

the boundary
– Extending surface by some virtual margin at which photon collisions 

are still registered but it does not occlude the original photon path
– Normalizing kernels
– More advanced: local linear density estimation based on locally-

weighted linear least-squares regression

Karol Myszkowski
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Density Estimation in Global Illumination

Main problems:
• The parameters of density estimation are 

usually decided globally for the whole scene or 
surfaces
– This may result in uncontrolled smoothing/noise for 

complex illumination patterns. 

• Local estimate the lighting reconstruction 
error would be useful to find hopt for a given 
scene region.

Roman Durikovic
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Local Error Estimate
• The lighting reconstruction error      in some 

region H can be  measured by the standard 
norm:                              

• Rough estimate of this error:
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Adaptive Density Estimation
Two stage approach:
• Use histograms to find crude approximation of lighting 

distribution (photon density) function
• Based on this function find local hopt

• Use more precise density estimation methods such as
– kernel methods with adaptively changing hopt

– nearest neighbor methods with adaptively changing kopt

Roman Durikovic

Realistic Image Synthesis SS04 – Density Estimation

• Illumination textures (IT) used as histogram bins 
? hi for collecting photons 
– Each texel stores the number of colliding photons
– Bias error: Photon collision points are discretized to the 

nearest texel location. 

• The texel grid of is used to build summed area 
table (SAT) in which photons are summed up
– Density estimation for any rectangular region is very fast

• For every texel i of IT photon density is estimated 
L times for the increasing size of the region hi

l in 
which photons are counted using SAT. 

• For every texel i of IT, and for every hi
l,      is 

estimated. We search for the minimal       to 
decide hopti.

2ε̂
2ε̂

Variable Kernel Method (1)

Karol Myszkowski
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Variable Kernel Method (2)

• Based on the size of hopti the optimal radius kernel 
Ropti is computed for each texel i

• To remove outliers the median filter is applied to Ropti.
• Since Ropti is stored only for texel locations of IT, 

bilinear interpolation is used to find the radius at 
each photon location.

• To avoid energy leaks for kernels crossing IT
boundaries, the kernel can be re-scaled so that its IT
volume sums to unity.

Roman Durikovic
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Rendering Illumination Textures

• The final step of IT processing does not depend on the 
density estimation method. 

• If the direct lighting is computed as the illumination 
texture  using the deterministic approach, then total 
illumination must be summed up
– This may require re-sampling one texture to the resolution of the 

other.

• Then illumination is converted to luminance taking into 
account the surface reflectance function, and 
transformed into displayable RGB using a tone 
reproduction function. 

Karol Myszkowski
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Lighting Textures: Color Treatment
• The most straightforward solution is to process 

independently each color channel
– some “uncorrelated color oscillations” for small hi are possible. 

• Another solution: 
– Store for every photon a record of its normalized RGB components. 
– Modify this record during photon tracing as a result of light reflection.  
– Process SAT with total photons energy to compute Ropt. 
– For the final density estimation scale kernel for each RGB 

component. The kernel size Ropt remains the same for all color 
channels.

Bruce Walter

Roman Durikovic
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Estimated vs. Exact Reconstruction Errors

 Distribution of  the 
locally measured                   
for the adaptive 
nearest neighbor 
method. The errors 
are measured along 
the scanline (128 
pixels long) marked 
in the figure below. 
The average number 
of photons per texel
is ~6.1.

εε ˆand

photons500for  estimateerror :ˆ
estimateerror :ˆ

error  actual:

max =′ kε
ε
ε
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Distribution of Ropt

 Distribution of the 
optimal region size 
Ropti along the scanline
(128 pixels long) 
marked in the figure 
below.  The average 
number of photons per 
pixel is ~6.1.

Roman Durikovic
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Adaptive vs. Fixed #Neighbor Photons
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Adaptive vs. Fixed #Neighbor Photons
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Bias Compensation for the Nearest Neighbor Method

• Highlight case study
– Illumination estimate at the red 

point
– Analysis of bias and noise as a 

function of increased number 
of nearest neighbor photons

Photon density

Roland Schregle
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Bias Compensation for the Nearest Neighbor Method

• Algorithm
– For each point x perform estimate of illumination 

for the number of nearest photons ranging from 1,…, Nmin

– Compute the expected value and variance of f(x,j) using some weighting 
function w(j)

– Recursively split the interval [Nmin, Nmax] at Nmid=(Nmin- Nmin)/2 and decide 
which interval to choose based on a density estimate:

),(ˆ),...,1,(ˆ
minNxfxf
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Roland Schregle

Realistic Image Synthesis SS04 – Density Estimation

Bias Compensation for the Nearest Neighbor Method

Roland Schregle



39

Realistic Image Synthesis SS04 – Density Estimation

Bias Compensation for the Nearest Neighbor Method

Roland Schregle

Realistic Image Synthesis – Density Estimation

Bias Compensation for the Nearest Neighbor Method

Roland Schregle



40

Realistic Image Synthesis – Density Estimation

Bias Compensation for the Nearest Neighbor Method

Bias compensation with
adaptive bandwidth for 
50-5,000 nearest photons

Fixed bandwidth for 
5,000 nearest photons
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500 nearest photons

Adaptive bandwidth with 
50-500 nearest photons
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Bias Compensation for the Nearest Neighbor Method

Fixed bandwidth with 
50 nearest photons

Fixed bandwidth with 
2,000 nearest photons

Adaptive bandwidth with 
50-2,000 nearest photons
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Simple Algorithm Example 
• Histogram approach: 

– Use fine mesh as bins and count the number of collisions
– Keep separate counters for photons arriving directly and indirectly 

from light sources
• At later stages of computation replace density based direct lighting 

reconstruction by deterministically computed lighting 
– adaptive mesh subdivision – view-independent approach
– for each pixel – view-dependent approach (better quality)

– Continuous Random Walks guarantees the rendering equation 
solution, but the final lighting stored in the mesh is Lambertian only

– Graphics hardware can be used to display mesh-reconstructed 
lighting, and walkthrough animation is possible at any stage of 
computation

– The final gather step is not required to obtain images of good 
quality

• Problem: mesh elements with small number of colliding photons may 
look noisy     

Karol Myszkowski
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Illumination Maps Filtering 
• Remove noise at expense of increasing bias
• Average photon collision number for neighboring 

mesh elements
• Use static, balanced kd-tree with mesh vertices to 

search neighboring mesh elements
• Mesh topology does not matter
• Mesh normal vectors should be roughly aligned

• Adaptive selection of density estimation filter support 
based on mathematically -sound local statistic 
measures of illumination variation:

• As solution converges the local filter support shrinks reducing bias.
collisions ofnumber  local:  where

%100deviation  standard relative %

i

i

n

n
=σ

Roman Durikovic
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Filtering Example (1) 

With filteringWithout filtering

Solution after 10 sec. of computation
R10,000 195 MHz processor 

Karol Myszkowski
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Without filtering With filtering

Scene complexity: 22,314 polygons, and 581 light sources

Filtering Example (2) 
Solution after 30 sec. of computation 
R10,000 195 MHz processor

Karol Myszkowski
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Random Error Estimate
• Split photons into two halves A and B

– For example A: even photons and B:odd photons
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Case Study Scene - Various Views

Geometry complexity:  131,700 polygons that are tessellated
into 350,600 mesh elements

Lighting complexity:     8 luminaires
Timings measured for a R10,000 195Mhz processor

Karol Myszkowski
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Progressive Rendering Example

3 seconds 20 seconds

Density estimation only

Karol Myszkowski



44

Realistic Image Synthesis SS04 – Density Estimation

Case Study Scene - Various Views

Geometry complexity:  131,700 polygons that are tessellated
into 350,600 mesh elements

Lighting complexity:     8 luminaires
Timings measured for a R10,000 195Mhz processor

Karol Myszkowski

Realistic Image Synthesis – Density Estimation

Progressive Rendering Example

3 seconds 20 seconds

Density estimation only
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20s + 326s Converged solution: 2 hours

Progressive Rendering Example





+
(right) gray tracin

(left) lightingdirect  ticdeterminis
estimationdensity 

Karol Myszkowski
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General BRDF and Caustics 

Karol Myszkowski
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• An atrium of the University of Aizu: 
– LEFT: ray traced image with indirect lighting computed via photon 

bucketing
– RIGHT: photograph

Validation Experiment 

Karol Myszkowski
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More Advance Algorithm Example
• Spectral color representation
• Kernel based density estimation

– Adaptive kernel support – fixed kernel size hi for each surface Ai

– Reconstruction performed at vertices of dense mesh

• Mesh decimation
– Perception-driven (the Weber law is used to check visibility of 

luminance changes across surface)

πi
i

i n
CAh =

Karol Myszkowski
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Processing Flow
• Software naturally divides 

into independent modules
• Computation easy to 

perform in parallel
– Communication required only 

at the photon sorting stage
• well studied problem 

Bruce Walter
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Solution Convergence
• From left to right: increasing number of particles and 

corresponding reduction of kernel bandwidth

Bruce Walter

πi
i
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Decimation

Bruce Walter

Realistic Image Synthesis SS04 – Density Estimation

Comparison with other Rendering Techniques

Bruce Walter
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Decimation
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Comparison with other Rendering Techniques

Bruce Walter



49

Realistic Image Synthesis – Density Estimation

Realism

Bruce Walter

Realistic Image Synthesis SS04 – Density Estimation

Performance: Pentium II, 400MHz
• #polygons 

13,729
• Particle 

tracing 
18.6hrs

• 300,000,000 
collisions

• Sorting 0.7hrs
• Density 

estimation 
2,6hrs

• #triangles   
3,441,944

Bruce Walter
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Realism

Bruce Walter
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