SHADERS, SHADING AND SHADOWS

SEMINAR 3

Computer Graphics 2

Ray Triangle Intersection

- 2
- □ First calculate u, v check barycentric coordinates
- With valid barycentric coordinates calculate t
- □ 0.68s vs 1s in sample scene

Area Calculation Using Cross Product

View Frustum

4

View Frustum Translate

View Frustum Rotate

What's New?

- Ray carries hit normal
- Light
- □ Shaders

Hit Normal

Normal of objects' surface at intersection point of a ray with an object

- How to calculate it for plane and sphere?
- Used in calculation of illumination

Light

- Various types of light sources
 - Directional light, spot light, point light, area light
- Each light has
 - Intensity defines strength with which light illuminates the scene
 - Color defines the color of the light
 - Diffuse color
 - Specular color
 - Ambient color

Directional Light - Sun

- 10
- Infinite distance from the scene
- Light rays emanate in single parallel direction
- Equal intensity in the whole scene

Shader

- Used to define color at a point
- Color is usually calculated using:
 - Point in the scene
 - Normal of points' surface
 - Direction from point to eye
 - Direction from point to light source
 - Light intensity and color at point

Rendering Equation

Bidirectional Reflectance Distribution Function (BRDF)

 $f_r(x, \boldsymbol{\omega}', \boldsymbol{\omega})$

Positivity:

 $f_r(x, \boldsymbol{\omega}', \boldsymbol{\omega}) \geq 0$

Helmholtz reciprocity:

$$f_r(x, \boldsymbol{\omega}', \boldsymbol{\omega}) = f_r(x, \boldsymbol{\omega}, \boldsymbol{\omega}')$$

Conserving energy:

$$\forall \boldsymbol{\omega}', \int_{\Omega} f_r(x, \boldsymbol{\omega}', \boldsymbol{\omega}) L_i(x, \boldsymbol{\omega}')(\boldsymbol{\omega}' \cdot \boldsymbol{n}) \mathrm{d} \boldsymbol{\omega}' \leq 1$$

13

Phong Shader

- Local illumination model
- Not physically based, does not support:
 - Helmholtz reciprocity
 - Conserving energy
- Split light into components:
 - Ambient constant for the material
 - Diffuse depends on position of the light
 - Specular depends on light and eye position

Phong Shader - Illustration

Phong Ambient

$$I_{ambient} = k_a I_a$$

- Simulates light incoming from objects in the scene
- No physical basis just a constant
- \Box k_a object ambient constant
- \Box I_a ambient light color of a light source

Phong Diffuse

$$I_{diff} = k_d I_d (\boldsymbol{l} \cdot \boldsymbol{n})$$

- Lambertian diffuse reflection
- $\square k_d$ object diffuse constant
- \Box I_d incoming light diffuse color
 - Scaled by light intensity
- \Box ($l \cdot n$) angle between illuminated point normal and incoming light direction

Phong Diffuse BRDF

Phong Specular

$$I_{spec} = k_s I_l (\boldsymbol{r} \cdot \boldsymbol{v})^{n_s}$$

- Specular reflection in direction of perfect glossy reflection
- \square k_s object specular constant
- \Box I_l incoming light specular color
 - Scaled by light intensity
- \Box *r* light vector reflected along point normal
- $\square v$ view direction
- \square ($r \cdot v$) angle between view direction and reflected vector
- \square n_s shinines

Blinn-Phong Specular

$$I_{spec} = k_s I_l (\boldsymbol{h} \cdot \boldsymbol{n})^{n_s}$$

- Specular reflection in direction of perfect glossy reflection
- \square k_s object specular constant
- \Box I_l incoming light specular color
 - Scaled by light intensity
- $\square h = \frac{l+v}{|l+v|}$ vector between point normal and incoming light direction
- \square $(\boldsymbol{h}\cdot\boldsymbol{n})$ angle between illuminated point normal and half vector
- \square n_s shinines

Phong Specular Component

Specular Component Visualization 1

Shininess = 1

Shininess = 20

Specular Component Visualization 2

Shininess = 1

Shininess = 20

Phong Shader – Putting It All Together

$$I = I_{ambient} + I_{diff} + I_{spec} = k_a I_a + k_d I_d (\boldsymbol{l} \cdot \boldsymbol{n}) + k_s I_s (\boldsymbol{h} \cdot \boldsymbol{n})^{n_s}$$

$$I = \sum_{i=1}^{n} (k_a I_{i,a} + k_d I_{i,d} (\boldsymbol{l_i} \cdot \boldsymbol{n}) + k_s I_{i,s} (\boldsymbol{h_i} \cdot \boldsymbol{n})^{n_s})$$

Checker Board Shader

- Consists of two shaders: S0, S1
- Defines cube size s
- Partitions space into cubes
 - Even cubes use SO
 - Odd cubes use S1

$$checker(x) = \begin{cases} S_0, & \lfloor x/s \rfloor \mod 2 = 0 \\ S_1, & otherwise \end{cases}$$

 $checker(x, y, z) = \begin{cases} S_0, \\ S_1, \end{cases}$

 $(\lfloor x/s \rfloor + \lfloor y/s \rfloor + \lfloor z/s \rfloor) \mod 2 = 0$ otherwise

