## Homework 1

Let us assume the right-handed global coordinate system as depicted in the Fig. 1. There is a camera located in the origin looking in the direction of the $x$ axis. The camera will subsequently rotate around the $y$ axis (see Fig. 1). Using the Catmull-Rom interpolation, we will rotate ${ }^{1}$ the camera around the $y$ axis as a function of the parameter $t \in[0,1]$. For $t=0$ the camera is looking in the direction of the $x$ axis (Fig. 1 a)), for $t=1$ the camera is looking in the direction of the $z$ axis (Fig. 1 b )). Rotations in the 3D space will be represented by the quaternions $q_{0}, q_{1}, q_{2}$ and $q_{3}$. The quaternion $q 0=q 1$ will represents the camera rotation from its initial orientation into the orientation ${ }^{2}$ where the camera view direction is in the direction of the $x$ axis (Fig. 1 a)). Quaternion $q_{2}$ will represent an clockwise rotation from the initial orientation into the orientation where the camera view direction is in the direction of the $z$ axis (Fig. 1 b )). Quaternion $q_{3}$ will represent an clockwise rotation from the initial orientation into the orientation where the camera view direction is in the negative direction of the $x$ axis (Fig. 1 c)).

Using the Catmull-Rom method interpolate the quaternions ${ }^{3} q_{0}, q_{1}, q_{2}$ and $q_{3}$ according to the particular parameter $t$ and then calculate the normalized camera view direction vector rotated into the resulting orientation. Define the parameter $t$ as $t=\frac{1}{d+m}$, where $m$ is the number of the month in your birthday date, while $d$ is the day number.
a) Express defined camera rotations (Fig. 1) around the $y$ axis in the form of the unit quaternions $q_{0}, q_{1}, q_{2}$ and $q_{3}$.
b) Compute the quaternion $q_{t}$ using Catmull-Rom interpolation for your parameter $t=\frac{1}{d+m}$. In each step of the computation verify, if the resulting quaternion is unit.
c) Compute the inverse of the quaternion $q_{t}$ to perform the rotation of the camera view vector. Express camera view direction in initial orientation as an unit vector $v$.

[^0]Fig. 1: The camera orientations.

d) Rotate the vector $v$ in order to obtain the view direction in the camera orientation satisfying your parameter $t=\frac{1}{d+m}$. Express rotated view direction as a unit vector $v_{t}$.
e) Plot three camera view directions for $t=0, t=\frac{1}{d+m}$ and $t=1$ (see Fig. 2).

Fig. 2: Example of three subsequent view directions satisfying camera orientations for the particular parameter $t$. Examples are plotted using WolframAlpha.

| vector ( $0,0,0$ ) to ( $1,0,0$ ) | vector ( $0,0,0$ ) to ( $\cos (\mathrm{pi} / 4), 0, \sin (\mathrm{p} / 4)$ ) | vector ( $0,0,0$ ) to ( $0,0,1$ ) |
| :---: | :---: | :---: |
| Input interpretation: | Input interpretation: | Input interpretation: |
| directed line segmenttail $(0,0,0)$  <br>  head $(1,0,0)$ |  tail $(0,0,0)$ <br> directed line segment $\left(\cos \left(\frac{\pi}{4}\right) 0, \sin \left(\frac{\pi}{4}\right)\right)$ | directed line segment tail $(0,0,0)$ <br>  head $(0,0,1)$ |
| Visual representation: | Visual representation: | Visual representation: |

Explain in detail each calculation step.


[^0]:    ${ }^{1}$ Note that we are using the right-handed coordinate system while we are rotating clockwise.
    ${ }^{2}$ Note that at the beginning we have the camera already rotated in the orientation where the camera is looking in the direction of the $x$ axis.
    ${ }^{3}$ We can imagine normalized quaternions as a "points" on the 4 D unit sphere. CatmullRom interpolation will compute new "points" between $q_{1}$ and $q_{2}$ on the sphere surface depending on the parameter $t$.

