

Lesson 09 Outline

- * Problem definition and motivations
- Mathematical Begrounds
- * Fluid dynamics and Navier-Stokes equations
- Grid based MAC method
- * Particle based SPH method
- * Neighbor search for coupled particles
- * Demos / tools / libs

Motivations

 Dynamics of incompressible fluids is governed by the following Navier-Stokes equations

$$\nabla \circ \mathbf{u} = \mathbf{0}$$

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

* Motivation: We need to understand the **math** behind!

Spatial Discretization

- * Virtually split simulation space into finite elements
- * Irregular finite elements
 - Octrees, tetrahedral meshes, ...
- * Regular finite elements
 - Regular grids

Scalar and Vector Fields

* Scalar field is a function mapping a location in the simulation space to a scalar value

Scalar and Vector Field Notation

* Scalar field

$$\rightarrow$$
 f: $\mathbb{R}^n \rightarrow \mathbb{R}$

$$\rightarrow$$
 f(x) = a

* 2D/3D Scalar fields

$$\rightarrow$$
 f(x, y) = α

$$\rightarrow$$
 f(x, y, z) = α

* Vector field

$$\rightarrow$$
 F: $\mathbb{R}^n \rightarrow \mathbb{R}^m$

$$\rightarrow$$
 F(x) = α

*2D/3D Vector fields

$$\rightarrow$$
 F(x, y) = (u, v)

$$\rightarrow$$
 F(x, y, z) = (u, v, w)

$$\rightarrow$$
 $u(x, y, z) = a$

$$\rightarrow V(x, y, z) = b$$

$$\rightarrow$$
 w(x, y, z) = c

Calculus - Partial Derivative

*Partial Derivative (a) of a function of several variables is its derivative with respect to one of those variables with the others held constant

$$f_x(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y, z) - f(x-h, y, z)}{2h}$$

$$f_{y}(x,y,z) = \frac{\partial f(x,y,z)}{\partial y} = \lim_{h\to 0} \frac{f(x,y+h,z)-f(x,y-h,z)}{2h}$$

$$f_z(x, y, z) = \frac{\partial f(x, y, z)}{\partial z} = \lim_{h \to 0} \frac{f(x, y, z+h) - f(x, y, z-h)}{2h}$$

Calculus - Finite Differences

* Forward derivative

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y, z) - f(x, y, z)}{h}$$

$C(\cdot, 1)$

$$f_{x}^{+} = \frac{f(x+h, y, z) - f(x, y, z)}{h}$$

Forward difference

* Backward derivative

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x, y, z) - f(x - h, y, z)}{h}$$

* Backward difference

$$f_{x}^{-} = \frac{f(x, y, z) - f(x-h, y, z)}{h}$$

* Central derivative

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y, z) - f(x-h, y, z)}{2h}$$

* Central difference

$$f_x^0 = \frac{f(x+h, y, z) - f(x-h, y, z)}{2h}$$

Calculus – Gradient Operator

- * Gradient of a scalar field is a vector field which points in the direction of the greatest rate of increase of the scalar field, and whose magnitude is the greatest rate of change.
- * Gradient operator (∇) is a vector of partial derivatives

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \qquad \nabla \mathbf{u} = \left(\frac{\partial \mathbf{u}}{\partial x}, \frac{\partial \mathbf{u}}{\partial y}, \frac{\partial \mathbf{u}}{\partial z}\right)$$

Calculus – Gradient Operator

* First-order finite differences

$$u_{x}(x, y, z) = \frac{u(x+h, y, z) - u(x, y, z)}{h}$$

$$v_{y}(x, y, z) = \frac{v(x, y+h, z) - v(x, y, z)}{h}$$

$$w_{z}(x, y, z) = \frac{w(x, y, z+h) - w(x, y, z)}{h}$$

*Finite difference of Gradient Operator

$$\mathbf{u} = (u, v, w) \qquad \mathbf{u}(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z))$$

$$\nabla \mathbf{u}(x, y, z) = (u_x(x, y, z), v_y(x, y, z), w_z(x, y, z)) = \left(\frac{u(x+h, y, z) - u(x, y, z)}{h}, \frac{v(x, y+h, z) - v(x, y, z)}{h}, \frac{w(x, y, z+h) - w(x, y, z)}{h}, \frac{v(x, y+h, z) - v(x, y, z)}{h}, \frac{v(x, y, z+h) - w(x, y, z)}{h}, \frac{v(x, y, z) - v(x, y, z)}{h}$$

Calculus - Divergence of field

- * Divergence $(\nabla \cdot)$ is an operator that measures the magnitude of a vector field's source or sink at a given point
- * Divergence of a vector field is a (signed) scalar

$$\mathbf{u} = (u, v, w)$$

$$\nabla \cdot \mathbf{u} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (u, v, w)$$

$$= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = u_x + u_y + u_z$$

Calculus - Divergence of field

* First-order finite differences

$$u_{x}(x, y, z) = \frac{u(x+h, y, z) - u(x, y, z)}{h}$$

$$v_{y}(x, y, z) = \frac{v(x, y+h, z) - v(x, y, z)}{h}$$

$$w_{z}(x, y, z) = \frac{w(x, y, z+h) - w(x, y, z)}{h}$$

* Finite difference of Gradient Operator

$$\mathbf{u} = (u, v, w) \qquad \mathbf{u}(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z))$$

$$\nabla \cdot \mathbf{u}(x, y, z) = u_x(x, y, z) + v_y(x, y, z) + w_z(x, y, z) = u_x(x + h, y, z) - u(x, y, z) + v(x, y + h, z) - v(x, y, z) + w(x, y, z + h) - w(x, y, z)$$

Calculus – Laplacian operator

- Laplacian roughly describes how much values in the original field differ from their neighborhood average
- *Laplacian operator (∇^2) is defined as the divergence of a gradient

$$\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2}, \frac{\partial^2}{\partial y^2}, \frac{\partial^2}{\partial z^2}$$

*Laplacian of a scalar u and vector u field

$$\nabla \circ \nabla u = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

$$\nabla^2 \mathbf{u} = \dots = \left(\nabla^2 u, \nabla^2 v, \nabla^2 w\right)$$

Calculus – Laplacian operator

* Second-order finite differences

$$u_{xx}(x,y,z) = \frac{u(x+h,y,z)+u(x-h,y,z)-2u(x,y,z)}{h^{2}}$$

$$v_{yy}(x,y,z) = \frac{u(x,y+h,z)+u(x,y-h,z)-2u(x,y,z)}{h^{2}}$$

$$w_{zz}(x,y,z) = \frac{u(x,y,z+h)+u(x,y,z-h)-2u(x,y,z)}{h^{2}}$$

* Finite difference of Laplacian operator

$$\nabla^{2} u(x, y, z) = u_{xx}(x, y, z) + u_{yy}(x, y, z) + u_{zz}(x, y, z) = u(x+h, y, z) + u(x-h, y, z) + u(x, y+h, z) + u(x, y-h, z) + u(x, y, z+h) + u(x, y, z-h) - 6u(x, y, z) + u(x, y,$$

Motivations

 Dynamics of incompressible fluids is governed by the following Navier-Stokes equations

$$\nabla \circ \mathbf{u} = \mathbf{0}$$

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

* Motivation: We need to understand the **physics** behind!

Nomenclature

- Velocity vector field (u)
- Pressure scalar field (p)
- * Density of fluid (ρ)
- * Viscosity of fluid (v)
- External force field (F)

$$\nabla \circ \mathbf{u} = \mathbf{0}$$

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

Navier-Stokes Equations

- * Set of two Partial differential equations
- * Continuity Equation The rate at which mass enters a system is equal to the rate at which mass leaves the system.

$$\nabla \circ \mathbf{u} = \mathbf{0}$$

* Momentum equation – Application of Newton's second law to fluid motion

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

Continutity Equation

- * Total mass must be always conserved.
- * The rate at which mass enters a system is equal to the rate at which mass leaves the system.
- The divergence of the velocity field must always be zero

$$\mathbf{u} = (u, v, w)$$

$$\nabla \circ \mathbf{u} = u_x + u_y + u_z = \mathbf{0}$$

$$\frac{\partial \mathbf{u}}{\partial t} =$$

* Velocity field of fluid changes over time due to:

* Self advection force

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u}$$

- * Self advection force
- * Pressure gradient force

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p$$

- * Self advection force
- * Pressure gradient force
- Internal viscosity force

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u}$$

- * Self advection force
- * Pressure gradient force
- Internal viscosity force
- External body forces

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

Time Derivative of Velocity

- At every location velocity field of fluid changes due to several internal and external forces acting on fluids body
- * It's time derivative simple measures the evaluation of the velocity field in time

$$\frac{\partial \mathbf{u}}{\partial t} =$$

Advection Term

- * Advection term represents internal rate of change of momentum due to velocity itself. To conserve momentum it must moved (self advected) through the space along with the fluid
- Mathematically advection is the scaled velocity by it's divergence

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u}$$

Pressure term

- * Pressure term defines internal forces generated due to the pressure differences within the fluid
- * For incompressible fluid pressure will be directly coupled with conservation of mass (continuity equation)

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p$$

Viscosity term

- * Viscosity term captures internal friction forces due to material friction.
- * Viscosity forces cause the velocity of fluid to move toward the neighbor average, see the Laplacian operator

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u}$$

External forces

- * External forces usually contain gravity, wind, user drag, contact forces or any other body forces.
- * Simply we can modify the velocity field by any external force while keeping natural motion of fluid

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \circ \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u} + \mathbf{F}$$

Fluid simulation techniques

- * Eulerian techniques
 - Marker and Cell (MAC)
 - Lattice Boltzmann Model (LBM)
 - Other Finite Element/Difference Methods (FEM/FDM)
- *Lagrangian techniques
 - Smoothed Particle Hydrodynamics (SPH)
 - Fluid Implicit Particle (FLIP)
 - Particle in Cell (PIC)
 - Moving Particle Semi Implicit (MPS)

Marker and Cell (MAC) Simulation

- * Popular Eulerian fluid simulation technique in CG
- * Originally invented by Harlow and Welch in 1965

* Key ideas

- Discretize simulation space into cubical grid
- Store fluid variables in a staggered fashion
- Numerically evolve Navies Stokes eq. on grid in time
- Advect mass-less marker particles in velocity field
- Update type (solid, fluid, empty) of cells according to the location of marker particles

Staggered MAC grid

- * Virtually decompose velocity vector field **u** into three respective scalar fields (u,v,w)
- * Store each velocity component on face center of grid cell parallel to face normal

* In 2D - Vertical faces store horizontal component

and vice versa

* Store pressure in the center of grid cell

MAC Grid: Cells

MAC Grid: u-velocity

MAC Grid: v-velocity

MAC Grid: pressure

Staggered MAC Grid

MAC Simulation

Stable MAC Algorithm

- * Initialization
 - Grid initialization
 - Particle seeding
- Simulation loop
 - Time step estimation
 - Particle advection
 - Grid update
 - Boundary conditions
 - Velocity update

MAC - Initialization

- * Grid Initialization
- * Set all velocities to zero
- * Define initial (static) environment
- * Label cells as Fluid, Solid or Empty
- * Particle seeding
- * Randomly seed mass-less marker particles inside fluid body

MAC Initialization

MAC Simulation Loop

- * Calculate (set) simulation time step Δt
- * Advect marker particles along fluid velocity
- * Update grid by marker particles
- * Apply boundary conditions
- * Advance the velocity field **u**

MAC - Time Step Estimation

- * We need to achieve enough
- * 1) Stability prevent blow up
- * 2) Accuracy to simulate plausible
- * Use Courant-Friedrichs-Lewy (CFL) condition
 - → The CFL condition states that the time step must be small enough to make sure information does not travel across more than one cell at a time.

$$\Delta t < \frac{\Delta x}{\max(|u|,|v|,|w|)}$$

MAC - Particle Advection

- Given velocity field and time step we can freely advect particles using some explicit scheme
- * Standard Euler integration step

$$x^{new} = x + \Delta tu(x)$$

Modified Euler (midpoint method)

$$x^* = x + \Delta tu(x)$$

$$x^{\text{new}} = x + 0.5\Delta t[u(x) + u(x^*)]$$

MAC - Grid update

- * Particles have new locations
- * Cell types must be updated
- * Each cell containing at least one particle is marked as fluid cell
- * Solid cells are unchanged
- * Other cells are marked as empty (air) cells

MAC - Boundary Conditions

- * Two types of boundary condition
 - Fluid / Solid boundary conditions
 - Fluid / Air boundary conditions
- We need to satisfy them both for velocity and pressure
- Velocity boundary conditions uses slip-conditions and continuity conditions
- * Pressure boundary conditions uses Dirichlet and Neumann conditions (see Pressure calculation)

MAC - Velocity boundary conditions

- * Free-slip fluid/solid condition:
- *Fluid is freely allowed to slip along the solid/fluid boundary face

- * No-slip fluid/solid condition:
- * Fluid is not allowed to slip along the solid/fluid boundary face

MAC – Velocity Field Update

* Evaluate velocity with operator splitting in four steps:

- * 1) Force Apply external forces
- *2) Advect Apply advection
- * 3) Diffuse Apply viscosity
- * 4) Project Calculate and apply pressure

$$u(x, t) = w_0^{\text{force}} \rightarrow w_1^{\text{advect}} \rightarrow w_1^{\text{diffuse}} \rightarrow w_1^{\text{project}} \rightarrow w_4 = u(x, t+h)$$

MAC - Apply External Forces

- * Use simple explicit Euler to integrate force fields
- * Force field is usually gravity or wind body force

$$W_1(x) = W_0(x) + \Delta tF(x,t)$$

MAC - Apply Velocity Advection

- We want to know how will be the velocity advected over the time step
- * Simple Euler scheme brings instability or extremely small time steps must be taken
- * Method of characteristics is unconditionally stable, allows large time steps semi Implicit advection

MAC – Semi-implicit Advection

- * Suppose simple particle advection
- * During time step particle will travel along the blue path in the velocity field and can carry any scalar/vector with it
- *Let p(x,s) be the location of particle at time s

MAC – Semi-implicit Advection

- Key idea trace particle in negative velocity and find which velocity will be advected to particles location
- * Use bilinear interpolation of values in green cells

p(x,0)=x

MAC - Semi-implicit Advection

- * Bilinear interpolation is always bounded, advection is unconditionally stable
- * Particle back-tracing must be done separately for each velocity dimension (scalar field)
- * If particle tracer is simple Euler with Δt time step semi-implicit advection can be written as

$$w_{2}(x) = w_{1}(\rho(x, -\Delta t))$$

 $w_{2}(x) = w_{1}(x - \Delta t w_{1}(x))$

MAC - Applying Viscosity

* Explicit and Implicit Euler Scheme

$$x(t + \Delta t) = x(t) + \Delta t x'(t)$$
 (Explicit Euler)
 $x(t + \Delta t) - \Delta t x'(t) = x(t)$ (Implicit Euler)

* Implicit viscosity application (sparse lin. eq. Solver)

$$dw_{2}(x)/dt = \nabla^{2}w_{2}(x)$$

$$w_{3}(x) - \Delta t \nabla^{2}w_{3}(x) = w_{2}(x)$$

$$(I - \Delta t \nabla^{2})w_{3}(x) = w_{2}(x)$$

$$Ax = b \text{ where } A = (I - \Delta t \nabla^{2})$$
(Sparse system)

MAC - Calculating Pressure

* For solving pressure we use implicit Euler and continuity condition

$$dw_{3}(x)/dt = -\nabla\rho(x)$$

$$u(x) = w_{4}(x) = w_{3}(x) - \Delta t \nabla\rho(x)$$

$$0 = \nabla \cdot u = \nabla \cdot w_{4}(x) = \nabla \cdot w_{3}(x) - \Delta t \nabla^{2}\rho(x)$$

$$\nabla^{2}\rho(x) = \nabla \cdot w_{3}(x)/\Delta t \qquad \text{(Poisson Equation)}$$

$$Ax=b \quad \text{where} \quad A=\nabla^{2} \qquad \text{(Sparse system)}$$

MAC - Pressure Boundary Conditions

- * Neumann boundary condition
 - Set pressure in solid cells equal to fluid pressure in neighbor fluid cell
 - Pressure gradient along boundary face will be zero = Neumann boundary condition
- Dirichlet boundary condition
 - Set pressure in empty (air) cells to zero = Dirichlet boundary condition
- * Next slides demonstrate Poisson equation evaluation satisfying Neumann and Dirichlet boundary conditions

MAC - Applying Pressure

 Once the pressure is known we use explicit Euler to find new velocity

$$dw_3(x)/dt = -\nabla \rho(x)$$

$$u(x) = w_4(x) = w_3(x) - \Delta t \nabla \rho(x)$$

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics

* Historical origin

Invented by Monaghan and Lucy in astrophysics for Simulating flow of interstellar gas

* Classification

- Lagrangian mesh-less particle-based
- Based on local integral function representation (convolution)

* Principles

- Represent fluid with finite number of particles
- Store all quantities only on particle positions only
- Approximate field quantities by kernel convolution
- Use Lagrangian formulation of Navies-Stokes equations for particle dynamics

SPH - Method Overview

* Benefits

- Mesh-less (grid-less) particle-based
- No advection term in Navier Stokes equations
- Inherently mass conserving (finite number of particles)
- Straightforward multiphase extension
- Spatially unlimited simulation domain
- Suitable for interactive applications

* Drawbacks

- Difficult to achieve incompressible fluid
- Time consuming Neighbor search algorithm
- Boundary deficiency (e.g. in density estimation)

SPH - Approximation Principle

- * Assume the following notation:
- * A(r) Scalar (or vector) field, $A_i = A(r_i)$
- * $\delta(r)$ Dirac delta function
- * $W_h(r)$ Radial symmetric smoothing kernel
- * r_i Position of i-th particle
- * V_i Volume of i-th particle

SPH - Approximation Principle

* Integral representation of function

$$A(r) = \int_{r} A(r') \delta(r - r') dr' = A^* \delta$$

* Approximation of function by convolution $A(r) \approx A^*W_h = \int_r A(r')W_h(r - r')dr'$

* Particle-base approximation of function

$$\langle A(r) \rangle = \sum_{j} V_{j} A_{j} W_{h}(r - r_{j}) \approx A^{*} W_{h} \approx A(r)$$

SPH - Gradient and Laplacian

* Basic Gradient Approximation Formula (BGAF)

$$\nabla_b(A) = \langle \nabla A(r) \rangle = \sum_j V_j A_j \nabla W_h(r - r_j)$$

* Basic Laplacian Approximation Formula (BLAF)

$$\nabla^{2}_{b}(A) = \langle \nabla^{2}A(r) \rangle = \sum_{j} V_{j}A_{j} \nabla^{2}W_{h}(r - r_{j})$$

SPH – Gradient and Laplacian

* Difference Gradient Approximation Formula (DGAF) $\nabla_b(A) = (1/\rho) \sum_j V_j \rho_j(A_j - A) \nabla W_h(r - r_j)$

* Symmetric Gradient Approximation Formula (SGAF) $\nabla_s(A) = \rho \sum_j V_j \rho_j (A_j/\rho_j + A/\rho) \nabla W_h (r - r_j)$

* Zero Laplacian Approximation Formula (ZLAF) $\nabla^{2}_{z}(A) = \sum_{j} V_{j}(A_{j} - A) \nabla^{2}W_{h}(r - r_{j})$

SPH - Kernel functions: W_h(r)

- *Basic kernel function properties
 - Compact support
 - Partition of unity
 - Symmetry
 - Limit to delta function

$$* |r| \ge h \rightarrow W_h(r) = 0$$

* $\int_{r} W_{h}(r) dr = 1$

* $\int_{r} rW_{h}(r) dr = 0$

*Lim_{h $\rightarrow 0$} $W_h(r) = \delta(r)$

(Compact Support)

(Partition of unity)

(Symmetry)

(Limit to delta function)

SPH - Kernel functions

- Kernel function
- Kernel function derivative
- --- Kernel function second derivative

SPH - Navier Stokes Equations

* Eulerian formulation

$$\partial \rho / \partial t + v \cdot \nabla \rho = -\rho \nabla \cdot v = 0$$

 $\rho (\partial v / \partial t + v \cdot \nabla v) = -\nabla P + \mu \nabla^2 v + \rho f$

*Lagrangian formulation

$$d\rho/dt = \partial\rho/\partial t + v \cdot \nabla \rho = -\rho \nabla \cdot v = 0$$

$$dv/dt = \partial v/\partial t + v \cdot \nabla v = -\nabla P/\rho + \mu \nabla^2 v/\rho + \alpha = 0$$

$$= \alpha^{press} + \alpha^{visco} + \alpha^{ext}$$

SPH – Evaluating Fluid Properties

* Density and pressure estimations

$$\rho(r_i) = \langle \rho(r_i) \rangle = \sum_j V_j \rho_j W_h(r - r_j) = \sum_j m_j \rho_j W_h(r - r_j)$$

$$P(r_i) = k^{gas} ((\rho_i/\rho_0)^{\gamma} - 1) \qquad (State equation)$$

* Pressure, viscosity and external forces

$$\begin{split} f^{\text{press}}(r_{i}) = -(m_{i}/\rho_{i}) \nabla_{s}(\rho) &= \sum_{j} m_{i} m_{j} (P_{j}/\rho_{j} + P_{i}/\rho_{i}) \nabla W_{h}^{\text{press}}(r_{i} - r_{j}) \\ f^{\text{visco}}(r_{i}) &= -(m_{i}/\rho_{i}) \nabla^{2}_{z} (\mu v) = \sum_{j} V_{i} V_{j} (v_{j} - v_{i}) \nabla^{2} W_{h}^{\text{visco}}(r_{i} - r_{j}) \\ f^{\text{ext}}(r_{i}) &= m_{i} \alpha_{i} = f^{\text{int}} + f^{\text{grav}} + \dots \end{split}$$

SPH - Fluid Simulation Algorithm

* Collision Detection

- Find approximate and precise neighbor particle pairs
- Find closest points on boundaries

SPH Dynamics

- Accumulate densities
- Calculate pressure
- Accumulate pressure, viscosity forces and color field
- Apply surface tension force
- Apply boundary collision forces

* Time integration (ODE)

Use leap-frog to integrate positions and velocities

In: support length h, subdivision factor H and delta time Δt function $SPH(h, \Delta t)$

end

19:

end

```
Neighbours \leftarrow ReportAllNeighbors(h)
           for each \mathcal{P}_i in Particles do
  2:
                  \rho_i \leftarrow 0; \quad \nabla C_i \leftarrow \mathbf{0}; \quad \nabla^2 C_i \leftarrow 0; \quad \mathbf{f}_i \leftarrow \mathbf{f}_i^{\text{grav}}
                                                                                                                                                 /* initialize */
  3:
                  for each \mathcal{P}_j in Neighbours (\mathcal{P}_i) do
                                                                                                                            /* accumulate density */
  4:
                         \rho_i \leftarrow \rho_i + m_i W_h^{\text{poly}}(\mathbf{r}_i - \mathbf{r}_i)
  5:
                  end
  6:
                 p_i \leftarrow k^{\mathrm{gas}} \left( \left( \frac{\rho_i}{\rho_0} \right)^{\gamma} - 1 \right)
                                                                                                                            /* calculate pressure */
  7:
                  for each P_j in Neighbours (P_i) do
                                                                                                                              /* accumulate forces */
  8:
                         \mathbf{f}_i \leftarrow \mathbf{f}_i - m_i m_j \left( \frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_i^2} \right) \nabla W_h^{\text{press}} (\mathbf{r}_i - \mathbf{r}_j)
                                                                                                                                                     /* (= \mathbf{f}_i^{\text{press}}) */
  9:
                         \mathbf{f}_i \leftarrow \mathbf{f}_i + V_i V_j \mu (v_j - v_i) \nabla^2 W_h^{\text{visco}} (\mathbf{r}_i - \mathbf{r}_j)
                                                                                                                                                      /* (= \mathbf{f}_i^{\text{visco}}) */
10:
                         \nabla C_i \leftarrow \nabla C_i + V_j c_i^{\text{int}} \nabla W_h^{\text{poly}} (\mathbf{r}_i - \mathbf{r}_j)
                                                                                                                                                    /* (= \nabla C_i^{\text{int}}) */
11:
                         \nabla^2 C_i \leftarrow \nabla^2 C_i + V_j c_i^{\text{int}} \nabla^2 W_h^{\text{poly}} (\mathbf{r}_i - \mathbf{r}_j)
                                                                                                                                                  /* (= \nabla^2 C_i^{\text{int}}) */
12:
13:
                  end
                 \mathbf{f}_i \leftarrow \mathbf{f}_i - \sigma^{\text{int}} \nabla^2 C_i^{\text{int}} \frac{\nabla C_i^{\text{int}}}{|\nabla C_i^{\text{int}}|}
                                                                                                                                                         /* (= \mathbf{f}_{i}^{int}) */
14:
           end
15:
           for each P_i in Particles do
                                                                                                                                                    /* Leap-Frog */
16:
                 \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \frac{\mathbf{f}_i}{m_i}
17:
                 \mathbf{r}_i \leftarrow \mathbf{r}_i + \Delta t \mathbf{v}_i
18:
```

Neighbor search with Z-indexing

- Neighbor search: Given a particle find all particles whose distance to this particle is less than some threshold (support radius in SPH)
 - → This can be O (n²) problem → very expensive for large number of particles
 - → In SPH simulations it is in average case an O(n) problem
- * Proposed solution: Z-indexing and radix sort
- * Z-indexing: A strategy create a linear index of particles in a 3D grid while maintaining good spatial locality of particles enumerated in index order.
- * Radix-sort: O(n) sort for bounded values

Z-indexing: Index order

	x = 0 000	x = 1 001	x = 2 010	x = 3 011	x = 4 100	x = 5 101	x = 6 110	x = 7 111
y = 0 000	000000	000001	000100	000101	010000	010001	010100	010101
y = 1 001	000010	000011	000110	000111	010010/	010011	010110/	010111
y = 2 010	001000	001001	001100	001101	011000	011001	011100	011101
y = 3 011	001010	001011	001110	001111	011010	011011	011110	011111
y = 4 100	100000	100001	100100	100101	110000	110001	110100	110101
y = 5 101	100010	100011	100110	100111	110010	110011	110110	110111
y = 6 110	101000	101001	101100	101101	111000	_111001	111100	111101
y = 7 111	101010	101011	101110	101111	111010	111011	111110	111111

Z-Indexing: Index Structure

- * Given (8-bit) coordinates (i,j,k) of some cell
 - \rightarrow i = $i_7 i_6 i_5 i_4 i_3 i_7 i_1 i_9$ (eg 45 = 00101101)
 - \rightarrow j = j₇j₆j₅j₄j₃j₂j₁j₆ (eg 135 = 10000111)
 - $\rightarrow k = k_7 k_6 k_5 k_4 k_3 k_2 k_1 k_0$ (eg 209 = 11010001)
- * The interleaved (24-bit) Z-index of cell (i,j,k) is:
 - → Index = k₇j₇i₇k₆j₆i₆k₅j₅i₅k₄j₄i₄k₃j₃i₃k₂j₂i₂k₁j₁i₁k₀j₀i₀
 - → Index = 110 100 001 100 001 011 010 111
- * We precompute tables i₂₄, j₂₄ and k₂₄ and get index
- * Index = i_{24} or j_{24} or k_{24} (or is bit-wise or operation)
- * Tables i_{24} , j_{24} and k_{24} are stored as CUDA textures

Z-Indexing: Index Structure

- *For each i $(0..2^n)$ precompute i_{24} as
 - → i₂₄ = 00i₇00i₆00i₅00i₄00i₃00i₂00i₁00i₀
 - $\rightarrow i_{24} = 000000001000001001000001$
- *For each j $(0..2^n)$ precompute j_{24} as
 - $\rightarrow j_{24} = 0j_{7}00j_{6}00j_{5}00j_{4}00j_{3}00j_{2}00j_{1}00j_{0}0$
 - $\rightarrow j_{24} = 01000000000000010010010$
- * For each k (0..2°) precompute k_{24} as
 - $\rightarrow k_{24} = k_700k_600k_500k_400k_300k_200k_100k_000$
 - $\rightarrow k_{24} = 1001000001000000000000100$

Z-Indexing: Summary

- The simulation domain is divided into a virtual indexing grid
- Grid location of a particle is used to determine its bit-interleaved Z-index
- * The Z-indices are computed very efficiently in parallel using a table look-up approach and binary "or"
- * Z-indices of particles being within some 2ⁿ spatial block are contiguous
- * Before NB particles are sorted based on Z-indices using parallel CUDA radix-sort

Demos / Tools / Libs

* SPH water demo

* MAC fire/smoke demo

