

SEMINAR 5

Computer Graphics 2

Experiment Discussion

\square Color of sample
\square Uniformity of color on sample
\square Specular reflections on sample
\square Similar specular reflections from both measurements

CIE L* ${ }^{*}{ }^{*} b^{*}$

\square Includes all perceivable colors
\square Perceptually uniform
$\square \mathrm{L}$ - lightness, close match to human perception
$\square a-$ color component from green to red
$\square \mathrm{b}$ - color component from blue to yellow

CIELab vs. RGB

CIELab

RGB

Toon Shader

\square Discretize diffuse and specular factor
$\square \sim 4$ intensity values for diffuse factor
$\square \sim 3$ intensity values for specular factor

Cook Torrance Shader

\square Surfaces are composed of microfacets:
\square Reflect incoming light
\square Multiple facets rendered in single pixel
\square Rough surface $=$ slope varies greatly
\square Smooth surface $=$ similarly oriented microfacets
\square Focuses on specular reflection
specularColor $=(\boldsymbol{n} \cdot \boldsymbol{l}) *$ specular $*\left(\right.$ SunColor ${ }^{\wedge}$ MeterialColor $)$
Where: \quad specular $=\frac{F_{\lambda}(\theta) * D * G}{\pi(\boldsymbol{n} \cdot \boldsymbol{l})(\boldsymbol{n} \cdot \boldsymbol{v})} \quad \begin{aligned} & F_{\lambda}(\theta) \text { Fresnel } \\ & D \text { distribution of microfacets }\end{aligned}$
G geometric attenuation

Microfacet Matovation

Surface composed by microfacets:

Masking of reflected light:

Illuminated microfacet:

Geometric Attenuation

\square Microfacets block incoming light
\square Value from [0, 1] which represents remaining light
\square Microfacets are assumed to be V-shaped grooves
\square There are three cases, final factor is minimal value The light is reflected without interference: $\quad G_{a}=1$

Light is blocked after reflection: $\quad G_{b}=\frac{2(\boldsymbol{n} \cdot \boldsymbol{h})(\boldsymbol{n} \cdot \boldsymbol{v})}{\boldsymbol{v} \cdot \boldsymbol{h}}$
Light is blocked before reaching next microfacet: $\quad G_{c}=\frac{2(\boldsymbol{n} \cdot \boldsymbol{h})(\boldsymbol{n} \cdot \boldsymbol{l})}{\boldsymbol{l} \cdot \boldsymbol{h}}$
Final attenuation factor: $\quad G=\min \left(G_{a}, G_{b}, G_{c}\right)$

Roughness - Backmann distribution

\square Defines fraction of microfacets oriented the same way as half vector h
\square On smooth surfaces all light is close to specular reflection
\square On rough surfaces the light is more distributed
\square Can be calculated with e.g. Beckmanns distribution

$$
D=\frac{1}{\pi m^{2} \cos ^{4} \alpha} e^{-\left(\frac{\tan \alpha}{m}\right)^{2}}=\frac{1}{\pi m^{2} \cos ^{4} \alpha} e^{\left(\frac{(\boldsymbol{n} \cdot \boldsymbol{h})^{2}-1}{m^{2}(\boldsymbol{n} \cdot \boldsymbol{h})^{2}}\right)}
$$

Where: m is material roughness

Fresnel - Schlick approximation

\square Defines what fraction of incoming light is reflect and transmitted
\square Schlick approximation is used, due to complexity of original formula

$$
F_{\lambda}(\theta)=f_{\lambda}+\left(1-f_{\lambda}\right)(1-\theta)^{5}
$$

Where: f_{λ} reflectance at normal distance

$$
\theta=\boldsymbol{h} \cdot \boldsymbol{v} \text { angle between half and view vectors }
$$

Oren Nyar Shader

\square Lambertian model inappropriate for many materials
\square Surfaces can be modeled by microfacets
\square Camera projects several facets into one pixel
\square Takes into account masking, shadowing, interreflections
\square Takes a single parameter the roughness of a surface
\square More info in original paper:

- http://www1.cs.columbia.edu/CAVE/publications/pdfs/Oren_SIGGRAPH94.pdf

Oren Nyar Shader - Formulas

$$
\mathbf{n}=\text { normal } \quad \begin{aligned}
\mathbf{I} & =\text { light direction } \quad \mathbf{v}=\text { view direction } \quad \mathbf{e}=\text { eye direction } \\
\alpha & =\max (\not \subset \boldsymbol{n} \boldsymbol{v}, \Varangle \boldsymbol{n l}) \\
\beta & =\min (\not \subset \boldsymbol{n} \boldsymbol{v}, \Varangle \boldsymbol{n l}) \\
A & =1-0.5 \frac{\text { roughness }^{2}}{\text { roughness }^{2}+0.57} \\
B & =0.45 \frac{\text { roughness }^{2}}{\text { roughness }^{2}+0.09} \\
C & =\sin \alpha * \tan \beta \\
\gamma & =(\boldsymbol{e}-\boldsymbol{n}(\boldsymbol{e} \cdot \boldsymbol{n})) \cdot(\boldsymbol{l}-\boldsymbol{n}(\boldsymbol{l} \cdot \boldsymbol{n})) \\
L_{1} & =\max (0, \boldsymbol{n} \cdot \boldsymbol{l}) *(A+B * \max (0, \gamma) * C)
\end{aligned}
$$

Gradient Shader (1)

\square Creates cosinusiodal wave
\square Project vector from origin to point onto gradient direction
\square Calculate cosinus of gradient value
\square Transform cosinus from $[-1,1]$ to $[0,1]$ to get alpha
\square Use alfa blending between two shaders S0 and S1

Gradient Shader (2)

