
Computer Graphics 2

SHADERS, SHADING AND SHADOWS

SEMINAR 3

Ray Triangle Intersection
2

 First calculate u, v – check barycentric coordinates

 With valid barycentric coordinates calculate t

 0.68s vs 1s in sample scene

O

d A
B

C

P

Area Calculation Using Cross Product
3

A B

C D

𝐴(𝐴𝐵𝐷) =
𝑎 × 𝑏

2

View Frustum
4

(𝑙, 𝑡, 𝑛)

(𝑙, 𝑏, 𝑛)

(𝑟, 𝑡, 𝑛)

(𝑟, 𝑏, 𝑛)

(𝑃𝑙 , 𝑃𝑡, 𝑓)

(𝑃𝑙 , 𝑃𝑏, 𝑓)

(𝑃𝑟, 𝑃𝑡, 𝑓)

(𝑃𝑟, 𝑃𝑡, 𝑓)
𝑋

𝑌

𝑍

View Frustum Translate
5

𝑋

𝑌

𝑍

View Frustum Rotate
6

𝑋

𝑌

𝑍

What’s New?
7

 Ray carries hit normal

 Light

 Shaders

Hit Normal
8

 Normal of objects’ surface at intersection point of a

ray with an object

 How to calculate it for plane and sphere?

 Used in calculation of illumination

Light
9

 Various types of light sources

 Directional light, spot light, point light, area light

 Each light has

 Intensity – defines strength with which light illuminates

the scene

 Color – defines the color of the light

 Diffuse color

 Specular color

 Ambient color

Directional Light - Sun
10

 Infinite distance from the scene

 Light rays emanate in single parallel direction

 Equal intensity in the whole scene

Shader
11

 Used to define color at a point

 Color is usually calculated using:

 Point in the scene

 Normal of points’ surface

 Direction from point to eye

 Direction from point to light source

 Light intensity and color at point

Rendering Equation
12

𝐿0 𝑥,𝝎 = 𝐿𝑒 𝑥,𝝎 + 𝑓𝑟 𝑥,𝝎
′, 𝝎 𝐿𝑖 𝑥,𝝎

′ 𝝎′ ⋅ 𝒏 d𝝎′

Ω

𝒏

𝝎 𝝎′ 𝛀

X

d𝝎′ d𝝎

Bidirectional Reflectance Distribution

Function (BRDF)
13

𝑓𝑟 𝑥,𝝎
′, 𝝎

Positivity:

𝑓𝑟 𝑥,𝝎
′, 𝝎 ≥ 0

Helmholtz reciprocity:

𝑓𝑟 𝑥,𝝎
′, 𝝎 = 𝑓𝑟 𝑥,𝝎,𝝎′

Conserving energy:

∀𝝎′, 𝑓𝑟 𝑥,𝝎
′, 𝝎 𝐿𝑖 𝑥,𝝎

′ 𝝎′ ⋅ 𝒏 d𝝎′

Ω

≤ 1

Phong Shader
14

 Local illumination model

 Not physically based, does not support:

 Helmholtz reciprocity

 Conserving energy

 Split light into components:

 Ambient – constant for the material

 Diffuse – depends on position of the light

 Specular – depends on light and eye position

Phong Shader - Illustration
15

Phong Ambient
16

 Simulates light incoming from objects in the scene

 No physical basis – just a constant

 𝑘𝑎 object ambient constant

 𝐼𝑎 ambient light color of a light source

𝐼𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = 𝑘𝑎𝐼𝑎

Phong Diffuse
17

 Lambertian diffuse reflection

 𝑘𝑑 object diffuse constant

 𝐼𝑑 incoming light diffuse color

 Scaled by light intensity

 (𝒍 ⋅ 𝒏) angle between illuminated point normal and

incoming light direction

𝐼𝑑𝑖𝑓𝑓 = 𝑘𝑑𝐼𝑑 𝒍 ⋅ 𝒏

Phong Diffuse BRDF
18

−𝝎′

Phong Specular
19

 Specular reflection in direction of perfect glossy reflection

 𝑘𝑠 object specular constant

 𝐼𝑙 incoming light specular color

 Scaled by light intensity

 𝒓 light vector reflected along point normal

 𝒗 view direction

 (𝒓 ⋅ 𝒗) angle between view direction and reflected vector

 𝑛𝑠 shinines

𝐼𝑠𝑝𝑒𝑐 = 𝑘𝑠𝐼𝑙(𝒓 ⋅ 𝒗)
𝑛𝑠

Blinn-Phong Specular
20

 Specular reflection in direction of perfect glossy reflection

 𝑘𝑠 object specular constant

 𝐼𝑙 incoming light specular color

 Scaled by light intensity

 𝒉 =
𝒍+𝒗

𝒍+𝒗
 vector between point normal and incoming light

direction

 (𝒉 ⋅ 𝒏) angle between illuminated point normal and half
vector

 𝑛𝑠 shinines

𝐼𝑠𝑝𝑒𝑐 = 𝑘𝑠𝐼𝑙(𝒉 ⋅ 𝒏)
𝑛𝑠

Phong Specular Component
21

Specular Component Visualization 1
22

Shininess = 1 Shininess = 20

Specular Component Visualization 2
23

Shininess = 1 Shininess = 20

Phong Shader – Putting It All Together
24

𝐼 = 𝐼𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 𝐼𝑑𝑖𝑓𝑓 + 𝐼𝑠𝑝𝑒𝑐 = 𝑘𝑎𝐼𝑎 + 𝑘𝑑𝐼𝑑 𝒍 ⋅ 𝒏 + 𝑘𝑠𝐼𝑠(𝒉 ⋅ 𝒏)
𝑛𝑠

𝐼 = (𝑘𝑎𝐼𝑖,𝑎 + 𝑘𝑑𝐼𝑖,𝑑 𝒍𝒊 ⋅ 𝒏 + 𝑘𝑠𝐼𝑖,𝑠(𝒉𝒊 ⋅ 𝒏)
𝑛𝑠)

𝑛

𝑖=1

Checker Board Shader
25

 Consists of two shaders: S0, S1

 Defines cube size s

 Partitions space into cubes

 Even cubes use S0

 Odd cubes use S1

𝑐ℎ𝑒𝑐𝑘𝑒𝑟 𝑥, 𝑦, 𝑧 =
𝑆0, 𝑥/𝑠 + 𝑦/𝑠 + 𝑧/𝑠 𝑚𝑜𝑑 2 = 0
𝑆1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐ℎ𝑒𝑐𝑘𝑒𝑟 𝑥 =
𝑆0, 𝑥/𝑠 𝑚𝑜𝑑 2 = 0
𝑆1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Questions? 26

