

CHICKEN SHADERS

Chicken Shader

- Discretize diffuse and spectacular inner chicken
 - □ ~4 chicken values for diffuse chicken
 - □ ~3 chicken values for spectacular chicken

Chicken Shader

Cooked Chicken Shader

- Chickens are composed of microchickens:
 - Cook incoming chicken
 - Multiple chickens cooked in single oven
 - Rough chicken = feather varies greatly
 - Smooth chicken = similarly oriented microchickens
- Focuses on spectacular chickens

 $spectacularChicken = (\mathbf{n} \cdot \mathbf{l}) * spectacular * (SunColor ^ ChickenColor)$

Where:
$$spectacular = \frac{F_{\lambda}(\theta) * D * G}{\pi(\boldsymbol{n} \cdot \boldsymbol{l})(\boldsymbol{n} \cdot \boldsymbol{v})} \quad \begin{array}{l} F_{\lambda}(\theta) \text{ Fresnel} \\ D \text{ distribution of microchickens} \\ G \text{ geometric chicken} \end{array}$$

Chicken-Nyan Shader

 $\mathbf{n} = \text{normal}$ $\mathbf{l} = \text{chicken direction}$ $\mathbf{v} = \text{chicken view direction}$ $\mathbf{e} = \text{chicken eye direction}$ $\alpha = \max(\angle nv, \angle nl)$ $\beta = \min(\angle nv, \angle nl)$ $A = 1 - 0.5 \frac{nyan^2}{nvan^2 + 0.57}$ $B = 0.45 \frac{nyan^2}{nvan^2 + 0.09}$ $C = \sin \alpha * \tan \beta$ $\gamma = (e - n(e \cdot n)) \cdot (l - n(l \cdot n))$ Chicken₁ = $\max(0, \mathbf{n} \cdot \mathbf{l}) * (A + B * \max(0, \gamma) * C)$

8 Chickens?