Realistic Image Synthesis - Density Estimation - **Roman Durikovic** ### Overview ### Today - Density estimation background - Density estimation methods - Global illumination algorithms based on density estimation ## Reading Materials ### Basic: - B.J. Walter, Density Estimation Techniques for Global Illumination, PhD thesis, Cornell University, 1998 - P. Dutre, P. Bekaert, and K. Bala, Advanced Global Illumination, AK Peters 2003 #### Advanced: - B.W. Silverman, Density Estimation for Statistics and Data analysis, Chapman and Hall, 1986 - M.P. Wand and M.C. Jones, Kernel Smoothing, Chapman and Hall, 1995 ### Photon Transport Simulation - Instead of simulating the exact system, an analog system which is easier to simulate can be used - must retain all the *important* characteristics of the original system. - Photons used in global illumination algorithms are simplified analogs of photons (light particles) in physics. - The simplified photon characteristics - emitted by light sources and carry some energy, - travel in space obeying geometrical optics laws, - traced in space until they are completely absorbed due to reflections and refractions. - · Time factor is ignored - it is assumed that photons are moving instantaneously. ### Global Illumination via Density Estimation - A typical algorithm consists of three consecutive phases: - 1 photon tracing (continuous random walk) - 2 lighting reconstruction via density estimation, - 3 lighting storage and rendering. - The lighting function is available implicitly as the density of photons hitting points - Reconstructing illumination out of collected photons is a density estimation problem. - Various techniques are used to store/display lighting: - illumination maps (textures), meshing, or a direct density estimation at chosen sample points. The surfaces in the room are depicted "unfolded" in the three figures on the right. ### Random Walks ### **Continuous vs. Discrete Random Walks** Solves integral equations: radiosity or rendering equations Solves linear systems: discretization error propagation # **Light Source Sampling** Sample point on light source with probability proportional to self-emitted radiosity: $$S(x) = E(x)/F_T$$ ## Making the First Transition (1) - No absorption at the origin - Sample direction according to directional distribution of self-emitted radiance. Diffuse emission: pdf is $cos(\theta_v)/\pi$ ## Making the First Transition (2) - Shoot ray along sampled direction. - Geometric density factor: $\cos(\theta_{\rm v}) / {\rm r}^2_{\rm xv}$ ### Making the First Transition (3) Full transition density T(x,y) is product: $cos(q_x)cos(q_y) / (p r_{xy}^2)$ ### **Further Transitions** 1. Absorption / survival test according to albedo ## Further Transitions (2) 2. Sample direction according to brdf ### Further Transitions (3) ## Further Transitions (4) ### Once More ... # 1. Absorption / survival test # 2. Sample direction according to brdf ### And Yet Once More 1. Absorption / survival test # 2. Sample direction according to brdf ### **End of Game** ### 1. Absorption ### **Collision Density** In general: Random walk simulation yields points with density which is solution of second kind Fredholm integral equation Radiosity integral equation: $$B(x) = E(x) + \int_S B(y) \; \frac{\cos\theta_y}{\pi} \; \frac{\cos\theta_x}{r_{yx}^2} \mathrm{vis}(y,x) \; \rho(x) \; dA_y$$ Source density should be normalized, Source density should be normalized, $S(x) = E(x)/F_T$, but we're almost there! Divide by total self-emitted power: $$\frac{B(x)}{\Phi_T} = \frac{E(x)}{\Phi_T} + \int_S \frac{B(y)}{\Phi_T} \frac{\cos \theta_y}{\pi} \frac{\cos \theta_x}{r_{yx}^2} \operatorname{vis}(y, x) \ \rho(x) \ dA_y$$ $$\frac{B(x)}{\Phi_T} = \boxed{\frac{E(x)}{\Phi_T}} + \int_S \frac{B(y)}{\Phi_T} \, \frac{\cos \theta_y}{\pi} \, \frac{\cos \theta_x}{r_{yx}^2} \mathrm{vis}(y, x) \, \rho(x) \, dA_y$$ Source density S(x) $$\frac{B(x)}{\Phi_T} = \boxed{\frac{E(x)}{\Phi_T}} + \int_S \frac{B(y)}{\Phi_T} \boxed{\frac{\cos\theta_y}{\pi} \frac{\cos\theta_x}{r_{yx}^2} \text{vis}(y, x) \ \rho(x)} dA_y$$ $$\uparrow$$ Source Transition density T(y,x): density S(x) 1. sample cosine - distributed direction at y 2. shoot ray; ray hits x - 2. shoot ray, ray filts x - 3. survival test at x Collision density proportional to radiosity $$\frac{B(x)}{\Phi_T} = \frac{E(x)}{\Phi_T} + \int_S \frac{B(y)}{\Phi_T} \frac{\cos \theta_y}{\pi} \frac{\cos \theta_x}{r_{yx}^2} \text{vis}(y, x) \ \rho(x) dA_y$$ Source Transition density T(y,x): $$\text{density S(x)} \quad 1. \text{ sample cosine}$$ $$\text{distributed direction at y}$$ 2. shoot ray; ray hits x 3. survival test at x • 1,000 paths • 10,000 paths 100,000 paths Collision density is related to radiosity!! ### Photon Tracing: Summary ### For each photon repeat the following steps: ### 1 Choose probabilistically: - the wavelength of the photon by sampling the emission spectrum, - the location of the photon on the emitter surface by sampling the positional emission power distribution, - the direction of propagation of the photon by sampling the directional power distribution. # 2 Assign the energy to the photon and trace it until it is absorbed: - find the first object hit by the photon (use ray tracing), - decide on photon absorption or reflection by testing a random number against surface albedo, - if the photon is reflected: - assign a reflected direction to the photon by sampling BRDF, - update the outgoing photon flux and continue tracing the photon ### Handling Photon's Power - Assign the same power to every photon - Draw a random number [0,1] from the uniform distribution and compare with the albedo of surface hit by the photon. - If the photon "survives" the absorption test it is reflected and further traced carrying the same power. - Attenuate photon power for each surface hitting event - Use the Russian roulette technique to avoid bias (systematic error) in the solution. Once photon energy weight w has fallen below the threshold, the photon is either absorbed with probability p or survives (with probability I-p), but then its weight is increased by multiplying by I/(1-p). The expected value E(w) of the weight w after playing Russian roulette is given by: $$E(w) = \text{Pr(absorption }) \cdot 0 + \text{Pr(survival)} \cdot \frac{w}{1-p} = p \cdot 0 + (1-p) \frac{w}{1-p} = w$$ which is the original weight of the photon, i.e. on average the photon has the right weight. ### Photon with Attenuated Energy Left: Photon with the power 12 watts is emitted by a patch on the floor Right: the resulting power stored in the photon hit patches ## **Density Estimation** - As a result of continuous random walk the lighting function is known implicitly as the density of photon collision points - The lighting function in explicit form must be reconstructed - This is a classic *density estimation* problem where an estimate of the probability density function is constructed from the observed data points. - Basic approaches to density estimation - Parametric: a family of distributions is known and only predefined parameters must be found, e.g. mean μ and variance s^2 for the normal distribution. - Nonparametric: less rigid assumptions - This is the case for the global illumination problem # **Density Estimation Methods** ### Histograms: A domain is subdivided into bins (buckets) in which the number of photons and/or their accumulated energy is stored. #### Naïve estimator: Counts the number of collisions in a bin centered at point x. #### Kernel estimators: The density is estimated as spatially spread energy distributions around each photon collision point. ### Nearest neighbor methods: The density at a point x is estimated by dividing the number of the nearest neighbor photons k (usually fixed) by the area of a region centered at x, in which these photons are collected. ### Orthogonal series estimators: Higher order basis functions are used for lighting reconstruction in each bin (generalization of histograms) ## Density Estimation - For simplicity let us consider 1D case. - Notation: ``` f(x) and \hat{f}(x): reconstructed pdf and its estimate at point x ``` $$X_i$$: photon collision location n: the number of photon collisions $$K(x)$$: the kernel function ## Histograms $$\hat{f}(x) = \frac{1}{nh} \times (\text{no. of } X_i \text{ in the same bin as } x)$$ or more general $$\hat{f}(x) = \frac{1}{n} \times \frac{\text{no. of } X_i \text{ in the same bin as } x}{\text{width of bin containing } x}$$ • $\hat{f}(x)$ strongly depends on h, the choice of an origin and orientation of the grid of bins ## The Naïve Estimator $$w(y) = \begin{cases} 0.5 & \text{if } |y| < 1 \\ 0 & \text{otherwise} \end{cases}$$ $$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} w(\frac{x - X_i}{h})$$ $X_i + /-h$ ## The Kernel Estimator Generalization of the naïve estimator $$\int_{-\infty}^{\infty} K(x)dx = 1$$ $$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - X_i}{h})$$ - $\hat{f}(x)$ inherits all the continuity and differentiability properties of the kernel K (usually a symmetric pdf) - Well studied mathematically - For a fixed h might have tendency to excessive smoothing $\hat{f}(x)$ regions with dense photon collisions X_i and leaving out visible noise in regions with low density of X_i ## The Kernel Estimator At first the kernel function is chosen (usually smooth and easy to compute functions are used). Then the kernel radius h (the extent of the kernel support) is decided. It can be done globally for the whole surface or locally based on complexity of lighting distribution. Finally, the kernel function is centered at every photon location, and the photon energy is splatted (distributed) according to the kernel shape. The final lighting is estimated by summing splatted energy from all photons. ## The Kernel Estimator ## Bandwidth Sensitivity Original bimodal density distribution Right: Kernel estimates for 200 simulated data points drawn from this bimodal density for kernel widths (a) 0.1, (b) 0.3, and (c) 0.6. Realistic Image Synthesis - Density Estimation ## The Nearest Neighbor Method $$\hat{f}(x) = \frac{k}{2nd_k(x)}$$ where $d_{k}(x)$ is such a distance that in the interval $[x-d_k, x+d_k]k$ neareast collisions X_i is located $$d_1(x) \le d_2(x) \le \dots \le d_k(x)$$ - The amount of smoothing locally adapts to the density of photon collisions X_i - Reconstructed $\hat{f}(x)$ is not a pdf since it does not integrate to unity (problems with energy conservation) - The generalized k-th nearest neighbor estimate $$\hat{f}(x) = \frac{1}{nd_k(x)} \sum_{i=1}^n K(\frac{x - X_i}{d_k(x)})$$ ## The Nearest Neighbor Method ## Generalization to Higher Dimensions - All discussed methods have similar properties when higher dimensional density estimation is considered - 2D is considered in the global illumination computation - Histograms $$\hat{f}(x) = \frac{1}{n} \times \frac{\text{no. of } X_i \text{ in the same bin as } x}{\text{area of bin containing } x}$$ Kernel methods $$\int_{-\infty}^{\infty} K(\mathbf{x}) d\mathbf{x} = 1$$ $$\hat{f}(\mathbf{x}) = \frac{1}{nh^2} \sum_{i=1}^{n} K\{\frac{1}{h}(\mathbf{x} - \mathbf{X}_i)\}$$ ## Histogram Method Break surfaces in small elements. Count photons hitting each element: $$\hat{f}(x) = \frac{1}{n} \times \frac{\text{no. of } X_i \text{ in the same bin as } x}{\text{area of bin containing } x}$$ ## Histogram Method # Orthogonal Series Density Estimation Linear, bi-linear, quadratic, cubic, ... approximations orthonormal basis functions $$\mathbf{y}_n(x)$$: $$\hat{f}(x) = \sum_{n=1}^{K} \hat{f}_n \mathbf{y}_n(x)$$ f(x) can be reconstructed using K with the projection coefficients \hat{f}_n : $$\hat{f}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{y}_n(X_i) a(X_i)$$ $$\int_{-\infty}^{+\infty} \mathbf{y}_{\mathbf{m}}(x) \mathbf{y}_{\mathbf{n}}(x) a(x) dx = \mathbf{d}_{\mathbf{m}\mathbf{n}} = \begin{cases} 1 & \mathbf{m} = \mathbf{n} \\ 0 & \text{otherwise} \end{cases}$$ $\psi_0(u, v)$ $\psi_{10}(u, v)$ ## Orthogonal Series ## Kernel Density Estimation Place finite-width density kernel at each sample point $$K(\mathbf{x})d\mathbf{x} = 1$$ $$\hat{f}(\mathbf{x}) = \frac{1}{nh^2} \sum_{i=1}^{n} K\{\frac{1}{h}(\mathbf{x} - \mathbf{X}_i)\}$$ # Cylindrical Kernel # Gaussian Kernel ## Comparison of Density Estimation Methods - Problems with energy conservation - Nearest neighbor method - Discontinuities in reconstructed density - Histogram, naïve, and nearest neighbor methods - Complexity as a function of the photon number n - -O(n) - · Histogram fast - Naïve and kernel estimators average - $-O(n\log n)$ - · Nearest neighbor method slow - Adaptability to local density fluctuations - Histogram, naïve and kernel estimators poor - Nearest neighbor method good # Bias and Random Error The error between the illumination function f(x) and its estimate $\hat{f}(x)$ can be expressed as: $$\mathbf{f}(x) = f(x) - \hat{f}(x) = \underbrace{f(x) - E(\hat{f}(x))}_{\mathbf{f}_{bias}} + \underbrace{E(\hat{f}(x)) - \hat{f}(x)}_{\mathbf{f}_{random}}(x)$$ $$E\hat{f}(x) = E\left[\frac{1}{nh}\sum_{i=1}^{n}K(\frac{x-X_{i}}{h})\right] = \frac{1}{nh}\sum_{i=1}^{n}E\left[K(\frac{x-X_{i}}{h})\right] = \frac{1}{h}\int K(\frac{x-y}{h})f(y)dy$$ • The bias is a smoothed version of the true density f - ➤ Bias = convolution of f with the kernel K scaled by the kernel size h $\hat{f}(x)$ = smoothed version of true density + random error - · The bias does not depend directly on the number of photons - ➤ Bias *cannot* be eliminated just by shooting more photons! ## Local Accuracy Mean Square Error (MSE) $$MSE_{x}(\hat{f}) = E\{f(x) - \hat{f}(x)\}^{2} = \underbrace{\{E\hat{f}(x) - f(x)\}^{2} + \underbrace{\text{var } \hat{f}(x)}_{\text{variance}}}$$ $$\text{bias} = E\hat{f}(x) - f(x) = \frac{1}{h} \int K(\frac{x - y}{h}) f(y) dy - f(x)$$ $$\text{var } \hat{f}(x) = \frac{1}{nh^{2}} \left\{ \int K^{2}(\frac{x - y}{h}) f(y) dy - \left[\int K(\frac{x - y}{h}) f(y) dy \right]^{2} \right\}$$ The bias and variance equations depend on the unknown f(x) and are not very intuitive # Global Accuracy Mean Integrated Square Error (MISE) $$MISE(\hat{f}) = E \int \{ f(x) - \hat{f}(x) \}^2 dx = \int E \{ f(x) - \hat{f}(x) \}^2 dx = \int MSE_x(\hat{f}) dx = \int \{ E\hat{f}(x) - f(x) \}^2 dx + \int var \hat{f}(x) dx$$ For a symmetric kernel function K such that: $$\int K(t)dt = 1 \qquad \int tK(t)dt = 0 \qquad \int t^2K(t)dt = k_2$$ $$\int bias_h^2(x)dx = \int \left[\frac{1}{h}\int K(\frac{x-y}{h})f(y)dy - f(x)\right]^2 dx \approx \frac{1}{4}h^4k_2^2 \int [f'(x)]^2 dx$$ $$\int var \hat{f}(x)dx \approx \frac{1}{nh}\int [K(t)]^2 dt$$ The bias and random error depends troughly on each • The bias and random error depend strongly on each other. The bias can be reduced when the region h in which photons are processed to evaluate $\hat{f}(x)$ is decreased. This results in the increasing random error. ## **Optimal Bandwidth** Through minimizing MISE in respect to h $$\int bias_h^2(x)dx + \int \text{var } \hat{f}(x)dx \approx \frac{1}{4}h^4k_2^2 \int [f''(x)]^2 dx + \frac{1}{nh} \int [K(t)]^2 dt$$ $$h_{opt} = \left(\frac{\int K^{2}(t)dt}{k_{2}^{2}n\int [f''(x)]^{2}dx}\right)^{\frac{1}{5}}$$ - h_{opt} converges to zero as the number of photons n increases - h_{opt} depends directly on the density function f(x) - The second derivative f''(x) is a measure of the rapidity of fluctuations in f(x) and smaller h should be chosen for more rapidly fluctuating densities. # **Optimal Kernel** • By substituting the value of h_{ont} in $$\int bias_{h}^{2}(x)dx + \int var \,\hat{f}(x)dx \approx \frac{1}{4} h_{opt}^{4} k_{2}^{2} \int [f''(x)]^{2} dx + \frac{1}{n h_{opt}} \int [K(t)]^{2} dt \approx$$ - $\frac{5}{4}C(K)\left(\frac{1}{n^4}\int [f''(x)]^2 dx\right)^{\frac{5}{5}} \quad \text{where} \quad C(K) = k_2^{\frac{2}{5}} \left(\int K^2(t) dt\right)^{\frac{4}{5}}$ - The optimal kernel can be found by minimizing C(K) Epanechnikov $$\frac{3}{4\sqrt{5}}(1-\frac{1}{5}t^2) \quad \text{for} \quad |t| < \sqrt{5}$$ Even simple kernels such as gaussian or cylindrical lead to only small increase of density estimation error. ## **Boundary Bias** #### Problem for kernel methods - Darkening near the surface boundary #### Solutions - Replicate photon collision points by virtually reflecting them across the boundary - Extending surface by some virtual margin at which photon collisions are still registered but it does not occlude the original photon path - Normalizing kernels - More advanced: local linear density estimation based on locallyweighted linear least-squares regression # Density Estimation in Global Illumination ## Main problems: - The parameters of density estimation are usually decided globally for the whole scene or surfaces - This may result in uncontrolled smoothing/noise for complex illumination patterns. - Local estimate the lighting reconstruction error would be useful to find h_{ont} for a given scene region. ## Local Error Estimate - The lighting reconstruction error e in some region H can be measured by the standard **norm:** $e = L_2(f(x) - \hat{f}(x))$ - Rough estimate of this error: $$\hat{\boldsymbol{e}}^2 \le M \frac{\sum_{i} \sum_{j}^{J} \left(\hat{f}(x_i) - \hat{f}(x_{ij}) \right)^2 \Delta h_i}{JH}$$ Δh_i : elementary surface area $$H = \sum_{i} \Delta h_{i}$$ $\hat{f}(x_i)$: estimate for region h_i centered around x_i $h_i = h_{ii}$: random error kept on the same level # Adaptive Density Estimation ## Two stage approach: - Use histograms to find crude approximation of lighting distribution (photon density) function - Based on this function find local $m{h}_{opt}$ - Use more precise density estimation methods such as - kernel methods with adaptively changing h_{opt} - nearest neighbor methods with adaptively changing $k_{\it opt}$ ## Variable Kernel Method (1) - Illumination textures (*IT*) used as histogram bins Δh_i for collecting photons - Each texel stores the number of colliding photons - Bias error: Photon collision points are discretized to the nearest texel location. - The texel grid of IT is used to build summed area table (SAT) in which photons are summed up - Density estimation for any rectangular region is very fast - For every texel i of IT photon density is estimated L times for the increasing size of the region h_i^l in which photons are counted using SAT. - For every texel i of IT, and for every h_i^l , $\hat{\mathbf{e}}^2$ is estimated. We search for the minimal $\hat{\mathbf{e}}^2$ to decide h_{anti} . # Variable Kernel Method (2) - Based on the size of h_{opti} the optimal radius kernel R_{opti} is computed for each texel i - To remove outliers the median filter is applied to R_{opti} . - Since R_{opti} is stored only for texel locations of IT, bilinear interpolation is used to find the radius at each photon location. - To avoid energy leaks for kernels crossing IT boundaries, the kernel can be re-scaled so that its IT volume sums to unity. ## Rendering Illumination Textures - The final step of IT processing does not depend on the density estimation method. - If the direct lighting is computed as the illumination texture using the deterministic approach, then total illumination must be summed up - This may require re-sampling one texture to the resolution of the other - Then illumination is converted to luminance taking into account the surface reflectance function, and transformed into displayable RGB using a tone reproduction function. # Lighting Textures: Color Treatment ### The most straightforward solution is to process independently each color channel – some "uncorrelated color oscillations" for small h_i are possible. ### Another solution: - Store for every photon a record of its normalized RGB components. - Modify this record during photon tracing as a result of light reflection. - Process SAT with total photons energy to compute R_{opt} . - For the final density estimation scale kernel for each RGB component. The kernel size R_{opt} remains the same for all color channels. ## Estimated vs. Exact Reconstruction Errors Distribution of the locally measured e and \hat{e} for the adaptive nearest neighbor method. The errors are measured along the scanline (128 pixels long) marked in the figure below. The average number of photons per texel is ~6.1. e: actual error \hat{e} : error estimate \hat{e}' : error estimate for $k_{\text{max}} = 500$ photons # Distribution of R_{opt} Distribution of the optimal region size R_{opti} along the scanline (128 pixels long) marked in the figure below. The average number of photons per pixel is ~6.1. # Adaptive vs. Fixed #Neighbor Photons # Adaptive vs. Fixed #Neighbor Photons Realistic Image Synthesis – Density Estimation Roman Durikovic Realistic Image Synthesis - Density Estimation #### Algorithm - For each point x perform estimate of illumination $\hat{f}(x,1),...,\hat{f}(x,N_{min})$ for the number of nearest photons ranging from $1, ..., N_{min}$ - Compute the expected value and variance of f(x,j) using some weighting function w(i) function $$w(j)$$ $$\mathbf{m}[\hat{f}(x,N_p)] = \sum_{j=1}^{N_{\min}} w(j) \cdot \hat{f}(x,j)$$ $$\hat{\mathbf{s}}^2[\hat{f}(x,N_p)] = \mathbf{m}[\hat{f}^2(x,N_p)] - \mathbf{m}^2[\hat{f}(x,N_p)]$$ - Recursively split the interval $$[N_{min}, N_{max}]$$ at N_{mid} = $(N_{min}, N_{min})/2$ and decide which interval to choose based on a density estimate: $\hat{f}(x, N_{mid})$ using N_{mid} photons $e[\hat{f}(x, N_{mid})] = \hat{f}(x, N_{mid}) - m[\hat{f}(x, N_{R})]$ 0.2 with the probability p that **m** is attributed to noise: $p = e^{-\mathbf{e}^2[\hat{f}(x, N_{mid})]/2\hat{\mathbf{s}}^2[\hat{f}(x, N_p)]}$ where based on the central limit theorem p is the likelihood that e is due to noise Realistic Image Synthesis - Density Estimation Roland Schregle ``` procedure biascomp(\vec{x}, min, max) N_{min} = min N_{max} = max gather N_{max} photons for i = 1 to N_{min} do partition(j, j + 1, N_{max}) get irradiance estimate \hat{f}(\vec{x}, j) for j closest photons include \hat{f}(\vec{x}, j) in average \mu end for evaluate à2 while N_{min} < N_{max} do N_{mid} = (N_{min} + N_{max})/2 partition(Nmin.Nmid.Nmax) get irradiance estimate \hat{f}(\vec{x}, N_{mid}) for N_{mid} closest photons \varepsilon = \hat{f}(\vec{x}, N_{mid}) - \mu p = \exp(-\epsilon^2/2\hat{\sigma}^2) if random \xi \in [0,1] < p then \{\varepsilon \text{ probably noise, recurse in } [N_{mid}, N_{max}]\} include \hat{f}(\vec{x}, N_{mid}) in average \mu update ô2 N_{min} = N_{mid} else {\varepsilon probably bias, recurse in [N_{min}, N_{mid}]} N_{more} = N_{mld} end if end while return \hat{f}(\vec{x}, N_{mid}) Realistic Image Roland Schredle ``` Roland Schregle Bias compensation with adaptive bandwidth for 50-5,000 nearest photons Fixed bandwidth for 5,000 nearest photons Roland Schregle Fixed bandwidth with 50 nearest photons Fixed bandwidth with 500 nearest photons Adaptive bandwidth with 50-500 nearest photons Fixed bandwidth with 50 nearest photons with Fixed bandwidth with 2,000 nearest photons Adaptive bandwidth with 50-2,000 nearest photons #### Simple Algorithm Example #### Histogram approach: - Use fine mesh as bins and count the number of collisions - Keep separate counters for photons arriving directly and indirectly from light sources - At later stages of computation replace density based direct lighting reconstruction by deterministically computed lighting - adaptive mesh subdivision view-independent approach - for each pixel view-dependent approach (better quality) - Continuous Random Walks guarantees the rendering equation solution, but the final lighting stored in the mesh is Lambertian only - Graphics hardware can be used to display mesh-reconstructed lighting, and walkthrough animation is possible at any stage of computation - The final gather step is not required to obtain images of good quality - Problem: mesh elements with small number of colliding photons may look noisy ## Illumination Maps Filtering - Remove noise at expense of increasing bias - Average photon collision number for neighboring mesh elements - Use static, balanced kd-tree with mesh vertices to search neighboring mesh elements - Mesh topology does not matter - Mesh normal vectors should be roughly aligned - Adaptive selection of density estimation filter support based on mathematically-sound local statistic measures of illumination variation: relative standard deviation $$\mathbf{s}_{\%} = \frac{100\%}{\sqrt{n_i}}$$ - where n_i : local number of collisions As solution converges the local filter support shrinks reducing bias. - Realistic Image Synthesis Density Estimation ### Filtering Example (1) Solution after 10 sec. of computation R10,000 195 MHz processor With filtering # Filtering Example (2) Solution after 30 sec. of computation R10,000 195 MHz processor Without filtering With filtering Scene complexity: 22,314 polygons, and 581 light sources #### Random Error Estimate #### • Split photons into two halves A and B - For example A: even photons and B:odd photons $$\hat{f}_A(x) = \frac{2}{n} \sum_{i \in A} v(X_i) \quad \text{and} \quad \hat{f}_B(x) = \frac{2}{n} \sum_{i \in B} v(X_i)$$ $$\hat{f}(x) = \frac{1}{2} (\hat{f}_A(x) + \hat{f}_B(x))$$ $$\hat{e}(x) = \frac{1}{2} (\hat{f}_A(x) - \hat{f}_B(x))$$ $$E\hat{e}(x) = 0$$ $$\operatorname{var} \hat{e}(x) = \frac{1}{2} (\operatorname{var} \hat{f}_A(x) + \operatorname{var} \hat{f}_B(x)) = \operatorname{var} \hat{f}(x)$$ Unbiased estimate : $E\hat{e}(x)^2 = \operatorname{var} \hat{e}(x) = \operatorname{var} \hat{f}(x)$ $$MISE = E \int \hat{e}(x)^2 dx$$ ### Case Study Scene - Various Views Geometry complexity: 131,700 polygons that are tessellated into 350,600 mesh elements Lighting complexity: 8 luminaires Timings measured for a R10,000 195Mhz processor ### Progressive Rendering Example #### Density estimation only ### Progressive Rendering Example density estimation + $\begin{cases} \text{determinis tic direct lighting (left)} \\ \text{ray tracin g (right)} \end{cases}$ #### **General BRDF and Caustics** ### Validation Experiment - An atrium of the University of Aizu: - LEFT: ray traced image with indirect lighting computed via photon bucketing - RIGHT: photograph #### More Advance Algorithm Example - Spectral color representation - Kernel based density estimation - Adaptive kernel support fixed kernel size h_i for each surface A_i $$h_i = \sqrt{\frac{CA_i}{n_i \mathbf{p}}}$$ Reconstruction performed at vertices of dense mesh #### Mesh decimation Perception-driven (the Weber law is used to check visibility of luminance changes across surface) #### Processing Flow - Software naturally divides into independent modules - Computation easy to perform in parallel - Communication required only at the photon sorting stage - well studied problem #### Solution Convergence From left to right: increasing number of particles and corresponding reduction of kernel bandwidth $$h_i = \sqrt{\frac{CA_i}{n_i \mathbf{p}}}$$ #### **Decimation** #### Comparison with other Rendering Techniques density estimation path tracing Radiance conservative decimation liberal decimation #### Realism #### Performance: Pentium II, 400MHz - #polygons 13,729 - Particle tracing 18.6hrs - 300,000,000 collisions - Sorting 0.7hrs - Density estimation 2,6hrs - #triangles 3,441,944 ### Acknowledgements I would like to thank Philippe Bekaert, Roland Schregle, Bruce Walter, and Karol Myszkwski for sharing with me some slides and images that I used during this lecture.