

PRIMITIVES

SEMINAR 2

Computer Graphics 2

Primitive Shading

\square Light source located at camera position
\square Lower light intensity of distant objects
\square Creates illusion of depth
Double intensity = MaxIntensity / ray.HitParam; return ray.HitModel.Color * intensity;

zNear \& zFar

\square Objects too close to camera would block all visible space

- zNear clips objects too close
\square Objects too far from camera are negligibly small
\square zFar clips invisible objects
\square Why z?

Bias

\square In computers: Double $\subset \mathbb{Q}$
\square We use bias to correct for missing numbers
\square Bias value depends on scene

$A A B B$ (Axis Aligned Bounding Box)

\square Defined by two points representing minimum and maximum extend of the box B_{0} and B_{1}
\square Intersection parameter can be calculated for each axis aligned plane defining the AABB
$\left(t_{0, x}, t_{1, x}, t_{0, y}, t_{1, y}, t_{0, z}, t_{1, z}\right)$

AABB - intersection parameters

$$
\begin{aligned}
r(t) & =0+t \boldsymbol{r} \\
y & =B_{0, x} \\
O_{x}+t r_{x} & =B_{0, x} \\
t_{0, x} & =\frac{B_{0, x}-O_{x}}{r_{x}}
\end{aligned}
$$

$t_{\text {min }}=\max \left\{t_{i, j} \mid \forall j \exists i: \forall k t_{i, j} \leq t_{k, j}\right\}$, $i \in\{0,1\}, k \in\{0,1\}, j \in\{x, y, z\}$
$t_{\text {max }}=\min \left\{t_{i, j} \mid \forall j \exists i: \forall k t_{i, j} \geq t_{k, j}\right\}$, $i \in\{0,1\}, k \in\{0,1\}, j \in\{x, y, z\}$

AABB checking for intersection

\square Intersection actually occurs iff. $t_{\text {min }} \leq t_{\max }$
\square Resulting hit parameter is $t_{\text {min }}$

Sphere

$$
\|X-C\|^{2}-R^{2}=0
$$

\square Defined by center point C and radius R
\square Intersection point can be solved analytically or geometrically

Sphere - Geometric Solution

$t_{0}=t_{c a}-t_{h c} \quad t_{1}=t_{c a}+t_{h c}$
$P=O+t_{0} \boldsymbol{r} \quad P^{\prime}=O+t_{1} \boldsymbol{r}$
$\mathbf{L}=C-O \quad t_{c a}=\boldsymbol{L} \cdot \boldsymbol{r}$
$t_{c a}$ should be greater than zero. What does $\boldsymbol{L} \cdot \boldsymbol{r}$ represent? Using Pythagorean theorem:

$$
\begin{aligned}
& d^{2}+t_{c a}^{2}=\boldsymbol{L}^{2} \\
& d=\sqrt{\boldsymbol{L}^{2}-t_{c a}^{2}}, 0 \leq d \leq R \\
& d^{2}+t_{h c}^{2}=R^{2} \\
& t_{h c}^{2}=\sqrt{\boldsymbol{R}^{2}-d^{2}}
\end{aligned}
$$

Sphere - Analytical Solution

$$
\begin{gathered}
\|X-C\|^{2}-R^{2}=0 \\
\|O+t \boldsymbol{r}-C\|^{2}-R^{2}=0 \\
t^{2}(\boldsymbol{r} \cdot \boldsymbol{r})+2 t(\boldsymbol{r} \cdot(O-C))+(O-C)^{2}-R^{2}=0 \\
t^{2}+2 t(\boldsymbol{r} \cdot(O-C))+(O-C)^{2}-R^{2}=0 \\
a t^{2}+b t+c=0 \\
\text { where: } \quad a=1 \\
b=2 t(\boldsymbol{r} \cdot(O-C)) \\
c=(O-C)^{2}-R^{2}
\end{gathered}
$$

\square Defined with origin C, normal n and radius R
\square Same computation as ray-plane intersection
After computing intersection parameter \dagger we should check if $\|(O+t \boldsymbol{r})-C\| \leq R$

Triangle

\square Defined by three points A, B, C
\square Intersection can be found using barycentric coordinates

$$
\mathrm{P}(u, v)=(1-u-v) * A+u * B+v * C
$$

where: $\quad u>0$

$$
\begin{aligned}
& \mathrm{v}>0 \\
& \mathrm{u}+\mathrm{v} \leq 1
\end{aligned}
$$

If ray intersects triangle they have a common point:

$$
O+t \boldsymbol{r}=(1-u-v) * A+u * B+v * C
$$

