

SEMINAR 4 Computer Graphics 2

Wavelength

\square Light source emit spectral radiance with wavelength λ
\square The final color of objects depends on reflection and absorption of wavelengths with different λ
\square Colors in computers are reproduced using a combination of red, green and blue light
\square Human eye is sensitive to red, green and blue color

Wavelength Example 1

Wavelength Example 2

Sun color is ($1,0,1$)
Observer sees color ($0,0,0$)

Object color is ($0,1,0$)

Blinn-Phong Reflection Model for Wavelength λ

$$
I=k_{a} I_{a}+\sum_{i=1}^{n}\left(k_{d} I_{i, d}\left(\boldsymbol{l}_{\boldsymbol{i}} \cdot \boldsymbol{n}\right)+k_{s} I_{i, S}\left(\boldsymbol{h}_{\boldsymbol{i}} \cdot \boldsymbol{n}\right)^{n_{s}}\right)
$$

BONUS (1\%) write the equation from sample code during seminar:

```
public Vector4 RayTrace(Ray ray)
{
    foreach (Light light in World.Lights)
    {
        Vector4 contactPoint = ray.GetHitPoint();
        Ray lightRay = new Ray();
        light.SetLightRayAt(contactPoint, lightRay);
        World.Collide(lightRay);
        if (lightRay.HitModel == null || !UseShadows)
                color += ray.HitModel.Shader.GetColor();
    }
    return color;
}
```

```
public override Vector4 GetColor()
{
    Double diffuseFactor =
        (normal * lightDir) * lightIntensity;
    diffuseFactor = Math.Max(diffuseFactor , 0);
    Vector4 half = (eyeDir + lightDir).Normalized;
    Double specularFactor =
            Math.Pow(normal * half, Shininess) * lightIntensity;
    Vector4 color = new Vector4();
    color += diffuseFactor * (DiffuseColor ^ light.DiffuseColor);
    color +=
            specularFactor * (SpecularColor ^ light.DiffuseColor);
    color += AmbientColor;
    return color;
}
```


Light

\square Various types of light sources
\square Directional light, spot light, point light, area light
\square Each light has
\square Intensity - defines strength with which light illuminates the scene
\square Color - defines the color of the light

- Diffuse color
- Specular color
- Ambient color

Example Sun Light Render

7

Directional Light - Sun

\square Infinite distance from the scene
\square Light rays emanate in single parallel direction
\square Equal intensity in the whole scene

Example Point Light Render

Point Light

\square Defined using:
\square Origin - of the point light
\square Range - of the light
\square Linear attenuation - decay of light intensity
\square Quadratic attenuation - decay of light intensity

Point Light Intensity Calculation

\square Calculate distance d from light origin to point
\square Calculate linear attenuation using:
$\square l=\frac{\text { Range }}{\text { Range }+ \text { LinearAttenuation } * d}$
\square Calculate quadratic attenuation using:
$\square q=\frac{\text { Range }^{2}}{\text { Range }^{2}+\text { QuadraticAttenuation } * d^{2}}$
\square Combine for final intensity:
\square FinalIntensity $=$ Intensity $* l * q$

Attenuation Curves

a) Linear attenuation
b) Quadratic attenuation
c) 0.5 Linear and 0.5 Quadratic
d) No attenuation

Linear vs. Quadratic Attenuation

Linear

Quadrałic

Example Spot Light Render

Spot Light

\square Emits a cone of light in a given direction
\square Based on point light
\square Defined using:
\square Direction - direction of the cone
\square Cutoff angle - angle of the cone
\square Exponent - for smooth blending

Spot Light Calculation of Intensity

1. Get intensity of point light for point
2. Get angle α between light direction and direction from light to point
3. If α is larger than cutoff return 0
4. Calculate the ratio of α to cutoff angle
5. decay $=1-$ ratio $^{\text {Exponent }}$

Exponent difference

Exponent $=3$

Exponent $=30$

Example Area Light Render

Area Light

\square Approximated using a grid of point lights
\square Defined using:
\square Origin - of the area
\square Normal - of the area
$\square s x$ - width of the area
\square sy - height of the area
$\square \mathrm{nx}$ - number of lights along the width
\square ny - number of lights along the height

Area Light Setup

Calculate local space

1. normal is direction from point light to $O(0,0,0)$
2. up is $(0,0,1)$ - can it be always?
3. \quad right $=$ up $\times \mathrm{n}$
4. \quad up $=n \times$ right
5. Calculate delta x and delta y
6. Iterate over the area of area light

- Create point light at each stop
- Insert created point lights into a list

