

Lesson 09 Outline

* Problem definition and motivations
*Mathematical Begrounds
* Fluid dynamics and Navier-Stokes equations
* Grid based MAC method
*Particle based SPH method
* Neighbor search for coupled particles
* Demos / tools / libs

Mathematical

Motivations

* Dynamics of incompressible fluids is governed by the following Navier-Stokes equations

$$
\begin{aligned}
& \nabla \circ \mathbf{u}=\mathbf{0} \\
& \frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+u \nabla^{2} \mathbf{u}+\mathbf{F}
\end{aligned}
$$

* Motivation: We need to understand the math behind!

Spatial Discretization

* Virtually split simulation space into finite elements
* Irregular finite elements
\rightarrow Octrees, tetrahedral meshes, ...
* Regular finite elements
\rightarrow Regular grids

Scalar and Vector Fields

* Scalar field is a function mapping a location in the simulation space to a scalar value
* Vector field is a function mapping a location in the simulation space to a vector value

Scalar and Vector Field Notation

* Scalar field
$\rightarrow f: R^{n} \rightarrow R$
$\rightarrow f(x)=0$
* 2D/3D Scalar fields
$\rightarrow f(x, y)=a$
$\rightarrow f(x, y, z)=a$
* Vector field
$\rightarrow F: R^{n} \rightarrow R^{m}$
$\rightarrow F(x)=0$
* 2D/3D Vector fields
$\rightarrow F(x, y)=(u, v)$
$\rightarrow F(x, y, z)=(u, v, w)$
$\rightarrow u(x, y, z)=a$
$\rightarrow v(x, y, z)=b$
$\rightarrow w(x, y, z)=c$

Calculus - Partial Derivative

* Partial Derivative (∂) of a function of several variables is its derivative with respect to one of those variables with the others held constant

$$
\begin{aligned}
& f_{x}(x, y, z)=\frac{\partial f(x, y, z)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x-h, y, z)}{2 h} \\
& f_{y}(x, y, z)=\frac{\partial f(x, y, z)}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h, z)-f(x, y-h, z)}{2 h} \\
& f_{z}(x, y, z)=\frac{\partial f(x, y, z)}{\partial z}=\lim _{h \rightarrow 0} \frac{f(x, y, z+h)-f(x, y, z-h)}{2 h}
\end{aligned}
$$

Calculus - Finite Differences

*Forward derivative

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

*Backward derivative

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x, y, z)-f(x-h, y, z)}{h}
$$

* Central derivative

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x-h, y, z)}{2 h}
$$

* Forward difference
$f_{x}^{+}=\frac{f(x+h, y, z)-f(x, y, z)}{h}$
* Backward difference
$f_{x}^{-}=\frac{f(x, y, z)-f(x-h, y, z)}{h}$
* Central difference

$$
f_{x}^{0}=\frac{f(x+h, y, z)-f(x-h, y, z)}{2 \mathrm{~h}}
$$

Calculus - Gradient Operator

* Gradient of a scalar field is a vector field which points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change.
* Gradient operator (∇) is a vector of partial derivatives

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad \nabla \mathbf{u}=\left(\frac{\partial \mathbf{u}}{\partial x}, \frac{\partial \mathbf{u}}{\partial y}, \frac{\partial \mathbf{u}}{\partial z}\right)
$$

Calculus - Gradient Operator

*First-order finite differences

$$
\begin{aligned}
u_{x}(x, y, z) & =\frac{u(x+h, y, z)-u(x, y, z)}{h} \\
v_{y}(x, y, z) & =\frac{v(x, y+h, z)-v(x, y, z)}{h} \\
w_{z}(x, y, z) & =\frac{w(x, y, z+h)-w(x, y, z)}{h}
\end{aligned}
$$

*Finite difference of Gradient Operator

$$
\begin{aligned}
& \mathbf{u}=(u, v, w) \quad \mathbf{u}(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z)) \\
& \nabla \mathbf{u}(x, y, z)=\left(u_{x}(x, y, z), v_{y}(x, y, z), w_{z}(x, y, z)\right)= \\
& \left(\frac{u(x+h, y, z)-u(x, y, z)}{h}, \frac{v(x, y+h, z)-v(x, y, z)}{h}, \frac{w(x, y, z+h)-w(x, y, z)}{h},\right)
\end{aligned}
$$

Calculus - Divergence of field

* Divergence $(\nabla \cdot)$ is an operator that measures the magnitude of a vector field's source or sink at a given point
* Divergence of a vector field is a (signed) scalar

$$
\begin{aligned}
& \mathbf{u}=(u, v, w) \\
& \nabla \circ \mathbf{u}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ(u, v, w) \\
&=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=u_{x}+u_{y}+u_{z}
\end{aligned}
$$

Calculus - Divergence of field

*First-order finite differences

$$
\begin{aligned}
u_{x}(x, y, z) & =\frac{u(x+h, y, z)-u(x, y, z)}{h} \\
v_{y}(x, y, z) & =\frac{v(x, y+h, z)-v(x, y, z)}{h} \\
w_{z}(x, y, z) & =\frac{w(x, y, z+h)-w(x, y, z)}{h}
\end{aligned}
$$

*Finite difference of Gradient Operator

$$
\begin{aligned}
& \mathbf{u}=(u, v, w) \quad \mathbf{u}(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z)) \\
& \nabla \circ \mathbf{u}(x, y, z)=u_{x}(x, y, z)+v_{y}(x, y, z)+w_{z}(x, y, z)= \\
& \frac{u(x+h, y, z)-u(x, y, z)+v(x, y+h, z)-v(x, y, z)+w(x, y, z+h)-w(x, y, z)}{h}
\end{aligned}
$$

Calculus - Laplacian operator

* Laplacian roughly describes how much values in the original field differ from their neighborhood average
*Laplacian operator $\left(\nabla^{2}\right)$ is defined as the divergence of a gradient

$$
\nabla^{2}=\nabla \cdot \nabla=\frac{\partial^{2}}{\partial x^{2}}, \frac{\partial^{2}}{\partial y^{2}}, \frac{\partial^{2}}{\partial z^{2}}
$$

* Laplacian of a scalar u and vector u field

$$
\begin{aligned}
& \nabla \circ \nabla u=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \\
& \nabla^{2} \mathbf{u}=\ldots=\left(\nabla^{2} u, \nabla^{2} v, \nabla^{2} w\right)
\end{aligned}
$$

Calculus - Laplacian operator

* Second-order finite differences

$$
\begin{aligned}
& u_{x x}(x, y, z)=\frac{u(x+h, y, z)+u(x-h, y, z)-2 u(x, y, z)}{h^{2}} \\
& v_{y y}(x, y, z)=\frac{u(x, y+h, z)+u(x, y-h, z)-2 u(x, y, z)}{h^{2}} \\
& w_{z z}(x, y, z)=\frac{u(x, y, z+h)+u(x, y, z-h)-2 u(x, y, z)}{h^{2}}
\end{aligned}
$$

*Finite difference of Laplacian operator

$$
\begin{aligned}
& \nabla^{2} u(x, y, z)=u_{x x}(x, y, z)+u_{y y}(x, y, z)+u_{z z}(x, y, z)= \\
& \frac{u(x+h, y, z)+u(x-h, y, z)+u(x, y+h, z)+u(x, y-h, z)+u(x, y, z+h)+u(x, y, z-h)-6 u(x, y, z)}{h^{2}}
\end{aligned}
$$

Fluid

Dynamics

Motivations

* Dynamics of incompressible fluids is governed by the following Navier-Stokes equations

$$
\begin{aligned}
& \nabla \circ \mathbf{u}=\mathbf{0} \\
& \frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+u \nabla^{2} \mathbf{u}+\mathbf{F}
\end{aligned}
$$

*Motivation: We need to understand the physics behind!

Nomenclature

* Velocity vector field (u)
* Pressure scalar field (p)
* Density of fluid (ρ)
* Viscosity of fluid (v)
*External force field (F)

$$
\begin{aligned}
& \nabla \circ \mathbf{u}=\mathbf{0} \\
& \frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+u \nabla^{2} \mathbf{u}+\mathbf{F}
\end{aligned}
$$

Navier-Stokes Equations

* Set of two Partial differential equations
* Continuity Equation - The rate at which mass enters a system is equal to the rate at which mass leaves the system.

$$
\nabla \circ \mathbf{u}=\mathbf{0}
$$

*Momentum equation - Application of Newton's second law to fluid motion

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+v \nabla^{2} \mathbf{u}+\mathbf{F}
$$

Continutity Equation

* Total mass must be always conserved.
* The rate at which mass enters a system is equal to the rate at which mass leaves the system.
*The divergence of the velocity field must always be zero

$$
\begin{aligned}
& \mathbf{u}=(u, v, w) \\
& \nabla \circ \mathbf{u}=u_{x}+u_{y}+u_{z}=\mathbf{0}
\end{aligned}
$$

Momentum Equation

* Velocity field of fluid changes over time due to:

$$
\frac{\partial \mathbf{u}}{\partial t}=
$$

Momentum Equation

* Velocity field of fluid changes over time due to:
* Self advection force

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}
$$

Momentum Equation

* Velocity field of fluid changes over time due to:
* Self advection force
*Pressure gradient force

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p
$$

Momentum Equation

* Velocity field of fluid changes over time due to:
* Self advection force
* Pressure gradient force
* Internal viscosity force

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+u \nabla^{2} \mathbf{u}
$$

Momentum Equation

* Velocity field of fluid changes over time due to:
* Self advection force
* Pressure gradient force
* Internal viscosity force
* External body forces

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+v \nabla^{2} \mathbf{u}+\mathbf{F}
$$

Time Derivative of Velocity

* At every location velocity field of fluid changes due to several internal and external forces acting on fluids body
* It's time derivative simple measures the evaluation of the velocity field in time

$$
\frac{\partial \mathbf{u}}{\partial t}=
$$

Advection Term

* Advection term represents internal rate of change of momentum due to velocity itself. To conserve momentum it must moved (self advected) through the space along with the fluid
*Mathematically advection is the scaled velocity by it's divergence

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}
$$

Pressure term

*Pressure term defines internal forces generated due to the pressure differences within the fluid
*For incompressible fluid pressure will be directly coupled with conservation of mass (continuity equation)

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p
$$

Viscosity term

* Viscosity term captures internal friction forces due to material friction.
* Viscosity forces cause the velocity of fluid to move toward the neighbor average, see the Laplacian operator

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+u \nabla^{2} \mathbf{u}
$$

External forces

* External forces usually contain gravity, wind, user drag, contact forces or any other body forces.
* Simply we can modify the velocity field by any external force while keeping natural motion of fluid

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\mathbf{u} \circ \nabla) \mathbf{u}-\frac{1}{\rho} \nabla p+v \nabla^{2} \mathbf{u}+\mathbf{F}
$$

Fluid simulation techniques

* Eulerian techniques
\rightarrow Marker and Cell (MAC)
\rightarrow Lattice Boltzmann Model (LBM)
\rightarrow Other Finite Element/Difference Methods (FEM/FDM)
* Lagrangian techniques
\rightarrow Smoothed Particle Hydrodynamics (SPH)
\rightarrow Fluid Implicit Particle (FLIP)
\rightarrow Porticle in Cell (PIC)
\rightarrow Moving Particle Semi Implicit (MPS)

Marker and Cell (MAC) Simulation

* Popular Eulerian fluid simulation technique in CG
* Originally invented by Harlow and Welch in 1965
*Key ideas
\rightarrow Discretize simulation space into cubical grid
\rightarrow Store fluid variables in a staggered fashion
\rightarrow Numerically evolve Navies Stokes eq. on grid in time
\rightarrow Advect mass-less marker particles in velocity field
\rightarrow Update type (solid, fluid, empty) of cells according to the location of marker particles

Staggered MAC grid

* Virtually decompose velocity vector field u into three respective scalar fields (u, v, w)
* Store each velocity component on face center of grid cell parallel to face normal
* In 2D - Vertical faces store horizontal component and vice versa
* Store pressure in the center of grid cell

MAC Grid: Cells

MAC Grid: u-velocity

MAC Grid: v-velocity

MAC Grid: pressure

Staggered MAC Grid

MAC Simulation

Stable MAC Algorithm

* Initialization
\rightarrow Grid initialization
\rightarrow Particle seeding
* Simulation loop
\rightarrow Time step estimation
\rightarrow Particle advection
\rightarrow Grid update
\rightarrow Boundary conditions
\rightarrow Velocity update

MAC - Initialization

* Grid Initialization
* Set all velocities to zero
* Define initial (static) environment
* Label cells as Fluid, Solid or Empty
* Particle seeding
* Randomly seed mass-less marker particles inside fluid body

MAC Initialization

MAC Simulation Loop

* Calculate (set) simulation time step Δt
* Advect marker particles along fluid velocity
* Update grid by marker particles
* Apply boundary conditions
* Advance the velocity field u

MAC - Time Step Estimation

* We need to achieve enough
* 1) Stability prevent blow up
* 2) Accuracy to simulate plausible
* Use Courant-Friedrichs-Lewy (CFL) condition
\rightarrow The CFL condition states that the time step must be small enough to make sure information does not travel across more than one cell at a time.

$$
\Delta t<\frac{\Delta x}{\max (|u|,|v|,|w|)}
$$

MAC - Porticle Advection

* Given velocity field and time step we can freely advect particles using some explicit scheme
* Standard Euler integration step

$$
x^{\text {new }}=x+\Delta \operatorname{tu}(x)
$$

*Modified Euler (midpoint method)

$$
\begin{aligned}
& x^{*}=x+\Delta \operatorname{tu}(x) \\
& x^{\text {new }}=x+0.5 \Delta t\left[u(x)+u\left(x^{*}\right)\right]
\end{aligned}
$$

MAC - Grid update

* Particles have new locations
* Cell types must be updated
*Each cell containing at least one particle is marked as fluid cell
* Solid cells are unchanged
* Other cells are marked as empty (air) cells

MAC - Boundary Conditions

* Two types of boundary condition
\rightarrow Fluid / Solid boundary conditions
\rightarrow Fluid / Air boundary conditions
* We need to satisfy them both for velocity and pressure
* Velocity boundary conditions uses slip-conditions and continuity conditions
* Pressure boundary conditions uses Dirichlet and Neumann conditions (see Pressure calculation)

MAC - Velocity boundary conditions

*Free-slip fluid/solid condition:
*Fluid is freely allowed to slip along the solid/fluid boundary face
*No-slip fluid/solid condition:
*Fluid is not allowed to slip along the solid/fluid boundary face

MAC - Velocity Field Update

* Evaluate velocity with operator splitting in four steps:
* 1) Force - Apply external forces
*2) Advect - Apply advection
*3) Diffuse - Apply viscosity
* 4) Project - Calculate and apply pressure
$u(x, t)=w_{0}^{\text {force }} \rightarrow \mathrm{w}_{1}^{\text {odvect }} \rightarrow \mathrm{w}_{1}^{\text {difficse }} \rightarrow \mathrm{w}_{1}^{\text {project }} \rightarrow \mathrm{w}_{4}=\mathrm{u}(\mathrm{x}, \mathrm{t}+\mathrm{h})$

MAC - Apply External Forces

* Use simple explicit Euler to integrate force fields
*Force field is usually gravity or wind body force

$$
w_{1}(x)=w_{0}(x)+\Delta t F(x, t)
$$

MAC - Apply Velocity Advection

* We want to know how will be the velocity advected over the time step
* Simple Euler scheme brings instability or extremely small time steps must be taken
* Method of characteristics is unconditionally stable, allows large time steps - semi Implicit advection

MAC - Semi-implicit Advection

* Suppose simple particle advection
* During time step particle will travel along the blue path in the velocity field and can carry any scalar/vector with it
* Let $\rho(x, s)$ be the location of particle at time s

MAC - Semi-implicit Advection

* Key idea - trace particle in negative velocity and find which velocity will be advected to particles location
* Use bilinear interpolation of values in green cells

$$
p(x, 0)=x
$$

MAC - Semi-implicit Advection

*Bilinear interpolation is always bounded, advection is unconditionally stable

* Particle back-tracing must be done separately for each velocity dimension (scalar field)
* If particle tracer is simple Euler with Δt time step semi-implicit advection can be written as

$$
\begin{aligned}
& \mathrm{w}_{2}(\mathrm{x})=\mathrm{w}_{1}(\rho(\mathrm{x},-\Delta \mathrm{t})) \\
& \mathrm{w}_{2}(\mathrm{x})=\mathrm{w}_{1}\left(\mathrm{x}-\Delta \mathrm{t} \mathrm{w}_{1}(\mathrm{x})\right)
\end{aligned}
$$

MAC - Applying Viscosity

* Explicit and Implicit Euler Scheme

$$
\begin{array}{ll}
x(t+\Delta t)=x(t)+\Delta t x^{\prime}(t) & \text { (Explicit Euler) } \\
x(t+\Delta t)-\Delta t x^{\prime}(t)=x(t) & \text { (Implicit Euler) }
\end{array}
$$

*Implicit viscosity application (sparse lin. eq. Solver)

$$
\begin{aligned}
& \mathrm{dw}_{2}(\mathrm{x}) / \mathrm{dt}=\nabla^{2} \mathrm{w}_{2}(\mathrm{x}) \\
& \mathrm{w}_{3}(\mathrm{x})-\Delta \mathrm{t} \nabla^{2} \mathrm{w}_{3}(\mathrm{x})=\mathrm{w}_{2}(\mathrm{x}) \\
& \left(\mathrm{I}-\Delta \mathrm{t} \nabla^{2}\right) \mathrm{w}_{3}(\mathrm{x})=\mathrm{w}_{2}(\mathrm{x}) \\
& \mathrm{Ax}=\mathrm{b} \text { where } \mathrm{A}=\left(\mathrm{I}-\Delta \mathrm{t} \nabla^{2}\right)
\end{aligned}
$$

MAC - Calculating Pressure

*For solving pressure we use implicit Euler and continuity condition
$d w_{3}(x) / d t=-\nabla \rho(x)$
$\mathrm{u}(\mathrm{x})=\mathrm{w}_{4}(\mathrm{x})=\mathrm{w}_{3}(\mathrm{x})-\Delta t \nabla \rho(\mathrm{x})$
$0=\nabla \bullet u=\nabla \bullet w_{4}(x)=\nabla \bullet w_{3}(x)-\Delta t \nabla^{2} \rho(x)$
$\nabla^{2} \rho(x)=\nabla \bullet w_{3}(x) / \Delta t$
(Poisson Equation)
$A x=b$ where $A=\nabla^{2}$
(Sparse system)

MAC - Pressure Boundary Conditions

* Neumann boundary condition
\rightarrow Set pressure in solid cells equal to fluid pressure in neighbor fluid cell
\rightarrow Pressure gradient along boundary face will be zero = Neumann boundary condition
* Dirichlet boundary condition
\rightarrow Set pressure in empty (air) cells to zero = Dirichlet boundary condition
* Next slides demonstrate Poisson equation evaluation satisfying Neumann and Dirichlet boundary conditions

MAC - Poisson equation

MAC - Applying Pressure

* Once the pressure is known we use explicit Euler to find new velocity
$d w_{3}(x) / d t=-\nabla \rho(x)$
$u(x)=w_{4}(x)=w_{3}(x)-\Delta t \nabla \rho(x)$

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics

* Historical origin
\rightarrow Invented by Monaghan and Lucy in astrophysics for Simulating flow of interstellar gas
* Classification
\rightarrow Lagrangian mesh-less particle-based
\rightarrow Based on local integral function representation (convolution)
* Principles
\rightarrow Represent fluid with finite number of particles
\rightarrow Store all quantities only on particle positions only
\rightarrow Approximate field quantities by kernel convolution
\rightarrow Use Lagrangian formulation of Navies-Stokes equations for particle dynamics

SPH - Method Overview

*Benefits
\rightarrow Mesh-less (grid-less) particle-based
\rightarrow No advection term in Navier Stokes equations
\rightarrow Inherently mass conserving (finite number of particles)
\rightarrow Straightforward multiphase extension
\rightarrow Spatially unlimited simulation domain
\rightarrow Suitable for interactive applications

* Drawbacks
\rightarrow Difficult to achieve incompressible fluid
\rightarrow Time consuming Neighbor search algorithm
\rightarrow Boundary deficiency (e.g. in density estimation)

SPH - Approximation Principle

* Assume the following notation:
* $A(r)$ - Scalar (or vector) field, $A_{i}=A\left(r_{i}\right)$
* $\delta(r)$ - Dirac delta function
* $W_{h}(r)$ - Radial symmetric smoothing kernel
* r_{i} - Position of i-th particle
* V_{i} - Volume of i-th particle

SPH - Approximation Principle

* Integral representation of function

$$
A(r)=\int_{r} A\left(r^{\prime}\right) \delta\left(r-r^{\prime}\right) d r^{\prime}=A^{*} \delta
$$

* Approximation of function by convolution

$$
A(r) \approx A^{*} W_{n}=\int_{r} A\left(r^{\prime}\right) W_{n}\left(r-r^{\prime}\right) d r^{\prime}
$$

* Particle-base approximation of function

$$
\langle A(r)\rangle=\sum_{j} V_{j} A_{j} W_{h}\left(r-r_{j}\right) \approx A^{*} W_{h} \approx A(r)
$$

SPH - Gradient and Laplacian

* Basic Gradient Approximation Formula (BGAF)

$$
\nabla_{b}(A)=\langle\nabla A(r)\rangle=\sum_{j} \vee V_{j} \nabla W_{n}\left(r-r_{j}\right)
$$

* Basic Laplacian Approximation Formula (BLAF)

$$
\nabla_{b}^{2}(A)=\left\langle\nabla^{2} A(r)\right\rangle=\sum_{j} V_{j} A_{j} \nabla^{2} W_{h}\left(r-r_{j}\right)
$$

SPH - Gradient and Laplacian

* Difference Gradient Approximation Formula (DGAF)

$$
\nabla_{b}(A)=(1 / \rho) \sum_{j} V_{j} \rho_{j}(A-A) \nabla W_{h}\left(r-r_{j}\right)
$$

* Symmetric Gradient Approximation Formula (SGAF)

$$
\nabla_{s}(A)=\rho \sum_{j} V_{j} \rho_{j}\left(A / \rho_{j}+A / \rho\right) \nabla W_{h}\left(r-r_{j}\right)
$$

* Zero Laplacian Approximation Formula (ZLAF)

$$
\nabla_{z}^{2}(A)=\sum_{j} V_{j}(A-A) \nabla^{2} W_{n}\left(r-r_{j}\right)
$$

SPH - Kernel functions: $\mathrm{W}_{\mathrm{h}}(\mathrm{r})$

* Basic kernel function properties
\rightarrow Compact support
\rightarrow Portition of unity
- Symmetry
\rightarrow Limit to delta function
* $|r| \geq h \rightarrow W_{h}(r)=0$
$* \int_{r} W_{h}(r) d r=1$
* $\int_{r} r W_{h}(r) d r=0$
$* \operatorname{Lim}_{h \rightarrow 0} W_{h}(r)=\delta(r)$
(Compact Support)
(Partition of unity)
(Symmetry)
(Limit to delta function)

SPH - Kernel functions

- Kernel function

- Kernel function derivative
--- Kernel function second derivative

SPH - Navier Stokes Equations

*Eulerian formulation

$$
\begin{aligned}
& \partial \rho / \partial t+v \cdot \nabla \rho=-\rho \nabla \cdot v=0 \\
& \rho(\partial v / \partial t+v \cdot \nabla v)=-\nabla P+\mu \nabla^{2} v+\rho f
\end{aligned}
$$

* Lagrangian formulation

$$
\begin{aligned}
d \rho / d t & =\partial \rho / \partial t+v \cdot \nabla \rho=-\rho \nabla \cdot v=0 \\
d v / d t & =\partial v / \partial t+v \cdot \nabla v=-\nabla P / \rho+\mu \nabla^{2} v / \rho+a= \\
& =a^{\text {press }}+a^{v i s c o}+a^{\text {ext }}
\end{aligned}
$$

SPH - Evaluating Fluid Properties

* Density and pressure estimations

$$
\begin{array}{ll}
\rho\left(r_{1}\right)=\left\langle\rho\left(r_{i}\right)\right\rangle=\sum_{j} V_{j} \rho_{j} W_{h}\left(r-r_{j}\right)= & \sum_{j} m_{j} \rho_{j} W_{h}\left(r-r_{j}\right) \\
P\left(r_{i}\right)=k^{00 s}\left(\left(\rho_{1} / \rho_{0}\right)^{y}-1\right) & \text { (State equation) }
\end{array}
$$

* Pressure, viscosity and external forces

$$
\begin{aligned}
& f^{\text {press }}\left(r_{i}\right)=-\left(m_{i} / \rho_{i}\right) \nabla_{s}(\rho)=\sum_{j} m_{1} m_{j}\left(P_{j} / \rho_{j}+P_{i} / \rho_{i}\right) \nabla W_{h}^{\text {aress }}\left(r_{i}-r_{j}\right) \\
& f^{\text {visco }}\left(r_{i}\right)=-\left(m_{i} / \rho_{i}\right) \nabla_{z}^{2}(\mu v)=\sum_{j} V_{i} V_{j}\left(v_{j}-v_{i}\right) \nabla^{2} W_{h}^{\text {visco }}\left(r_{i}-r_{j}\right) \\
& f^{\text {ext }}\left(r_{i}\right)=m_{i} a_{i}=f^{\text {int }}+f^{\text {grov }}+\ldots
\end{aligned}
$$

SPH - Fluid Simulation Algorithm

* Collision Detection
\rightarrow Find approximate and precise neighbor particle pairs
\rightarrow Find closest points on boundaries
* SPH Dynamics
\rightarrow Accumulate densities
\rightarrow Calculate pressure
\rightarrow Accumulate pressure, viscosity forces and color field
\rightarrow Apply surface tension force
\rightarrow Apply boundary collision forces
* Time integration (ODE)
\rightarrow Use leap-frog to integrate positions and velocities

In: support length h, subdivision factor H and delta time Δt
function $\operatorname{SPH}(h, \Delta t)$
1: Neighbours \leftarrow ReportAllNeighbors (h)
2: foreach \mathcal{P}_{i} in Particles do
3: $\quad \rho_{i} \leftarrow 0 ; \quad \nabla C_{i} \leftarrow 0 ; \quad \nabla^{2} C_{i} \leftarrow 0 ; \quad \mathbf{f}_{i} \leftarrow \mathrm{f}_{i}^{\text {grav }} \quad / *$ initialize */

4: foreach \mathcal{P}_{j} in $\operatorname{Neighbours}\left(\mathcal{P}_{i}\right)$ do /* accumulate density */
5: $\quad \rho_{i} \leftarrow \rho_{i}+m_{j} W_{h}^{\text {poly }}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)$
6: end
7: $\quad p_{i} \leftarrow k^{\text {gas }}\left(\left(\frac{\rho_{i}}{\rho_{0}}\right)^{\gamma}-1\right)$
8: \quad foreach \mathcal{P}_{j} in $\operatorname{Neighbours}\left(\mathcal{P}_{i}\right)$ do

9:
10:
11: $\quad \nabla C_{i} \leftarrow \nabla C_{i}+V_{j} c_{j}^{\text {int }} \nabla W_{h}^{\text {poly }}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)$
12: $\quad \nabla^{2} C_{i} \leftarrow \nabla^{2} C_{i}+V_{j} c_{j}^{\text {int }} \nabla^{2} W_{h}^{\text {poly }}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)$
13: end
14: $\quad \mathbf{f}_{i} \leftarrow \mathbf{f}_{i}-\sigma^{\text {int }} \nabla^{2} C_{i}^{\text {int }} \frac{\nabla C_{i}^{\text {int }}}{\left|\nabla C_{i}^{\text {int }}\right|}$
/* calculate pressure */
/* accumulate forces */

$$
\begin{aligned}
& / *\left(=\mathrm{f}_{i}^{\text {press }}\right) * / \\
& / *\left(=\mathrm{f}_{i}^{\text {visco }}\right) * / \\
& / *\left(=\nabla C_{i}^{\text {int }}\right) * / \\
& / *\left(=\nabla^{2} C_{i}^{\text {int }}\right) * / \\
& / *\left(=\mathbf{f}_{i}^{\text {int }}\right) * /
\end{aligned}
$$

/* Leap-Frog */

16: foreach \mathcal{P}_{i} in Particles do
17: $\quad \mathbf{v}_{i} \leftarrow \mathrm{v}_{i}+\Delta t \frac{\mathrm{f}_{i}}{m_{i}}$
18: $\quad \mathbf{r}_{i} \leftarrow \mathbf{r}_{i}+\Delta t \mathbf{v}_{i}$
19: end
end

Neighbor search with Z-indexing

* Neighbor search: Given a particle find all particles whose distance to this particle is less than some threshold (support radius in SPH)
\rightarrow This can be $O\left(n^{2}\right)$ problem \rightarrow very expensive for large number of particles
\rightarrow In SPH simulations it is in average case on $O(n)$ problem
*Proposed solution: Z-indexing and radix sort
* Z-indexing: A strategy create a linear index of particles in a 3D grid while maintaining good spatial locality of particles enumerated in index order.
*Radix-sort: O (n) sort for bounded values

Z-indexing : Index order

Z-Indexing: Index Structure

* Given (8-bit) coordinates (i,j,k) of some cell
$\rightarrow i=i_{7} i_{6} i_{5} i_{4} i_{3} i_{2} i_{1} i_{0}(e g \quad 45=00101101)$
$\rightarrow j=j_{7} j_{6} j_{5} j_{4} j_{3} j_{2} j_{1} j_{6}($ eg $135=10000111)$
$\rightarrow \mathrm{k}=\mathrm{k}_{7} \mathrm{k}_{6} \mathrm{k}_{5} \mathrm{k}_{4} \mathrm{k}_{3} \mathrm{k}_{2} \mathrm{k}_{1} \mathrm{k}_{0}$ (eg $209=11010001$)
* The interleaved (24-bit) Z-index of cell (i, j, k) is:
\Rightarrow Index $=k_{7} j_{7} i_{7} k_{6} j_{6} i_{6} k_{5} j_{5} i_{5} k_{4} j_{4} i_{4} k_{3} j_{3} i_{3} k_{2} j_{2} i_{2} k_{1} j_{1} i_{1} k_{9} j_{9} i_{e}$
\rightarrow Index = 110100001100001011010111
* We precompute tables $\mathrm{i}_{24}, \mathrm{j}_{24}$ and K_{24} and get index
* Index $=\mathrm{i}_{24}$ or j_{24} or k_{24} (or is bit-wise or operation)
* Tables $\mathrm{i}_{24}, \mathrm{j}_{24}$ and K_{24} are stored as CUDA textures

Z-Indexing: Index Structure

*For each i (0..2n) precompute i_{24} as
$\rightarrow i_{24}=00 i_{7} 00 i_{6} 00 i_{5} 00 i_{4} 00 i_{3} 00 i_{2} 00 i_{1} 00 i_{0}$
$\rightarrow i_{24}=000000001000001001000001$

* For each $j\left(0 . .2^{n}\right)$ precompute j_{24} as
$\rightarrow j_{24}=0 j_{7} 00 j_{6} 00 j_{5} 00 j_{4} 00 j_{3} 00 j_{2} 00 j_{1} 00 j_{0} 0$
$\rightarrow j_{24}=010000000000000010010010$
*For each $k\left(0.2^{n}\right)$ precompute k_{24} as
$\rightarrow \mathrm{K}_{24}=\mathrm{k}_{7} 00 \mathrm{k}_{6} 00 \mathrm{k}_{5} 00 \mathrm{k}_{4} 00 \mathrm{k}_{3} 00 \mathrm{k}_{2} 00 \mathrm{k}_{1} 00 \mathrm{k}_{0} 00$
$\rightarrow \mathrm{k}_{24}=100100000100000000000100$

Z-Indexing: Summary

* The simulation domain is divided into a virtual indexing grid
* Grid location of a particle is used to determine its bit-interleaved Z-index
* The Z-indices are computed very efficiently in parallel using a table look-up approach and binary "or"
* Z-indices of particles being within some $2^{\text {n }}$ spatial block are contiguous
* Before NB particles are sorted based on Z-indices using parallel CUDA radix-sort

Demos / Tools / Libs

* SPH water demo

*MAC fire/smoke demo

... fire and smoke next time :) ...

