

Juraj O
nderik | onderik@sccg.sk

Transformations

Pr
oj

ect
ion

s

Lesson

04

Outline of Lesson 04

 Linear Transformations

 Affine Transformations

 Perspective Projections

 Parallel Projections

Linear Transformations

 Function L: Rn → Rm is linear iff
 L(u + v) = L(u) + L(v) (addition)
 L(cu) = cL(u) (scalar multiplication)

 Linear function preserves linear combinations

 L(c
1
u

1
 + … + c

n
u

n
) = c

1
L(u

1
) + … + c

n
L(u

n
)

 Linear function L is a linear transformation iff
 Inverse function L-1 exists (is invertible)

Linear Transformations

 Linear transformation L:(x
1
, …, x

n
)→(x'

1
, …, x'

n
)

 x'
1
 = c

11
x

1
 + … + c

1n
x

n

 …

 x'
n
 = c

n1
x

1
 + … + c

nn
x

n

 In matrix form
 L(x): x' → M x

 x = (x
1
, …, x

n
) and x' = (x'

1
, …, x'

n
)

 M is (n x n) transformation matrix M = (c
ij
)

(
x ' 1
⋮
x ' n)=(

c11 ⋯ c1n

⋮ ⋱ ⋮
cn1 ⋯ cnn)(

x1

⋮
xn)

Linear Transformations

 Suppose linear transformations L
1
 and L

2

 L
1
(x) = M

1
x

 L
2
(x) = M

2
x

 Composite transformation L(x) = L
2
(L

1
(x))

 L(x) = L
2
(L

1
(x)) = L

2
(M

1
x) = M

2
(M

1
x) = (M

2
M

1
)x = Mx

 Is linear again: L(x) = Mx where M = M
2
M

1

 Is closed under composition M = M
k
..M

1

Scale

 Scale in 3D by s
x
, s

y
, s

z

 x' = s
x
x

 y' = s
y
y

 z' = s
z
z

 In Matrix form

(
x '
y '
z ')=(

s x 0 0
0 s y 0
0 0 sn

)(
x
y
z)

x

y

Scale (0.7, 1.5, 1.0)
x

y

Shear

 Shear in 3D by sh
xy

, sh
xz

, sh
yx

, sh
yz

, sh
zx

 sh
zy

 x' = x + sh
xy

y + sh
xz

z

 y' = s
yx

x + y + sh
yz

z

 z' = s
z
z + sh

yz
z + z

 In Matrix form

(
x '
y '
z ')=(

1 shxy shxz
sh yx 1 sh yz
sh zx shzy 1)(

x
y
z)

x

y

x

y

Shear (1.3, 0, 0, 0, 0, 0)

Rotation about Coordinate Axis

 Rotation about Z-axis

z' = z

y

x

x' = (cos a, sin a)

a

a

y' = (-sin a, cos a)

X-Axis Rotation

 Rotation about X-axis in 3D by angle a
x

 x' = x

 y' = cos(a
x
)y - sin(a

x
)z

 z' = sin(a
x
)y + cos(a

x
)z

 In Matrix form

(
x '
y '
z ')=(

1 0 0
0 +cosα −sinα
0 +sin α +cosα)(

x
y
z)

y

z

Rotate
x
 (30o)

y

z

Y-Axis Rotation

 Rotation about Y-axis in 3D by angle a
y

 x' = cos(a
y
)x + sin(a

y
)z

 y' = y

 z' = -sin(a
y
)x + cos(a

y
)z

 In Matrix form

(
x '
y '
z ')=(

+cosα 0 +sin α
0 1 0

−sin α 0 +cosα)(
x
y
z)

x

z

Rotate
z
 (30o)

x

z

Z-Axis Rotation

 Rotation about X-axis in 3D by angle a
x

 x' = cos(a
z
)x - sin(a

z
)y

 y' = sin(a
z
)x + cos(a

z
)y

 z' = z

 In Matrix form

(
x '
y '
z ')=(

+cosα −sin α 0
+sinα +cosα 0

0 0 1)(
x
y
z)

x

y

Rotate
z
 (30o)

x

y

XYZ Rotation

 XYZ Rotation (a
x
, a

y
, a

z
) is composite rotation

around X-axis then by Y-axis and finally Z-axis

 R(v) = R
z
(R

y
(R

x
(v))) = R

z
R

y
R

x
v = Rv

 R = R
z
R

y
R

x
 (matrix multiplication)

Rotate X

x

z

y
x

z

y
x

z

y
x

z

y

Rotate Y Rotate Z

Linear Transformation Summary

 Origin maps to origin

 Lines map to lines

 Parallel lines remain parallel

 Rotations are preserved

 Closed under composition...

 However simple translation can not be defined
with linear transformation → we need affine
transformations

What is Translation

 What is actually translation ?

 Translation of point P by a vector v is new
point P' (= P + v)

 Translation of vector u by a vector v is the
same vector v' (=v)

P

P'

v
u

u'

v

Affine Transformations

 Affine transformation A:(x
1
, …, x

n
)→(x'

1
, …, x'

n
)

 x'
1
 = c

11
x

1
 + … + c

1n
x

n
 + t

1

 …

 x'
n
 = c

n1
x

1
 + … + c

nn
x

n
 + t

n

 In a “translation” form
 A(x): x' → M x + t (= linear transform. + translation)

 x' = (x'
1
, …, x'

n
) | x = (x

1
, …, x

n
) | t = (t'

1
, …, t'

n
)

 M is (n x n) transformation matrix M = (c
ij
)

(
x ' 1
⋮
x ' n)=(

c11 ⋯ c1n

⋮ ⋱ ⋮
cn1 ⋯ cnn)(

x1

⋮
xn)+(

t1
⋮
t n)

Affine Transformations

 Can we find pure matrix form ?

 Yes, we need homogenous coordinates
 Use one more dimension (Rn+1)

 Points: p = (p
1
, …, p

n
) become (p

1
, …, p

n
, 1)

 Vectors: v = (v
1
, …, v

n
) become (v

1
, …, v

n
, 0)

 Matrix form

(
p' 1
⋮
p ' n
1
)=(

c11 ⋯ c1n t1
⋮ ⋱ ⋮ ⋮
cn1 ⋯ cnn t n
0 ⋯ 0 1

)(
p1

⋮
pn
1
) (

v ' 1
⋮
v ' n
0
)=(

c11 ⋯ c1n t1
⋮ ⋱ ⋮ ⋮
cn1 ⋯ cnn t n
0 ⋯ 0 1

)(
v1

⋮
v n
0
)

Translation in Matrix form

 Translation of point (or vector) x' = x + t

 x' = (x'
1
, …, x'

n
, x'

n+1
), x = (x

1
, …, x

n
, x

n+1
), t = (t

1
, …, t

n
, 0)

 x
1
 = x

1
 + t

1
 | … | x

n
 = x

n
 + t

n

 Can be expressed in matrix form as
 x' = T x
 T – is translation

matrix (Rn+1 x Rn+1) (
x ' 1
⋮
x ' n
x ' n+1

)=(
1 ⋯ 0 t1
⋮ ⋱ ⋮ ⋮
0 ⋯ 1 t n
0 ⋯ 0 1

)(
x1

⋮
xn
xn+1

)
x' = T x

Affine Transformations

 Using homogenous coordinates we can
 Express linear transformation M and translation T

 Therefore A(x) = Mx + t = T(Mx) = TMx

M=(
c11 ⋯ c1n 0
⋮ ⋱ ⋮ ⋮
cn1 ⋯ cnn 0
0 ⋯ 0 1

) , T=(
1 ⋯ 0 t1
⋮ ⋱ ⋮ ⋮
0 ⋯ 1 t n
0 ⋯ 0 1

)

(
x ' 1
⋮
x ' n
x ' n+1

)=(
1 ⋯ 0 t1
⋮ ⋱ ⋮ ⋮
0 ⋯ 1 t n
0 ⋯ 0 1

)(
c11 ⋯ c1n 0
⋮ ⋱ ⋮ ⋮
cn1 ⋯ cnn 0
0 ⋯ 0 1

)(
x1

⋮
xn
xn+1

)=(
c11 ⋯ c1n t1
⋮ ⋱ ⋮ ⋮
cn1 ⋯ cnn t n
0 ⋯ 0 1

)(
x1

⋮
xn
xn+1

)

Affine Transformation Summary

 Origin does not map to origin

 Lines map to lines

 Parallel lines remain parallel

 Rotations are preserved

 Closed under composition...

 Translation can be expressed

Projections

 General definition
 Transform points in n-space to m-space (m<n)

 In computer graphics
 Map 3D camera coordinates to 2D screen

coordinates

Taxonomy Projections

Planar geometric
projections

Parallel Perspective

Orthographic Oblique

Top
(plan)

Front
elevation

Side
elevation

Axonometric

Cabinet

Cavalier

Other

One-point

Two-point

Three-point

Isometric
Other

Projection Types

Perspective Projection

 Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Perspective Projection

 In perspective projection, a 3D point in

 a truncated pyramid - view frustum (in eye
coordinates) is mapped to

 a cube (Normalized device coordinates)
 The x-coordinate from [l, r] to [-1, 1]
 The y-coordinate from [b, t] to [-1, 1]
 The z-coordinate from [n, f] to [-1, 1].

Perspective View Frustum

 Definition of perspective view frustum
 l (left), r (right), b (bottom), t (top), n (near), f (far)

Eye coordinates

Normalized Device
Coordinates (NDC)

Perspective
View Frustum

Canonical View
Volume

 Eye to near plane projection (x
e
,y

e
,z

e
)→(x

p
,y

p
,z

p
)

 Similar triangles ratio x
p
/x

e
 = -n/z

e
 → x

p
 = -(n/z

e
)x

e

 Similar triangles ratio: y
p
/y

e
 = -n/z

e
 → y

p
 = -(n/z

e
)y

e

 We project on near plane → z
p
 = -n

Perspective Projection

Perspective Projection

 Since projected point (x
p
,y

p
,z

p
) has division in

its definition there is no matrix formulation

 We split Perspective Projection into
 1) Homogenous perspective projection P
 2) Clip projection C

Perspective Projection Steps

 Homogenous perspective projection

 From eye coordinates (x
e
, y

e
, z

e
, w

e
)

 To clip coordinates (x
c
, y

c
, z

c
, w

c
)

 4x4 homogenous transformation matrix P

(
xc
yc
z c
wc
)=(

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

)(
xe
ye
ze
we
)

Perspective Projection Steps

 Clip projection

 From homogenous clip coordinates (x
e
, y

e
, z

e
, w

e
)

 To normalized device coordinates (x
n
, y

n
, z

n
)

 Reduction from homogenous coordinates to
normal 3d coordinates

(
xn
yn
zn
)=(

xc/wc
yc/wc
zc /wc

)

Perspective Projection

 Since x
p
 and y

p
 are inverse proportional to -z

e

 We set w
c
 = -z

e
 to postpone division by -z

e
 into

Clip projection

 Therefore last row of homogenous projection
matrix P is (0,0,-1,0)

(
xc
yc
z c
wc
)=(

? ? ? ?
? ? ? ?
? ? ? ?
0 0 −1 0

)(
xe
ye
z e
we
)

Perspective Projection

 Map x
p
 and y

p
 to x

n
 and y

n
 of NDC with linear

interpolation [l, r] → [-1, 1] and [b, t] → [-1, 1]

Perspective Projection

Perspective Projection

 z
n
 and z

c
 do not depend on x

e
 and y

e
 thus

 Solve A and B for boundary values of z
e
 and z

n

 When z
e
 = -n → z

n
 = -1 | -An + B = -n

 When z
e
 = -f → z

n
 = +1 | -Af + B = f

 Solve A and B from the these 2 linear equations

(
xc
yc
z c
wc
)=(

2n
r−l

0
r+l
r−l

0

0
2n
t−b

t+b
t−b

0

0 0 A B
0 0 −1 0

)(
xe
ye
ze
we
) zn=

zc
wc

=
Aze+Bwe

−ze

Perspective Projection

 After solving A and B we get
 A = -(f + n) / (f - n) | B = -2fn / (f – n)

 And we get final Projection Matrix

(
xc
yc
z c
wc
)=(

2n
r−l

0
r+l
r−l

0

0
2n
t−b

t+b
t−b

0

0 0
−(f +n)
f −n

−2fn
f −n

0 0 −1 0
)(xeyezew e)

Parallel Projection

 Center of projection is at infinity ✌
 Direction of projection (DOP) same for all points

Parallel Projection Types

Orthographic Projection

 Definition of orthographic view frustum
 l (left), r (right), b (bottom), t (top), n (near), f (far)

Eye coordinates
Normalized Device
Coordinates (NDC)

Orthographic View Frustum

Canonical View
Volume

Orthographic Projection

 No homogenous projection needed

 We transform x
e
 to x

n
 with linear interpolation

 We map input interval (l, r) → (-1, +1)

Orthographic Projection

 No homogenous projection needed

 We transform y
e
 to y

n
 with linear interpolation

 We map input interval (b, t) → (-1, +1)

Orthographic Projection

 No homogenous projection needed

 We transform z
e
 to z

n
 with linear interpolation

 We map input interval (-f, -n) → (+1, -1)

Orthographic Projection

 Final 4x4 orthographic projection is

 It is affine transformation w
c
 = w

e

(
xc
yc
z c
wc
)=(

2
r−l

0 0 −
r+l
r−l

0
2
t−b

0 −
t+b
t−b

0 0
−2
f −n

−
f +n
f −n

0 0 0 1
)(xeyezewe)

Perspective vs. Parallel Projection

 Perspective projection
 + Size varies inversely with distance - looks realistic
 - Distance and angles are not always preserved
 - Parallel lines do not always remain parallel

 Parallel projection
 + Good for exact measurements
 + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

the
End

that was enough...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

