Computational Logic

 First-Order LogicMartin Baláž

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

2011

Alphabet

An alphabet contains

- Variables
x, y, z, \ldots
- Constants
c, d, e, \ldots
- Function symbols f, g, h, \ldots
- Predicate symbols p, q, r, \ldots
- Logical connectives
$\neg, \vee, \wedge, \Rightarrow, \Leftrightarrow, \ldots$
- Quantifiers
$\forall \exists$
- Punctuation symbols () ,

A term is

- a variable
- a constant
- an expression $f\left(t_{1}, \ldots, t_{n}\right)$ if f is a function symbol with arity n and t_{1}, \ldots, t_{n} are terms

A atom is an expression $p\left(t_{1}, \ldots, t_{n}\right)$ where p is a predicate symbol with arity n and t_{1}, \ldots, t_{n} are terms.

A formula is

- an atom
- $\neg \Phi$ if Φ is a formula
- $(\Phi \wedge \Psi)$ if Φ and Ψ are formulas
- $(\Phi \vee \Psi)$ if Φ and Ψ are formulas
- $(\Pi \rightarrow \Psi)$ if Φ and Ψ are formulas
- $(\Pi \leftrightarrow \Psi)$ if Φ and Ψ are formulas
- ...
- $(\forall x) \Phi$ if x is a variable and Φ is a formula
- $(\exists x) \Phi$ if x is a variable and Φ is a formula

A language is a set \mathcal{L} of all formulas.

A domain is a set of individuals D.
A signature is a tripple $\sigma=(F, P$, arity $)$ where

- F is a set of function symbols
- P is a set of predicate symbols
- arity: $F \cup P \mapsto N$ is an arity function

An interpretation is a function I such that

- $I(f)$ is a function $f^{\prime}: D^{\text {arity }(f)} \mapsto D$
- $I(p)$ is a relation $p^{\prime} \subseteq D^{\operatorname{arity}(p)}$

A structure is a tripple $\mathcal{D}=(D, \sigma, I)$ where

- D is a domain
- σ is a signature
- l is an interpretation function

Example

$$
\begin{gathered}
(\forall x) p(c, x, x) \\
(\forall x)(\forall y)(\forall z)(p(x, g(y), z) \Leftrightarrow p(f(x), y, z))
\end{gathered}
$$

- Domain $D=N$
- Signature

$$
\sigma=(\{c, f, g\},\{p\},\{c \mapsto 0, f \mapsto 1, g \mapsto 1, p \mapsto 3\})
$$

- Interpretation

$$
\begin{aligned}
& I(c)=0 \\
& I(f)=x \mapsto x+1 \\
& I(g)=x \mapsto x+1 \\
& I(p)=\{(x, y, z) \mid x+y=z\}
\end{aligned}
$$

Variable Assignment

A variable assignment is a mapping e: $X \mapsto D$ where X is a set of variables and D is a domain.
If $x \in X$ is a variable and $d \in D$ is an individual, then by $e(x \mapsto d)$ we will denote a variable assignment satisfying

$$
e(x \mapsto d)(y)= \begin{cases}d & \text { if } x=y \\ e(y) & \text { if } x \neq y\end{cases}
$$

Valuation

Let \mathcal{D} be a struture and e be a variable assignment.
The value of a term t (denoted by $t[e]$) is

- $e(t)$ if t is a variable
- c^{l} if t is a constant
- $f^{\prime}\left(t_{1}[e], \ldots, t_{n}[e]\right)$ if $t=f\left(t_{1}, \ldots, t_{n}\right)$ is a compound term

A formula Φ is true w.r.t. \mathcal{D} and e (denoted by $\mathcal{D} \models \Phi[e]$) iff

- $\mathcal{D} \vDash p\left(t_{1}, \ldots, t_{n}\right)[e]$ iff $\left(t_{1}[e], \ldots, t_{n}[e]\right) \in p^{\prime}$
- $\mathcal{D} \vDash \neg \Phi[e]$ iff $\mathcal{D} \not \vDash \Phi[e]$
- $\mathcal{D} \models(\Phi \wedge \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ and $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \vDash(\Phi \vee \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ or $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \vDash(\Phi \rightarrow \Psi)[e]$ iff $\mathcal{D} \not \models \Phi[e]$ or $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \vDash(\Phi \leftrightarrow \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ iff $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \models(\forall x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)]$ for all $d \in D$
- $\mathcal{D} \vDash(\exists x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)$] for some $d \in D$

Entailment

A formula Φ is true w.r.t. a structure \mathcal{D} (denoted by $\mathcal{D} \models \Phi$) iff $\mathcal{D} \models \Phi[e]$ for all variable assignments e.
A set of formulas T entails a formula Φ (denoted by $T \models \Phi$) iff for all structures \mathcal{D} holds $\mathcal{D} \models \Phi$ whenever $\mathcal{D} \models \Psi$ for all Ψ in T.

A free occurence of a variable is not bounded with a quantifier.
A substitution $\Phi(x / t)$ means replace every occurence of the variable x in the formula Φ with the term t.

A term t is substitutable for a variable x in a formula Φ iff no occurence of a variable in t becomes bounded after substitution.

$$
\begin{aligned}
\Phi & =(\exists x)(y<x) \\
\Phi(y / x) & =(\exists x)(x<x)
\end{aligned}
$$

Normal Forms

A formula is in negation normal form iff if $\{\neg, \wedge, \vee\}$ are are the only allowed connectives and literals are the only negated subformulas.

A formula is in prenex normal form iff it is of the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) F, n \geq 0$, where Q_{i} is a quantifier, x_{i} is a variable and F is quantifier-free formula.

A formula is in Skolem normal form iff it is in prenex normal form with only universal quantifiers.

A formula is in conjunctive normal form iff it is conjunction of disjunctive clauses, where a disjunctive clause is a disjunction of literals.

A formula is in disjunctive normal form iff it is disjunction of conjunctive clauses, where a conjunctive clause is a conjunction of literals.

Negation Normal Form

- Double negative law:
$\neg \neg P / P$
- De Morgan's law:

$$
\begin{aligned}
& \neg(P \wedge Q) /(\neg P \vee \neg Q) \\
& \neg(P \vee Q) /(\neg P \wedge \neg Q)
\end{aligned}
$$

- Quantifiers:

$$
\begin{aligned}
& \neg(\forall x) P /(\exists x) \neg P \\
& \neg(\exists x) P /(\forall x) \neg P
\end{aligned}
$$

- Negation:
$\neg(\exists x) P /(\forall x) \neg P$ $\neg(\forall x) P /(\exists x) \neg P$
- Conjunction:
$((\forall x) P \wedge Q) /(\forall x)(P \wedge Q)$
$(Q \wedge(\forall x) P) /(\forall x)(Q \wedge P)$
$((\exists x) P \wedge Q) /(\exists x)(P \wedge Q)$
$(Q \wedge(\exists x) P) /(\exists x)(Q \wedge P)$
if x does not appear as free variable in Q
- Disjunction:
$((\forall x) P \vee Q) /(\forall x)(P \vee Q) \quad(Q \vee(\forall x) P) /(\forall x)(Q \vee P)$
$((\exists x) P \vee Q) /(\exists x)(P \vee Q) \quad(Q \vee(\exists x) P) /(\exists x)(Q \vee P)$
if x does not appear as free variable in Q
- Implication:
$((\forall x) P \rightarrow Q) /(\exists x)(P \rightarrow Q) \quad(Q \rightarrow(\forall x) P) /(\forall x)(Q \rightarrow P)$ $((\exists x) P \rightarrow Q) /(\forall x)(P \rightarrow Q) \quad(Q \rightarrow(\exists x) P) /(\exists x)(Q \rightarrow P)$ if x does not appear as free variable in Q

Formulas P and Q are equisatisfiable if P is satisfiable if and only if Q is satisfiable.

Given a formula F :
(1) If F is already in Skolem normal form, we are done.
(2) If not, then F is of the form

$$
\left(\forall x_{1}\right) \ldots\left(\forall x_{m}\right)(\exists y) F^{\prime}\left(x_{1}, \ldots, x_{m}, y, z_{1}, \ldots, z_{n}\right)
$$

where each z_{i} is a free variable and F^{\prime} is in prenex normal form. Replace y with $f\left(x_{1}, \ldots, x_{m}, z_{1}, \ldots, z_{n}\right)$ where f is a new function symbol.

- go to 1

Conjunctive Normal Form

(1) Negation Normal Form
(2) Prenex Normal Form
(3) Skolem Normal Form
(9) Distributive law $(\vee$ over $\wedge)$: $((P \wedge Q) \vee R) /((P \vee R) \wedge(Q \vee R))$ $(P \vee(Q \wedge R)) /((P \vee Q) \wedge(P \vee R))$

Disjunctive Normal Form

(1) Negation Normal Form
(2) Prenex Normal Form
(3) Skolem Normal Form
(9) Distributive law (\wedge over \vee): $((P \vee Q) \wedge R) /((P \wedge R) \vee(Q \wedge R))$ $(P \wedge(Q \vee R)) /((P \wedge Q) \vee(P \wedge R))$

Hilbert System

Axioms

- $(P \rightarrow(Q \rightarrow P))$
- $((P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R)))$
- $((\neg P \rightarrow \neg Q) \rightarrow(Q \rightarrow P))$
- $((\forall x) P \rightarrow P(x / t))$
where term t is substitutable for x in P
- $((\forall x)(P \rightarrow Q) \rightarrow(P \rightarrow(\forall x) Q))$ where x does not occur free in P
Inference Rules
- Modus Ponens

$$
\frac{P,(P \rightarrow Q)}{Q}
$$

- Generalization

$$
\frac{P}{(\forall x) P}
$$

Example

Prove:

$$
(P(x / t) \rightarrow(\exists x) P) \quad \text { i.e. } \quad(P(x / t) \rightarrow \neg(\forall x) \neg P)
$$

where t is substitutable for x in P.

Proof:
(1) $((\forall x) \neg P \rightarrow \neg P(x / t))$
(2) $(((\forall x) \neg P \rightarrow \neg P(x / t)) \rightarrow(P(x / t) \rightarrow \neg(\forall x) \neg P))$

Note: $((A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A))$ is a tautology
(3) $(P(x / t) \rightarrow \neg(\forall x) \neg P)$

Gentzen System

- Generalization

$$
\begin{aligned}
& \langle\Gamma, \phi(x / y) \Rightarrow \Delta\rangle /\langle\Gamma,(\exists x) \phi \Rightarrow \Delta\rangle \\
& \langle\Gamma \Rightarrow \Delta, \phi(x / y)\rangle /\langle\Gamma \Rightarrow \Delta,(\forall x) \phi\rangle
\end{aligned}
$$

where y is a variable substitutable for x in ϕ and y does not occur free in $\Gamma \cup \Delta \cup\{\phi\}$

- Specification
$\langle\Gamma, \phi(x / t) \Rightarrow \Delta\rangle /\langle\Gamma,(\forall x) \phi \Rightarrow \Delta\rangle$
$\langle\Gamma \Rightarrow \Delta, \phi(x / t)\rangle /\langle\Gamma \Rightarrow \Delta,(\exists x) \phi\rangle$
where t is a term substitutable for x in ϕ

Example

Prove:

$$
((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))
$$

Proof:
(1) $\langle p(x, y) \Rightarrow p(x, y)\rangle$
(2) $\langle(\forall x) p(x, y) \Rightarrow p(x, y)\rangle$
(3) $\langle(\forall x) p(x, y) \Rightarrow(\exists y) p(x, y)\rangle$
(3) $\langle(\exists y)(\forall x) p(x, y) \Rightarrow(\exists y) p(x, y)\rangle$
(6) $\langle(\exists y)(\forall x) p(x, y) \Rightarrow(\forall x)(\exists y) p(x, y)\rangle$
© $\langle\Rightarrow((\exists y)(\forall x) p(x, y) \rightarrow(\forall x)(\exists y) p(x, y))\rangle$

A calculus is decidable iff for given theory T, there exists an algorithm which, given an arbitrary formula ϕ, will always says if $T \vdash \phi$ or $T \nvdash \phi$.
A calculus is semidecidable iff for given theory T, there exists an algorithm which, given an arbitrary formula ϕ, will always give positive answer if $T \vdash \phi$, but may give either a negative answer or no answer if $T \nvdash \phi$.

Hilbert calculus for propositional logic is sound, complete, decidable, and semidecidable.
Hilbert calculus for first-order logic is sound, complete, and semidecidable, but not decidable.
Gentzen calculus for propositional logic is sound, complete, decidable, and semidecidable.
Gentzen calculus for first-order logic is sound, complete, and semidecidable, but not decidable.

Resolution

General inference rule

$$
\frac{P \vee Q, \neg P \vee R}{Q \vee R} \quad \frac{Q \vee P, R \vee \neg P}{Q \vee R}
$$

Inference rule for (disjunctive) clauses:
$\frac{a_{1} \vee \cdots \vee a_{i} \vee \cdots \vee a_{m}, b_{1} \vee \cdots \vee b_{j} \vee \cdots \vee b_{n}}{a_{1} \vee \cdots \vee a_{i-1} \vee a_{i+1} \vee \cdots \vee a_{m} \vee b_{1} \vee \cdots \vee b_{j-1} \vee b_{j+1} \vee \cdots \vee b_{n}}$
where a_{i} is the complement of b_{j}

Resolution

(1) $T \models \phi$ iff $T \wedge \neg \phi$ is not satisfiable
(2) $T \wedge \neg \phi$ is transformed into CNF, we get a set of disjunctive clauses
(3) the resolution rule is applied to all possible clauses that contain complementary literals

- all repeated literals are removed
- all clauses with complementary literals are discarded
(1) if empty clause is derived, $T \wedge \neg \phi$ is not satisfiable, otherwise it is

Unification

Algorithm $\operatorname{UNIFY}\left(t_{1}, t_{2}, \theta\right)$
Input: two terms or lists of terms t_{1} and t_{2}, substitution θ
Output: the most general unifier of t_{1} and t_{2}, or failure
(1) if $t_{1}=t_{2}$ then return θ
(2) if t_{1} is a variable then return UNIFY_ $\operatorname{VAR}\left(t_{1}, t_{2}, \theta\right)$
(3) if t_{2} is a variable then return UNIFY_VAR $\left(t_{2}, t_{1}, \theta\right)$
(9) if t_{1} and t_{2} are compound terms with the same function symbol then return $\operatorname{UNIFY}\left(\operatorname{ARGS}\left(t_{1}\right), \operatorname{ARGS}\left(t_{2}\right), \theta\right)$
(5) if t_{1} and t_{2} are non-empty lists of terms then return $\operatorname{UNIFY}\left(\operatorname{REST}\left(t_{1}\right), \operatorname{REST}\left(t_{2}\right), \operatorname{UNIFY}\left(\operatorname{FIRST}\left(t_{1}\right), \operatorname{FIRST}\left(t_{2}\right), \theta\right)\right)$
(0) return failure

Unification

Algorithm UNIFY_VAR $\left(x, t_{2}, \theta\right)$
Input: a variable x, a term t_{2} and a substitution θ
Output: substitution or failure
(1) if $\left\{x / t_{1}\right\} \in \theta$ then return $\operatorname{UNIFY}\left(t_{1}, t_{2}, \theta\right)$
(2) if $\left\{t_{2} / t_{1}\right\} \in \theta$ then return $\operatorname{UNIFY}\left(x, t_{1}, \theta\right)$
(3) if OCCUR_CHECK $\left(x, t_{2}\right)$ then return failure
(1) return $\theta\left\{x / t_{2}\right\}$

Example

Theory T :
$(\forall x)($ gentleman $(x) \rightarrow(\forall y)(\operatorname{lady}(y) \rightarrow(\forall z)($ insults $(z, y) \rightarrow$ defeats(x, z))))
gentleman(jackie)
lady (peggy_sue)
insults(billy_boy, peggy_sue)
Formula ϕ :
defeats(jackie, billy_boy)
Question: $T \models \phi$?

$$
\begin{gathered}
\quad \text { sudoku }(a, b, x, y, 1) \vee \cdots \vee \operatorname{sudoku}(a, b, x, y, 9) \\
\neg \operatorname{sudoku}\left(a, b, x, y, n_{1}\right) \vee \neg \operatorname{sudoku}\left(a, b, x, y, n_{2}\right), n_{1}<n_{2}
\end{gathered}
$$

$\neg \operatorname{sudoku}\left(a, b, x_{1}, y_{1}, n\right) \vee \neg \operatorname{sudoku}\left(a, b, x_{2}, y_{2}, n\right),\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$
$\neg \operatorname{sudoku}\left(a, b_{1}, x, y_{1}, n\right) \vee \neg$ sudoku $\left(a, b_{2}, x, y_{2}, n\right),\left(b_{1}, y_{1}\right)<\left(b_{2}, y_{2}\right)$
$\neg \operatorname{sudoku}\left(a_{1}, b, x_{1}, y, n\right) \vee \neg \operatorname{sudoku}\left(a_{2}, b, x_{2}, y, n\right),\left(a_{1}, x_{1}\right)<\left(a_{2}, x_{2}\right)$

