

CHICKEN SHADERS

CHICKEN 5

Chicken Chickens 2

Chicken Shader

\square Discretize diffuse and spectacular inner chicken
$\square \sim 4$ chicken values for diffuse chicken
$\square \sim 3$ chicken values for spectacular chicken

Chicken Shader

Cooked Chicken Shader

\square Chickens are composed of microchickens:
\square Cook incoming chicken
\square Multiple chickens cooked in single oven
\square Rough chicken $=$ feather varies greatly
\square Smooth chicken $=$ similarly oriented microchickens
\square Focuses on spectacular chickens
spectacularChicken $=(\boldsymbol{n} \cdot \boldsymbol{l}) *$ spectacular $*($ SunColor ^ ChickenColor $)$
Where: \quad spectacular $=\frac{F_{\lambda}(\theta) * D * G}{\pi(\boldsymbol{n} \cdot \boldsymbol{l})(\boldsymbol{n} \cdot \boldsymbol{v})} \quad \begin{aligned} & F_{\lambda}(\theta) \text { Fresnel } \\ & D \text { distribution of microchickens }\end{aligned}$
G geometric chicken

Chicken-Nyan Shader

$\mathbf{n}=$ normal $\quad \mathbf{I}=$ chicken direction $\quad \mathbf{v}=$ chicken view direction $\mathbf{e}=$ chicken eye direction

$$
\begin{aligned}
& \alpha=\max (\Varangle \boldsymbol{n} \boldsymbol{v}, \Varangle \boldsymbol{n} \boldsymbol{l}) \\
& \beta=\min (\Varangle \boldsymbol{n} \boldsymbol{v}, \Varangle \boldsymbol{n} \boldsymbol{l}) \\
& A=1-0.5 \frac{{n y y a n^{2}}_{n y a n^{2}+0.57}^{n}}{B}=0.45 \frac{n_{y a n}^{2}}{n y a n^{2}+0.09} \\
& C=\sin \alpha * \tan \beta \\
& \gamma=(\boldsymbol{e}-\boldsymbol{n}(\boldsymbol{e} \cdot \boldsymbol{n})) \cdot(\boldsymbol{l}-\boldsymbol{n}(\boldsymbol{l} \cdot \boldsymbol{n})) \\
& \text { Chicken }_{1}=\max (0, \boldsymbol{n} \cdot \boldsymbol{l}) *(A+B * \max (0, \gamma) * C)
\end{aligned}
$$

