0

PRIMITIVES

SEMINAR 2

Computer Graphics 2

Primitive Shading

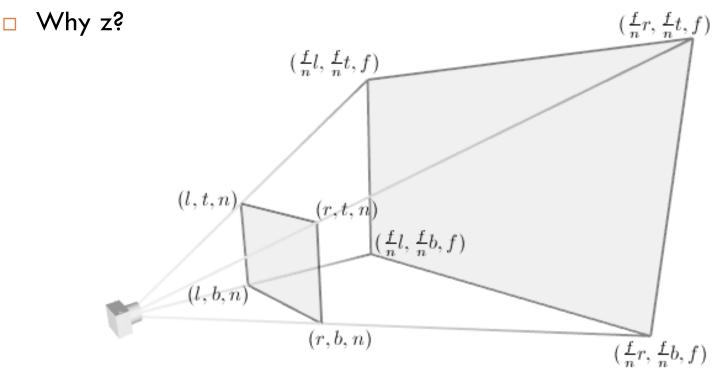
- Light source located at camera position
- Lower light intensity of distant objects
- Creates illusion of depth

Double intensity = MaxIntensity / ray.HitParam; return ray.HitModel.Color * intensity;

zNear & zFar

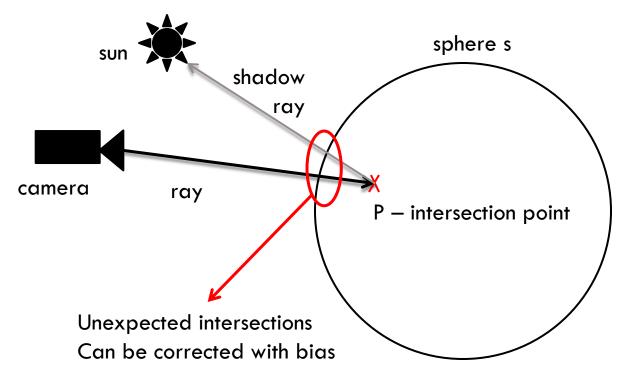
3

- Objects too close to camera would block all visible space
 - zNear clips objects too close
- Objects too far from camera are negligibly small
 - zFar clips invisible objects



Bias

- $\Box \text{ In computers: } Double \subset \mathbb{Q}$
- We use bias to correct for missing numbers
- Bias value depends on scene



AABB (Axis Aligned Bounding Box)

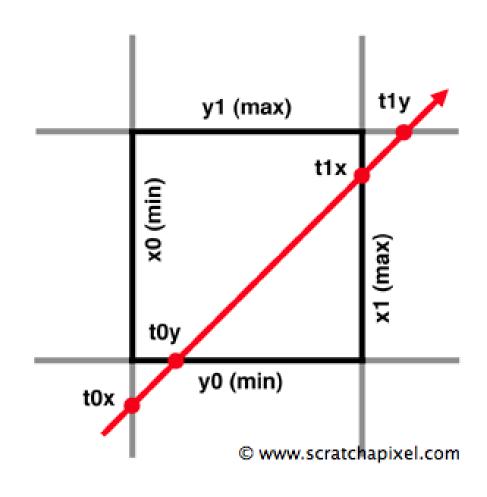
- 5
- Defined by two points representing minimum and maximum extend of the box B_0 and B_1
- Intersection parameter can be calculated for each axis aligned plane defining the AABB (t_{0,x}, t_{1,x}, t_{0,y}, t_{1,y}, t_{0,z}, t_{1,z})

AABB – intersection parameters

6

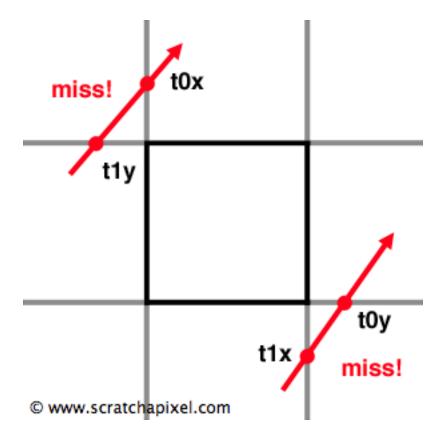
$$r(t) = 0 + tr$$
$$y = B_{0,x}$$
$$O_x + tr_x = B_{0,x}$$
$$t_{0,x} = \frac{B_{0,x} - O_x}{r_x}$$

$$\begin{split} t_{min} &= max\{t_{i,j} \mid \forall j \exists i: \forall k \ t_{i,j} \leq t_{k,j}\}, \\ i \ \in \{0,1\}, k \ \in \{0,1\}, j \ \in \{x,y,z\} \\ t_{max} &= min\{t_{i,j} \mid \forall j \exists i: \forall k \ t_{i,j} \geq t_{k,j}\}, \\ i \ \in \{0,1\}, k \ \in \{0,1\}, j \ \in \{x,y,z\} \end{split}$$



AABB checking for intersection

- 7
- \Box Intersection actually occurs iff. $t_{min} \leq t_{max}$
- \square Resulting hit parameter is t_{min}



$$||X - C||^2 - R^2 = 0$$

- Defined by center point C and radius R
- Intersection point can be solved analytically or geometrically

Sphere – Geometric Solution

- $t_0 = t_{ca} t_{hc} \qquad t_1 = t_{ca} + t_{hc}$
- $P = O + t_0 r \qquad P' = O + t_1 r$
- $\mathbf{L} = C 0 \qquad t_{ca} = \mathbf{L} \cdot \mathbf{r}$

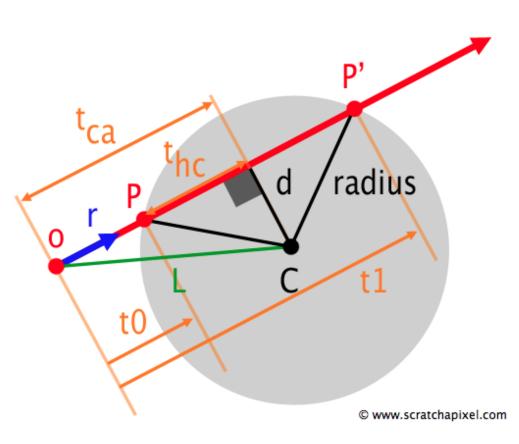
 t_{ca} should be greater than zero. What does $L \cdot r$ represent? Using Pythagorean theorem:

$$d^{2} + t_{ca}^{2} = L^{2}$$

$$d = \sqrt{L^{2} - t_{ca}^{2}}, 0 \le d \le R$$

$$d^{2} + t_{hc}^{2} = R^{2}$$

$$t_{hc}^{2} = \sqrt{R^{2} - d^{2}}$$



Sphere – Analytical Solution

10

$$||X - C||^{2} - R^{2} = 0$$

$$||O + tr - C||^{2} - R^{2} = 0$$

$$t^{2}(r \cdot r) + 2t(r \cdot (O - C)) + (O - C)^{2} - R^{2} = 0$$

$$t^{2} + 2t(r \cdot (O - C)) + (O - C)^{2} - R^{2} = 0$$

$$at^{2} + bt + c = 0$$

where: $a = 1$
 $b = 2t(r \cdot (O - C))$
 $c = (O - C)^{2} - R^{2}$

Ring

- Defined with origin C, normal n and radius R
- Same computation as ray-plane intersection
- □ After computing intersection parameter t we should check if $||(0 + t\mathbf{r}) C|| \le R$

Triangle

- Defined by three points A, B, C
- Intersection can be found using barycentric coordinates

$$P(u, v) = (1 - u - v) * A + u * B + v * C$$

where: $u > 0$
 $v > 0$
 $u + v \le 1$

If ray intersects triangle they have a common point:

$$0 + t\mathbf{r} = (1 - u - v) * A + u * B + v * C$$

