

Primitive Shading

Light source located at camera position
Lower light intensity of distant objects

Creates illusion of depth

Double intensity = MaxIntensity / ray.HitParam;
return ray.HitModel.Color * intensity;

zNear & zFar
=

1 Obijects too close to camera would block all visible space
= zNear clips objects too close

11 Obijects too far from camera are negligibly small
o zFar clips invisible objects

0 Why z2 (Lr. Lo)

(L1, L. f)

/

(r.t. 1)
o
‘_: (L. b, ﬂ.}‘\

(r.b.on)

(l.t.n)

(£T‘. ifj.)

Bias

In computers: Double € Q
We use bias to correct for missing numbers

Bias value depends on scene

A
)\ 4
sun 4”: sphere s
shadow
ray
camera ray X

P — intersection point

Unexpected intersections
Can be corrected with bias

AABB (Axis Aligned Bounding Box)

Defined by two points representing minimum and
maximum extend of the box By and B4

Intersection parameter can be calculated for each
axis aligned plane defining the AABB

(tO,XI tl,Xl tO,yl tl,yl tO,ZI tl,Z)

AABB — intersection parameters

r(t) =0+ tr
y = BO,x
Ox + th = Bo'x
¢ _ BO,x — Ox
0,x rx

tmin = max{ti,j| VjEIi: Vk ti,j < tk,j}i
i €{0,1},k €{0,1},j € {x,,2}
tmax = min{t; j|VjIi:Vk t;; = &),
i €{0,1},k €{0,1},j € {x,y,2}

10x

y1 (max) tly

x1 (max)

E www.scratchapixel.com

AABB checking for intersection
B

0 Intersection actually occurs iff. t,,;, < thax
71 Resulting hit parameter is t,,;,

miss! t0x

t1y

© www.scratchapixel.com

Sphere

IX = Cll* —=R* =0

Defined by center point C and radius R

Intersection point can be solved analytically or
geometrically

Sphere — Geometric Solution
xm

to = tea — the ty = teq + the
P=0+t01‘ P,=0+t1r
L=C-0 teq =L-1

t.q should be greater than zero.

What does L - 1 represent?
Using Pythagorean theorem:

d? +t2, = L*

d=/L2—tcza,OSdSR L C

radius

tl

© www.scratchapixel.com

Sphere — Analytical Solution

o
IX—Cll*=R*=0
|0 +tr—C||>?—=R*=0
t2(r-r)+2t(r-(0—-C))+ (0 - C)*-R?> =0
t2+2t(r-(0—-C))+(0—-C)>-R*=0
at? +bt+c=0
where: a=1

b=2t(r (0-0))
¢ = (0 — C)*—R?

ing

Defined with origin C, normal n and radius R
Same computation as ray-plane intersection

After computing intersection parameter t we should

check if ||(O +tr) —C|| <R

Triangle

Defined by three points A, B, C

Intersection can be found using barycentric
coordinates

Pluv) =01-u—-v)*A+u*xB+v=*C

where: u > 0
v>0
ut+vs<li1

If ray intersects triangle they have a common point:

O+tr=1—-u—-v)*A+u*xB+v=*C

" o

