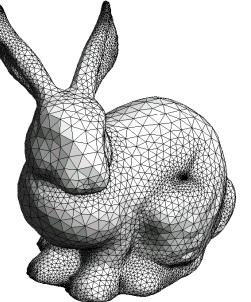
Geometric Modeling in Graphics



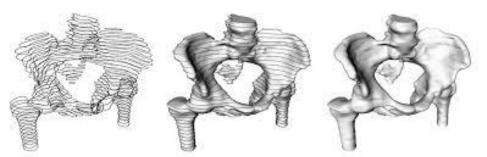
Part 10: Surface reconstruction

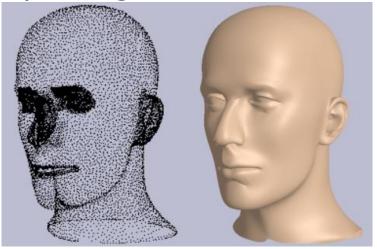
Martin Samuelčík

www.sccg.sk/~samuelcik samuelcik@sccg.sk

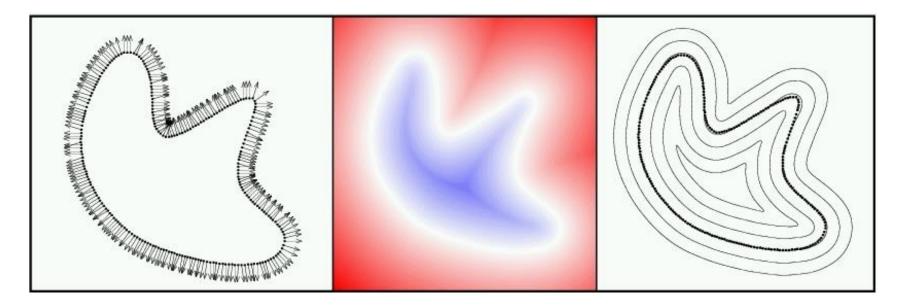
Curve, surface reconstruction

- Finding compact connected orientable 2-manifold surface possibly with boundary or closed, that is partially given by set of geometric elements
- Input elements: points, curves, part of surface
- Output: curve or surface
- Representation of reconstructed object
 - Zero level of implicit function sampled in grid
 - Parametric surface
 - Polygonal mesh

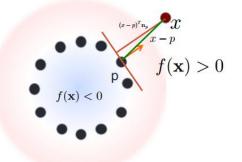


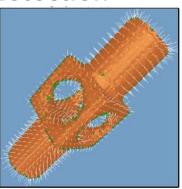


- Input: point cloud
- Conversion of unstructured to structured data
- Ill-posed (difficult) problem
- Output uniformly sampled implicit function



- Hoppe et al.
 - http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf
- Needed properly oriented normals
- For sample point X, find its nearest point P in point cloud
- Compute f(X) signed distance of X and tangent plane in P
 - Tangent plane is given by P and normal in P
 - If projection of X on tangent plane is far away from points of point cloud, f(X) is undefined and used for hole detection





- Weighted Least Squares
- Reconstruction and smoothing in one process
- For sample point x, compute nearest point a(x) and normal n(x) on surface as weighted combination of near points of point cloud
- Computation of normal
 - Minimizing $\sum_{i=1}^{N} (\mathbf{n}(\mathbf{x}) \cdot (\mathbf{a}(\mathbf{x}) \mathbf{p}_i))^2 \theta(||\mathbf{x} \mathbf{p}_i||)$
 - Eigenvector assigned to smallest eigenvalue of covariance matrix

$$b_{ij} = \sum_{k=1}^{N} \theta(\|\mathbf{x} - \mathbf{p}_k\|) (p_{k_i} - a(\mathbf{x})_i) (p_{k_j} - a(\mathbf{x})_j).$$

- Computation of surface point $\mathbf{a}(\mathbf{x}) = \frac{\sum_{i=1}^{N} \theta(\|\mathbf{x} \mathbf{p}_i\|)\mathbf{p}_i}{\sum_{i=1}^{N} \theta(\|\mathbf{x} \mathbf{p}_i\|)}$.
- Computation of implicit function

$$f(\mathbf{x}) = \mathbf{n}(\mathbf{x}) \cdot (\mathbf{a}(\mathbf{x}) - \mathbf{x}),$$

Implicit function reconstruction

- Weighted, Moving Least Squares
- Weighted functions

Gaussian

$$\theta(d) = e^{-d^2/h^2}, \quad d = ||\mathbf{x} - \mathbf{p}||,$$
Cubic

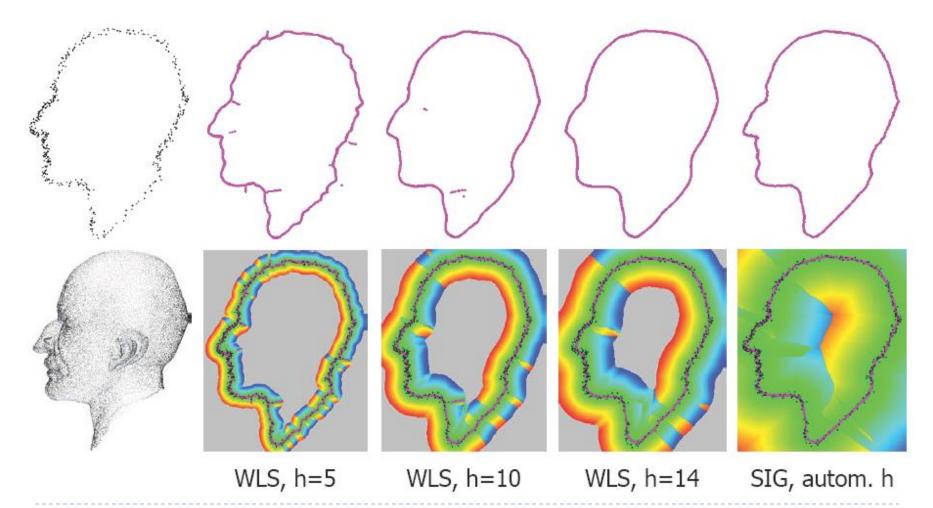
$$\theta(d) = 2\left(\frac{d}{h}\right)^3 - 3\left(\frac{d}{h}\right)^2 + 1, \quad d = \frac{1}{2} + 1,$$

• Adaptive computation of radius of influence h

Reconstructed surface is isosurface for isovalue 0
 Geometric Modeling in Graphics

Implicit function reconstruction

Weighted, Moving Least Squares



Implicit function reconstruction

Poisson reconstruction

- http://research.microsoft.com/enus/um/people/hoppe/poissonrecon.pdf
- Input: point cloud with oriented normals
- Computing indicator implicit function (I-insize, 0-outside)
- Normals at points should be as close as possible to gradients of indicator function at points
- Poisson problem: Laplacian of indicator function equals to divergence of normals vector field
- Global optimization
- Creates very smooth surfaces that robustly approximate noisy data

- Poisson reconstruction
- Constructing octree over input points
 - The depth of octree controls precision of reconstruction
- Computing indicator sample value for each node of octree
- Solving large linear system
 - Matrix size = number of octree nodes
 - Sparse and symmetric matrix
- Usage of smoothing functions
- Isovalue for surface extraction average of indicator function values at points

Poisson reconstruction

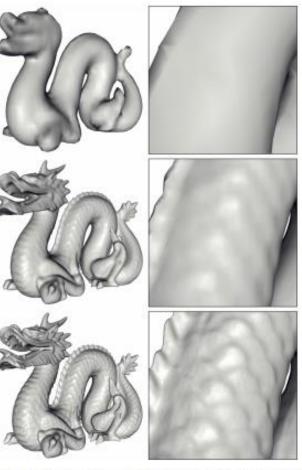


Figure 3: Reconstructions of the dragon model at octree depths 6 (top), 8 (middle), and 10 (bottom).

Tree Depth	Time	Peak Memory	# of Tris.
7	6	19	21,000
8	26	75	90,244
9	126	155	374,868
10	633	699	1,516,806

Table 1: The running time (in seconds), the peak memory usage (in megabytes), and the number of triangles in the reconstructed model for the different depth reconstructions of the dragon model. A kernel depth of 6 was used for density estimation.

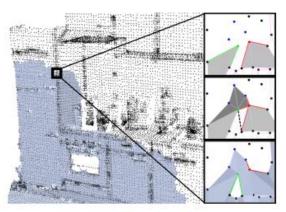
Advancing mesh reconstruction

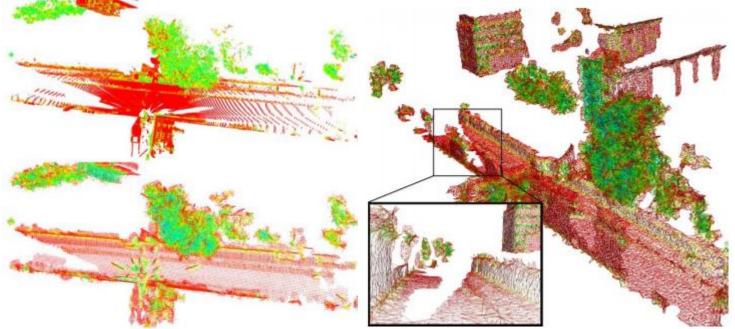
Marton et al.

- https://ias.informatik.tumuenchen.de/_media/spezial/bib/marton09icra.pdf
- Greedy algorithm that directly creates triangle mesh
- Propagation of triangulation from starting point over all points of point cloud – advancing boundary fronts
- Computation of new triangles for points (fringe points) on a boundary of current triangulation
 - Compute normal for fringe point P using WLS
 - Find points near P and project them
 - Project triangles back and add them to triangulation
 - Do local pruning and smoothing of new triangle vertices
- Handle cases when two fronts meet

Advancing mesh reconstruction

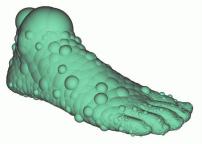
- Marton et al.
- Implemented in PCL





Power crust reconstruction

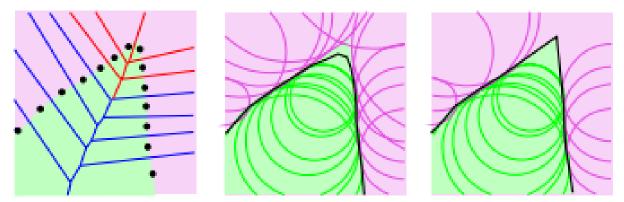
- Power crust algorithm
 - http://web.cs.ucdavis.edu/~amenta/pubs/sm.pdf
- Representing solid as MAT(medial axis transformation)
 - Union of balls contained in the interior
 - Centers of balls medial axis



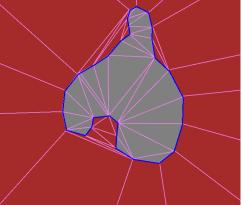
- Approximating MAT from point cloud using Voronoi diagram
 - Using subset of Voronoi vertices called poles farthest vertices in Voronoi cell

Power crust mesh reconstruction

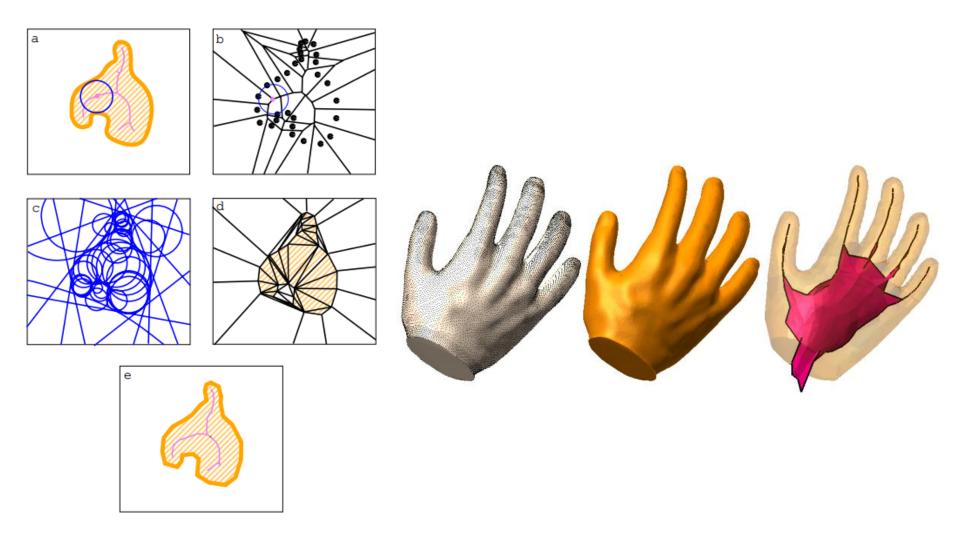
 Construct Voronoi ball for each pole such that it contains only points from neighbor Voronoi cells



Generate triangles between interior and exterior Voronoi balls



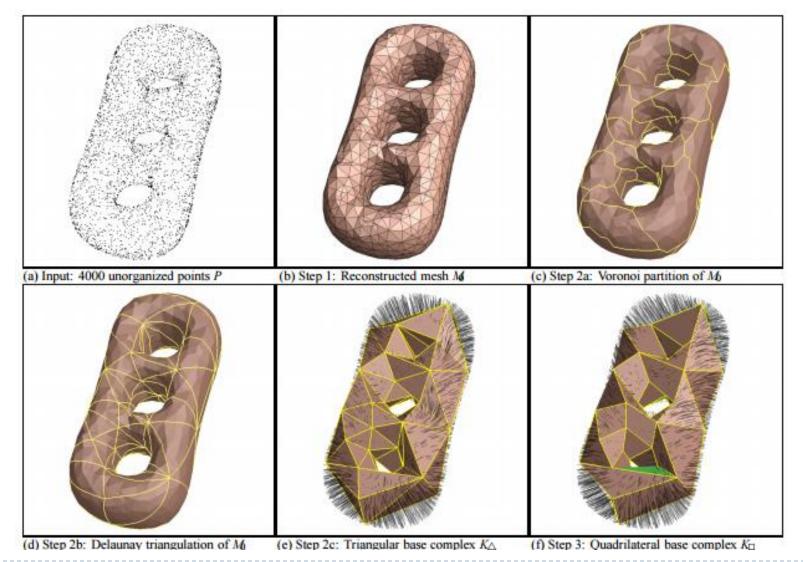
Power crust mesh reconstruction

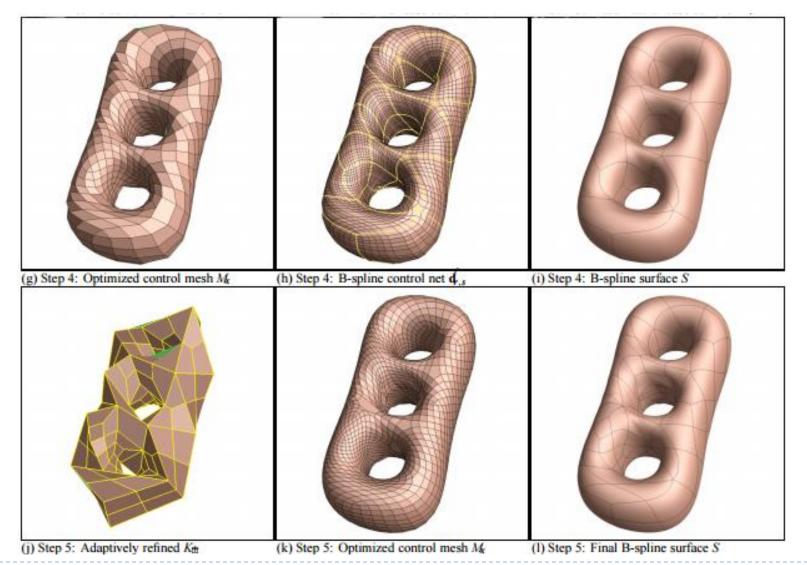


Hoppe et al.

- http://research.microsoft.com/enus/um/people/hoppe/bspline.pdf
- Reconstructing surface as B-spline patch network of arbitrary topology
- I. Create dense approximating mesh M0 from input point cloud
- 2. Construct Voronoi partition of M0 forming triangular base complex
- 3. Refine triangular base complex to quadrilateral base complex
- 4. Compute parameterization of over each quad of quadrilateral base complex

- Hoppe et al.
- 5. Fit B-spline patch over each parametrized quad
 - Find points from point cloud that are parametrized by current quad and computing parameter values for each point
 - Iterative fitting that minimizes distance of points to B-spline patch
 - Adding fairness term for controlling patch wiggles making patch more planar
 - Ensuring GI connectivity
- 6.Adaptive refinement
 - Quadrilateral base complex
 - Patch control points





The End for today