

Outline of Lesson 04

* Linear Transformations
* Affine Transformations
* Perspective Projections
* Parallel Projections

Linear Transformations

* Function $L: R^{n} \rightarrow R^{m}$ is linear iff
$\rightarrow \mathrm{L}(\mathrm{u}+\mathrm{v})=\mathrm{L}(\mathrm{u})+\mathrm{L}(\mathrm{v})$ (addition)
$\rightarrow \mathrm{L}(\mathrm{cu})=\mathrm{cL}(\mathrm{u})$ (scalar multiplication)
* Linear function preserves linear combinations

$$
\rightarrow L\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)=c_{1} L\left(u_{1}\right)+\ldots+c_{n} L\left(u_{n}\right)
$$

* Linear function L is a linear transformation iff
\rightarrow Inverse function L^{-1} exists (is invertible)

Linear Transformations

* Linear transformation $L:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$

$$
\begin{aligned}
& \rightarrow x_{1}^{\prime}=\mathrm{c}_{11} \mathrm{x}_{1}+\ldots+\mathrm{c}_{1 \mathrm{n}} \mathrm{x}_{n} \\
& \rightarrow \ldots \\
& \rightarrow \mathrm{x}_{\mathrm{n}}^{\prime}=\mathrm{c}_{n 1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{n n} \mathrm{x}_{n} \quad \quad\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x^{\prime}{ }_{n}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
\end{aligned}
$$

* In matrix form
$\rightarrow L(x): x^{\prime} \rightarrow M x$
$\rightarrow x=\left(x_{1}, \ldots, x_{n}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$
$\rightarrow M$ is $(n \times n)$ transformation matrix $M=\left(c_{i j}\right)$

Linear Transformations

* Suppose linear transformations L_{1} and L_{2}
$\rightarrow L_{1}(x)=M_{1} x$
$\rightarrow L_{2}(x)=M_{2} x$
* Composite transformation $L(x)=L_{2}\left(L_{1}(x)\right)$
$\rightarrow L(x)=L_{2}\left(L_{1}(x)\right)=L_{2}\left(M_{1} x\right)=M_{2}\left(M_{1} x\right)=\left(M_{2} M_{1}\right) x=M x$
\rightarrow Is linear again: $L(x)=M x$ where $M=M_{2} M_{1}$
\rightarrow Is closed under composition $M=M_{k} \cdot M_{1}$

Scale

* Scale in 3D by $\mathrm{s}_{x}, \mathrm{~s}_{y}, \mathrm{~s}_{z}$

$$
\begin{aligned}
& \Rightarrow x^{\prime}=s_{x} x \\
& \Rightarrow y^{\prime}=s_{y} y \\
& \rightarrow z^{\prime}=s_{z} z
\end{aligned}
$$

* In Matrix form

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{n}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Shear

* Shear in 3D by sh $h_{x y}, s h_{x z}, s h_{y x}, s h_{y z}, s h_{z x} s h_{z y}$

$$
\begin{aligned}
& \Rightarrow x^{\prime}=x+s h_{x y} y+s h_{x z} z \\
& \Rightarrow y^{\prime}=s_{y x} x+y+s h_{y z} z \\
& \Rightarrow z^{\prime}=s_{z} z+s h_{y z} z+z
\end{aligned}
$$

* In Matrix form

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & s h_{x y} & s h_{x x} \\
s h_{y x} & 1 & s h_{y z} \\
s h_{z x} & s h_{z y} & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Rotation about Coordinate Axis

* Rotation about Z-axis

X-Axis Rotation

* Rotation about X-axis in 3D by angle a_{x}

$$
\begin{aligned}
& \rightarrow x^{\prime}=x \\
& \rightarrow y^{\prime}=\cos \left(a_{x}\right) y-\sin \left(a_{x}\right) z \\
& \rightarrow z^{\prime}=\sin \left(a_{x}\right) y+\cos \left(a_{x}\right) z
\end{aligned}
$$

* In Matrix form

Y-Axis Rotation

* Rotation about Y-axis in 3D by angle a_{y}

$$
\begin{aligned}
& \Rightarrow x^{\prime}=\cos \left(a_{y}\right) x+\sin \left(a_{y}\right) z \\
& \Rightarrow y^{\prime}=y \\
& \Rightarrow z^{\prime}=-\sin \left(a_{y}\right) x+\cos \left(a_{y}\right) z
\end{aligned}
$$

* In Matrix form

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
+\cos \alpha & 0 & +\sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & +\cos \alpha
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Z-Axis Rotation

* Rotation about X-axis in 3D by angle a_{x}

$$
\begin{aligned}
& \Rightarrow x^{\prime}=\cos \left(a_{z}\right) x-\sin \left(a_{z}\right) y \\
& \Rightarrow y^{\prime}=\sin \left(a_{z}\right) x+\cos \left(a_{2}\right) y \\
& \Rightarrow z^{\prime}=z
\end{aligned}
$$

* In Matrix form

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
+\cos \alpha & -\sin \alpha & 0 \\
+\sin \alpha & +\cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

XYZ Rotation

* XYZ Rotation $\left(a_{x}, a_{y}, a_{z}\right)$ is composite rotation around X-axis then by Y-axis and finally Z-axis
$\rightarrow R(v)=R_{z}\left(R_{y}\left(R_{x}(v)\right)\right)=R_{z} R_{y} R_{x} v=R v$
$\rightarrow R=R_{z} R_{y} R_{x}$ (matrix multiplication)

Linear Transformation Summary

* Origin maps to origin
* Lines map to lines
* Parallel lines remain parallel
* Rotations are preserved
* Closed under composition...
* However simple translation can not be defined with linear transformation \rightarrow we need affine transformations

What is Translation

* What is actually translation?
* Translation of point P by a vector v is new point $P^{\prime}(=P+v)$
* Translation of vector u by a vector v is the same vector $\mathrm{v}^{\prime}(=\mathrm{v})$

Affine Transformations

* Affine transformation $A:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$

$$
\rightarrow x_{1}^{\prime}=c_{11} x_{1}+\ldots+c_{1 n} x_{n}+t_{1}
$$

$$
\left(\begin{array}{c}
x^{\prime}{ }_{1} \\
\vdots \\
x^{\prime}{ }_{n}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \cdots & c_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n} \\
x_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)
$$

* In a "translation" form
$\rightarrow A(x): x^{\prime} \rightarrow M x+t(=$ linear transform. + translation $)$
$\rightarrow x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\left|x=\left(x_{1}, \ldots, x_{n}\right)\right| t=\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$
$\rightarrow M$ is $(n \times n)$ transformation matrix $M=\left(c_{i j}\right)$

Affine Transformations

* Can we find pure matrix form?
* Yes, we need homogenous coordinates
\Rightarrow Use one more dimension ($\mathrm{R}^{\mathrm{n+1}}$)
\rightarrow Points: $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ become $\left(\rho_{i}, \ldots, \rho_{n}, 1\right)$
\rightarrow Vectors: $\mathrm{v}=\left(\mathrm{v}_{\mathrm{p}}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$ become $\left(\mathrm{v}_{\mathrm{p}}, \ldots, \mathrm{v}_{\mathrm{n}}, 0\right)$
* Matrix form

$$
\left(\begin{array}{c}
p^{\prime}{ }_{1} \\
\vdots \\
p^{\prime}{ }_{n} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
c_{11} & \cdots & c_{1 \mathrm{n}} & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
c_{n 1} & \cdots & c_{n n} & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{n} \\
1
\end{array}\right) \quad\left(\begin{array}{c}
v^{\prime} \\
{ }_{1} \\
\vdots \\
v^{\prime}{ }_{n} \\
0
\end{array}\right)=\left(\begin{array}{cccc}
c_{11} & \cdots & c_{1 \mathrm{n}} & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
c_{n 1} & \cdots & c_{n n} & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n} \\
0
\end{array}\right)
$$

Translation in Matrix form

* Translation of point (or vector) $x^{\prime}=x+t$
$\rightarrow x^{\prime}=\left(x_{p}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}, x_{n+1}^{\prime}\right), x=\left(x_{1}, \ldots, x_{n}, x_{n+1}\right), t=\left(t_{1}, \ldots, t_{n}, 0\right)$
$\rightarrow x_{1}=x_{1}+t_{1}|\ldots| x_{n}=x_{n}+t_{n}$
* Can be expressed in matrix form as
$\rightarrow x^{\prime}=T x$
$\rightarrow T$ - is translation matrix $\left(R^{n+1} \times R^{n+1}\right)$

$$
\begin{aligned}
\left(\begin{array}{c}
x^{\prime} \\
\vdots \\
\vdots \\
x^{\prime}{ }_{n} \\
x^{\prime}{ }_{n+1}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & \cdots & 0 & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{n+1}
\end{array}\right) \\
\mathbf{X}^{\prime} & =\mathbf{T}
\end{aligned}
$$

Affine Transformations

* Using homogenous coordinates we can
\Rightarrow Express linear transformation M and translation T

$$
\mathbf{M}=\left(\begin{array}{cccc}
c_{11} & \cdots & c_{\mathrm{ln}} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
c_{n l} & \cdots & c_{n n} & 0 \\
0 & \cdots & 0 & 1
\end{array}\right), \quad \mathbf{T}=\left(\begin{array}{cccc}
1 & \cdots & 0 & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

* Therefore $A(x)=M x+t=T(M x)=T M x$

$$
\left(\begin{array}{c}
x^{\prime}{ }_{1} \\
\vdots \\
x^{\prime}{ }_{n} \\
x^{\prime}{ }_{n+1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & \cdots & 0 & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
c_{11} & \cdots & c_{1 n} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
c_{n 1} & \cdots & c_{n n} & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{n+1}
\end{array}\right)=\left(\begin{array}{cccc}
c_{11} & \cdots & c_{1 n} & t_{1} \\
\vdots & \ddots & \vdots & \vdots \\
c_{n 1} & \cdots & c_{n n} & t_{n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{n+1}
\end{array}\right)
$$

Affine Transformation Summary

* Origin does not map to origin
* Lines map to lines
* Parallel lines remain parallel
* Rotations are preserved
* Closed under composition...
* Translation can be expressed

Projections

* General definition
\rightarrow Transform points in n-space to m-space ($m<n$)
* In computer graphics
\rightarrow Map 3D camera coordinates to 2D screen coordinates

Taxonomy Projections

Projection Types

Isometric

Elevation oblique

One-point perspective

Plan oblique

Three-point perspective

Perspective Projection

\rightarrow Map points onto "view plane" along "projectors" emanating from "center of projection" (COP)

Perspective Projection

* In perspective projection, a 3D point in
* a truncated pyramid - view frustum (in eye coordinates) is mapped to
* a cube (Normalized device coordinates)
\rightarrow The x-coordinate from $[1, r]$ to $[-1,1]$
\rightarrow The y-coordinate from $[b, t]$ to $[-1,1]$
\rightarrow The z-coordinate from $[n, f]$ to $[-1,1]$.

Perspective View Frustum

* Definition of perspective view frustum
$\rightarrow l$ (left), r (right), b (bottom), t (top), n (near), f (for)

Perspective Projection

* Eye to near plane projection $\left(x_{e}, y_{e}, z_{e}\right) \rightarrow\left(x_{\rho}, y_{\rho}, z_{\rho}\right)$
\rightarrow Similar triangles ratio $x_{\rho} / x_{e}=-n / z_{e} \rightarrow x_{\rho}=-\left(n / z_{e}\right) x_{e}$
\rightarrow Similar triangles ratio: $y_{\rho} / y_{e}=-n / z_{e} \rightarrow y_{\rho}=-\left(n / z_{e}\right) y_{e}$
\rightarrow We project on near plane $\rightarrow z_{\rho}=-n$

Perspective Projection

* Since projected point $\left(x_{\rho}, y_{\rho}, z_{\rho}\right)$ has division in its definition there is no matrix formulation
* We split Perspective Projection into
\rightarrow 1) Homogenous perspective projection P
\rightarrow 2) Clip projection C

Perspective Projection Steps

* Homogenous perspective projection
\rightarrow From eye coordinates ($\mathrm{x}_{\mathrm{e}}, \mathrm{y}_{\mathrm{e}}, \mathrm{z}_{\mathrm{e}}, \mathrm{w}_{\mathrm{e}}$)
\rightarrow To clip coordinates $\left(x_{c}, y_{c}, z_{c}, w_{c}\right)$
$\rightarrow 4 \times 4$ homogenous transformation matrix P

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right)
$$

Perspective Projection Steps

* Clip projection
\rightarrow From homogenous clip coordinates ($x_{e}, y_{e}, z_{e}, w_{e}$)
\rightarrow To normalized device coordinates (x_{n}, y_{n}, z_{n})
\rightarrow Reduction from homogenous coordinates to normal 3d coordinates

$$
\left(\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right)=\left(\begin{array}{l}
x_{c} / w_{c} \\
y_{c} / w_{c} \\
z_{c} / w_{c}
\end{array}\right)
$$

Perspective Projection

* Since x_{ρ} and y_{ρ} are inverse proportional to $-z_{e}$
* We set $\mathrm{w}_{\mathrm{c}}=-\mathrm{z}_{\mathrm{e}}$ to postpone division by $-\mathrm{z}_{\mathrm{e}}$ into Clip projection
* Therefore last row of homogenous projection matrix P is $(0,0,-1,0)$

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right)
$$

Perspective Projection

* Map x_{ρ} and y_{ρ} to x_{n} and y_{n} of NDC with linear interpolation $[1, r] \rightarrow[-1,1]$ and $[\mathrm{b}, \mathrm{t}] \rightarrow[-1,1]$

Mapping from x_{p} to x_{n}

$$
\begin{aligned}
x_{n} & =\frac{1-(-1)}{r-l} \cdot x_{p}+\beta \\
1 & =\frac{2 r}{r-l}+\beta \quad\left(\text { substitute }(r, 1) \text { for }\left(x_{p}, x_{n}\right)\right) \\
\beta & =1-\frac{2 r}{r-l}=\frac{r-l}{r-l}-\frac{2 r}{r-l} \\
& =\frac{r-l-2 r}{r-l}=\frac{-r-l}{r-l}=-\frac{r+l}{r-l} \\
\therefore x_{n} & =\frac{2 x_{p}}{r-l}-\frac{r+l}{r-l} \\
\therefore y_{n} & =\frac{2 y_{p}}{t-b}-\frac{t+b}{t-b}
\end{aligned}
$$

Perspective Projection

$$
\begin{aligned}
x_{n} & =\frac{2 x_{p}}{r-l}-\frac{r+l}{r-l} \quad\left(x_{p}=\frac{n x_{e}}{-z_{e}}\right) \\
& =\frac{2 \cdot \frac{n \cdot x_{e}}{-z_{e}}}{r-l}-\frac{r+l}{r-l} \\
& =\frac{2 n \cdot x_{e}}{(r-l)\left(-z_{e}\right)}-\frac{r+l}{r-l} \\
& =\frac{\frac{2 n}{r-l} \cdot x_{e}}{-z_{e}}-\frac{r+l}{r-l} \\
& =\frac{\frac{2 n}{r-l} \cdot x_{e}}{\frac{r+l}{r-l} \cdot z_{e}} \\
& =(\underbrace{\frac{2 n}{r-l} \cdot x_{e}+\frac{r+l}{r-l} \cdot z_{e}}_{x_{c}}) /-z_{e}
\end{aligned}
$$

$$
\begin{aligned}
y_{n} & =\frac{2 y_{p}}{t-b}-\frac{t+b}{t-b} \quad\left(y_{p}=\frac{n y_{e}}{-z_{e}}\right) \\
& =\frac{2 \cdot \frac{n \cdot y_{e}}{-z_{e}}}{t-b}-\frac{t+b}{t-b} \\
& =\frac{2 n \cdot y_{e}}{(t-b)\left(-z_{e}\right)}-\frac{t+b}{t-b} \\
& =\frac{\frac{2 n}{t-b} \cdot y_{e}}{-z_{e}}-\frac{t+b}{t-b} \\
& =\frac{\frac{2 n}{t-b} \cdot y_{e}}{-z_{e}}+\frac{\frac{t+b}{t-b} \cdot z_{e}}{-z_{e}} \\
& =(\underbrace{\frac{2 n}{t-b} \cdot y_{e}+\frac{t+b}{t-b} \cdot z_{e}}_{y_{c}}) /-z_{e}
\end{aligned}
$$

Perspective Projection

* Z_{n} and z_{c} do not depend on x_{e} and y_{e} thus

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2 \mathrm{n}}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 \mathrm{n}}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & A & B \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right)
$$

$$
z_{n}=\frac{z_{c}}{w_{c}}=\frac{A z_{e}+B w_{e}}{-z_{e}}
$$

* Solve A and B for boundary values of z_{e} and z_{n}
\rightarrow When $z_{e}=-n \rightarrow z_{n}=-1$

$$
-A n+B=-n
$$

\rightarrow When $z_{e}=-f \rightarrow z_{n}=+1 \quad \mid-A f+B=f$
\rightarrow Solve A and B from the these 2 linear equations

Perspective Projection

* After solving A and B we get

$$
\rightarrow A=-(f+n) /(f-n) \quad \mid \quad B=-2 f n /(f-n)
$$

* And we get final Projection Matrix

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2 \mathrm{n}}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 \mathrm{n}}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 \mathrm{fn}}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right)
$$

Parallel Projection

* Center of projection is at infinity *ู
\rightarrow Direction of projection (DOP) same for all points

Parallel Projection Types

Orthographic Projection

* Definition of orthographic view frustum
$\rightarrow I$ (left), r (right), b (bottom), t (top), n (near), f (far)

Orthographic Projection

* No homogenous projection needed
* We transform x_{e} to x_{n} with linear interpolation
* We map input interval $(l, r) \rightarrow(-1,+1)$

$$
\begin{aligned}
x_{n} & =\frac{1-(-1)}{r-l} \cdot x_{e}+\beta \\
1 & =\frac{2 r}{r-l}+\beta \quad\left(\text { substitute }(r, 1) \text { for }\left(x_{e}, x_{n}\right)\right) \\
\beta & =1-\frac{2 r}{r-l}=-\frac{r+l}{r-l} \\
\therefore x_{n} & =\frac{2}{r-l} \cdot x_{e}-\frac{r+l}{r-l}
\end{aligned}
$$

Orthographic Projection

* No homogenous projection needed
* We transform y_{e} to y_{n} with linear interpolation
* We map input interval $(\mathrm{b}, \mathrm{t}) \rightarrow(-1,+1)$

$$
\begin{aligned}
y_{n} & =\frac{1-(-1)}{t-b} \cdot y_{e}+\beta \\
1 & =\frac{2 t}{t-b}+\beta \quad\left(\text { substitute }(t, 1) \text { for }\left(y_{e}, y_{n}\right)\right) \\
\beta & =1-\frac{2 t}{t-b}=-\frac{t+b}{t-b} \\
\therefore y_{n} & =\frac{2}{t-b} \cdot y_{e}-\frac{t+b}{t-b}
\end{aligned}
$$

Orthographic Projection

* No homogenous projection needed
* We transform z_{e} to z_{n} with linear interpolation
* We map input interval $(-f,-n) \rightarrow(+1,-1)$

$$
\begin{aligned}
z_{n} & =\frac{1-(-1)}{-f-(-n)} \cdot z_{e}+\beta \\
1 & =\frac{2 f}{f-n}+\beta \quad\left(\text { substitute }(-f, 1) \text { for }\left(z_{e}, z_{n}\right)\right)
\end{aligned}
$$

$$
\beta=1-\frac{2 f}{f-n}=-\frac{f+n}{f-n}
$$

Mapping from z_{e} to $\mathrm{z}_{\mathrm{n}} \quad \therefore z_{n}=\frac{-2}{t-b} \cdot z_{e}-\frac{f+n}{f-n}$

Orthographic Projection

* Final 4×4 orthographic projection is
* It is affine transformation $w_{c}=w_{e}$

$$
\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)=\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{e} \\
y_{c} \\
z_{e} \\
w_{c}
\end{array}\right)
$$

Perspective vs. Parallel Projection

* Perspective projection
$\rightarrow+$ Size varies inversely with distance - looks realistic
\rightarrow - Distance and angles are not always preserved
\rightarrow - Parallel lines do not always remain parallel
* Parallel projection
$\rightarrow+$ Good for exact measurements
$\rightarrow+$ Parallel lines remain parallel
\rightarrow - Angles are not (in general) preserved
\rightarrow - Less realistic looking
\qquad

the End

that was enough...

