Position based Dynamics

Position

Mass

Position based Dynamics

Position based Dynamics

$$
C\left(p_{1}, p_{2}\right)=\left|p_{1}-p_{2}\right|-d
$$

Position based Dynamics

Position based Dynamics

$$
\begin{gathered}
C\left(p_{1}, p_{2}\right)=\left|p_{1}-p_{2}\right|-d \\
\nabla p_{1} C\left(p_{1}, p_{2}\right)=\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|} \\
\nabla p_{2} C\left(p_{1}, p_{2}\right)=-\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
\end{gathered}
$$

Position based Dynamics

$$
\begin{gathered}
\nabla p_{1} C\left(p_{1}, p_{2}\right)=\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|} \\
\nabla p_{2} C\left(p_{1}, p_{2}\right)=-\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
\end{gathered}
$$

$$
\nabla{ }_{p_{1}} C\left(p_{1}, p_{2}\right)=\left(\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}\right)
$$

Position based Dynamics

$$
\begin{aligned}
& \nabla_{p_{1}} C\left(p_{1}, p_{2}\right)=\left(\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}\right) \\
& \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}=\frac{\partial\left(\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}-d\right)}{\partial x_{1}}= \\
& =\frac{\partial \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}}{\partial x_{1}}= \\
& \frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right)^{-\frac{1}{2}} * 2\left(x_{1}-x_{2}\right) \frac{\partial\left(x_{1}-x_{2}\right)}{\partial x_{1}}= \\
& =\frac{x_{1}-x_{2}}{\left|p_{1}-p_{2}\right|}
\end{aligned}
$$

Position based Dynamics

$$
\nabla{ }_{p_{1}} C\left(p_{1}, p_{2}\right)=\left(\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}\right)
$$

$$
\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}=\frac{\partial\left(\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}-d\right)}{\partial y_{1}}=
$$

$$
=\frac{\partial \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}}{\partial y_{1}}=
$$

$$
\frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right)^{-\frac{1}{2}} * 2\left(y_{1}-y_{2}\right) \frac{\partial\left(y_{1}-y_{2}\right)}{\partial y_{1}}=
$$

$$
=\frac{y_{1}-y_{2}}{\left|p_{1}-p_{2}\right|}
$$

Position based Dynamics

$$
\begin{aligned}
& \nabla p_{1} C\left(p_{1}, p_{2}\right)=\left(\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}\right) \\
& \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}=\frac{\partial\left(\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}-d\right)}{\partial z_{1}}= \\
& =\frac{\partial \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}}{\partial z_{1}}= \\
& \frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right)^{-\frac{1}{2}} * 2\left(z_{1}-z_{2}\right) \frac{\partial\left(z_{1}-z_{2}\right)}{\partial z_{1}}= \\
& =\frac{z_{1}-z_{2}}{\left|p_{1}-p_{2}\right|}
\end{aligned}
$$

Position based Dynamics

$\nabla{ }_{p_{1}} C\left(p_{1}, p_{2}\right)=\left(\frac{\partial C\left(p_{1}, p_{2}\right)}{\partial x_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial y_{1}}, \frac{\partial C\left(p_{1}, p_{2}\right)}{\partial z_{1}}\right)$

$$
\left(\frac{x_{1}-x 2}{\left|p_{1}-p_{2}\right|}, \frac{y_{1}-y_{2}}{\left|p_{1}-p_{2}\right|}, \frac{z_{1}-z 2}{\left|p_{1}-p_{2}\right|}\right)=\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
$$

Position based Dynamics

$$
C\left(p_{1}, p_{2}\right)=\left|p_{1}-p_{2}\right|-d=\left|p_{2}-p_{1}\right|-d=C\left(p_{2}, p_{1}\right)
$$

$$
\nabla p_{2} C\left(p_{1}, p_{2}\right)=\nabla p_{2} C\left(p_{2}, p_{1}\right)
$$

Position based Dynamics

$$
C\left(p_{1}, p_{2}\right)=\left|p_{1}-p_{2}\right|-d=\left|p_{2}-p_{1}\right|-d=C\left(p_{2}, p_{1}\right)
$$

$$
\nabla p_{2} C\left(p_{1}, p_{2}\right)=\nabla p_{2} C\left(p_{2}, p_{1}\right)
$$

$$
\begin{gathered}
\nabla p_{1} C\left(p_{1}, p_{2}\right)=\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|} \\
\nabla p_{2} C\left(p_{1}, p_{2}\right)=-\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
\end{gathered}
$$

Position based Dynamics

Lagrange multiplier

Position based Dynamics

$$
\begin{gathered}
\sum_{j=1}^{2} \Delta p_{j}=\sum_{j=1}^{2} \lambda w_{j} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \\
C\left(p_{1}+\Delta p_{1}, p_{2}+\Delta p_{2}\right)=C\left(p_{1}, p_{2}\right)+\sum_{j=1}^{2} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \Delta p_{j}=0
\end{gathered}
$$

Position based Dynamics

$$
\begin{gathered}
\sum_{j=1}^{2} \Delta p_{j}=\sum_{j=1}^{2} \lambda w_{j} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \\
C\left(p_{1}+\Delta p_{1}, p_{2}+\Delta p_{2}\right)=C\left(p_{1}, p_{2}\right)+\sum_{j=1}^{2} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \Delta p_{j}=0
\end{gathered}
$$

Position based Dynamics

$$
\sum_{j=1}^{2} \Delta p_{j}=\sum_{j=1}^{2} \lambda w_{j} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right)
$$

$C\left(\left(p_{1}, p_{2}\right)+\sum_{j=1}^{2} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \Delta p_{j}=C\left(p_{1}, p_{2}\right)+\lambda \sum_{j=1}^{2} u_{j} \mid \nabla_{p_{j}} C\left(p_{1}, p_{2}\right)\right)^{2}=0$

$$
\lambda=-\frac{C\left(p_{1}, p_{2}\right)}{\sum_{j=1}^{2} w_{j}\left|\nabla_{p_{j}} C\left(p_{1}, p_{2}\right)\right|^{2}}
$$

Position based Dynamics

$$
\sum_{j=1}^{2} \Delta p_{j}=\sum_{j=1}^{2} \lambda w_{j} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right)
$$

$$
\lambda=-\frac{C\left(p_{1}, p_{2}\right)}{\sum_{j=1}^{2} w_{j}\left|\nabla_{p_{j}} C\left(p_{1}, p_{2}\right)\right|^{2}}
$$

$$
\lambda=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}\left|\nabla_{p_{1}} C\left(p_{1}, p_{2}\right)\right|^{2}+w_{2}\left|\nabla_{p_{2}} C\left(p_{1}, p_{2}\right)\right|^{2}}
$$

Position based Dynamics

$$
\begin{aligned}
& \sum_{j=1}^{2} \Delta p_{j}=\sum_{j=1}^{2} \lambda w_{j} \nabla_{p_{j}} C\left(p_{1}, p_{2}\right) \\
& \lambda=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}\left|\nabla_{p_{1}} C\left(p_{1}, p_{2}\right)\right|^{2}+w_{2}\left|\nabla_{p_{2}} C\left(p_{1}, p_{2}\right)\right|^{2}} \\
& \quad=-\frac{\left|p_{1}-p_{2}\right|-d}{\left(w_{1}+w_{2}\right)\left|\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}\right|^{2}} \\
& =-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}}
\end{aligned}
$$

Position based Dynamics

$$
\begin{gathered}
\lambda=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} \\
\Delta p_{i}=\lambda w_{i} \nabla_{p_{i}} C\left(p_{1}, p_{2}\right)
\end{gathered}
$$

Position based Dynamics

$$
\begin{gathered}
\lambda=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} \\
\Delta p_{i}=\lambda w_{i} \nabla p_{i} C\left(p_{1}, p_{2}\right) \\
=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} w_{i} \nabla p_{i} C\left(p_{1}, p_{2}\right)
\end{gathered}
$$

Position based Dynamics

$$
\begin{gathered}
\lambda=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} \\
\Delta p_{i}=\lambda w_{i} \nabla p_{i} C\left(p_{1}, p_{2}\right) \\
=-\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} w_{i} \nabla p_{i} C\left(p_{1}, p_{2}\right) \\
\nabla p_{1} C\left(p_{1}, p_{2}\right)=\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|} \\
\nabla p_{2} C\left(p_{1}, p_{2}\right)=-\frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
\end{gathered}
$$

Position based Dynamics

$$
\begin{aligned}
& \Delta p_{i}=\lambda w_{i} \nabla_{p_{i}} C\left(p_{1}, p_{2}\right) \\
= & -\frac{\left|p_{1}-p_{2}\right|-d}{w_{1}+w_{2}} w_{i} \nabla p_{i} C\left(p_{1}, p_{2}\right)
\end{aligned}
$$

$$
\Delta p_{1}=-\frac{w_{1}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
$$

$$
\Delta p_{2}=\frac{w_{2}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}
$$

Position based Dynamics

- $\mathrm{m}_{1}=10$
- $\mathrm{m}_{2}=2$
- $p_{1}=(5 ; 3 ; 2)$
- $\mathrm{p}_{2}=(1 ; 5 ; 6)$
- $k=1$
- $d=3$

Position based Dynamics

- $\mathrm{m}_{1}=10$
- $\mathrm{m}_{2}=2$
- $p_{1}=(5 ; 3 ; 2)$
- $\mathrm{p}_{2}=(1 ; 5 ; 6)$
- $k=1$
- $d=3$
- $w_{1}=1 / m_{1}=1 / 10$
- $w_{2}=1 / m_{2}=1 / 2$

Position based Dynamics

- $p_{1}=(5 ; 3 ; 2)$

$$
p_{1}-p_{2}=(4 ;-2 ;-4)
$$

- $p_{2}=(1 ; 5 ; 6)$
- $w_{1}=1 / m_{1}=1 / 10$
- $w_{2}=1 / m_{2}=1 / 2$

$$
\left|p_{1}-p_{2}\right|=\sqrt{4+(-2)^{2}+(-4)^{2}}=6
$$

Position based Dynamics

- $p_{1}=(5 ; 3 ; 2)$

$$
p_{1}-p_{2}=(4 ;-2 ;-4)
$$

- $p_{2}=(1 ; 5 ; 6)$
- $w_{1}=1 / m_{1}=1 / 10$
- $w_{2}=1 / m_{2}=1 / 2$

$$
\left|p_{1}-p_{2}\right|=\sqrt{4+(-2)^{2}+(-4)^{2}}=6
$$

$$
\begin{gathered}
\frac{w_{1}}{w_{1}+w_{2}}=1 / 6 \\
\frac{w_{2}}{w_{1}+w_{2}}=5 / 6
\end{gathered}
$$

Position based Dynamics

$$
\begin{aligned}
p_{1}-p_{2} & =(4 ;-2 ;-4) \\
\left|p_{1}-p_{2}\right| & =\sqrt{4+(-2)^{2}+(-4)^{2}}=6 \\
\frac{w_{1}}{w_{1}+w_{2}} & =1 / 6 \\
\frac{w_{2}}{w_{1}+w_{2}} & =5 / 6
\end{aligned}
$$

Position based Dynamics

$$
\begin{aligned}
& p_{1}-p_{2}=(4 ;-2 ;-4) \\
&\left|p_{1}-p_{2}\right|=\sqrt{4+(-2)^{2}+(-4)^{2}}=6 \\
& \frac{w_{1}}{w_{1}+w_{2}}=1 / 6 \quad\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}=3 \frac{(4 ;-2 ;-4)}{6} \\
& \frac{w_{2}}{w_{1}+w_{2}}=5 / 6
\end{aligned}
$$

Position based Dynamics

$$
\begin{aligned}
& p_{1}-p_{2}=(4 ;-2 ;-4) \\
& \left|p_{1}-p_{2}\right|=\sqrt{4+(-2)^{2}+(-4)^{2}}=6 \\
& \frac{w_{1}}{w_{1}+w_{2}}=1 / 6 \quad\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}=3 \frac{(4 ;-2 ;-4)}{6} \\
& \frac{w_{2}}{w_{1}+w_{2}}=5 / 6 \\
& \Delta p_{1}=-\frac{w_{1}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
& \quad-\frac{(4 ;-2 ;-4)}{12}=(-1 / 3 ; 1 / 6 ; 1 / 3)
\end{aligned}
$$

Position based Dynamics

$$
\begin{aligned}
p_{1}-p_{2} & =(4 ;-2 ;-4) \\
\left|p_{1}-p_{2}\right| & =\sqrt{4+(-2)^{2}+(-4)^{2}}=6 \\
\frac{w_{1}}{w_{1}+w_{2}} & =1 / 6 \quad\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}=3 \frac{(4 ;-2 ;-4)}{6} \\
\frac{w_{2}}{w_{1}+w_{2}} & =5 / 6
\end{aligned}
$$

$$
\begin{aligned}
& \Delta p_{2}=\frac{w_{2}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
& \frac{5 *(4 ;-2 ;-4)}{12}=(5 / 3 ;-5 / 6 ;-5 / 3)
\end{aligned}
$$

Position based Dynamics

$$
\begin{aligned}
& \Delta p_{1}=-\frac{w_{1}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
& -\frac{(4 ;-2 ;-4)}{12}=(-1 / 3 ; 1 / 6 ; 1 / 3) \\
& \Delta p_{2}=\frac{w_{2}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
& \frac{5 *(4 ;-2 ;-4)}{12}=(5 / 3 ;-5 / 6 ;-5 / 3) \\
& \left|\Delta p_{1}\right|=\sqrt{(-1 / 3)^{2}+(1 / 6)^{2}+(1 / 3)^{2}}=\sqrt{9 / 36}=1 / 2 \\
& \left|\Delta p_{2}\right|=\sqrt{(5 / 3)^{2}+(-5 / 6)^{2}+(-5 / 3)^{2}}=\sqrt{225 / 36}=5 / 2
\end{aligned}
$$

Position based Dynamics

$$
\begin{gathered}
\Delta p_{1}=-\frac{w_{1}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
-\frac{(4 ;-2 ;-4)}{12}=(-1 / 3 ; 1 / 6 ; 1 / 3) \\
\Delta p_{2}=\frac{w_{2}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
\frac{5 *(4 ;-2 ;-4)}{12}=(5 / 3 ;-5 / 6 ;-5 / 3)
\end{gathered}
$$

$$
\left|\Delta p_{1}\right|=\sqrt{(-1 / 3)^{2}+(1 / 6)^{2}+(1 / 3)^{2}}=\sqrt{9 / 36}=1 / 2
$$

$$
\left|\Delta p_{2}\right|=\sqrt{(5 / 3)^{2}+(-5 / 6)^{2}+(-5 / 3)^{2}}=\sqrt{225 / 36}=5 / 2
$$

$$
\begin{gathered}
F_{1}=k *\left|\Delta p_{1}\right|=1 / 2 \\
F_{2}=k *\left|\Delta p_{2}\right|=5 / 2
\end{gathered}
$$

Position based Dynamics

$$
\begin{gathered}
\Delta p_{1}=-\frac{w_{1}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
-\frac{(4 ;-2 ;-4)}{12}=(-1 / 3 ; 1 / 6 ; 1 / 3) \\
\Delta p_{2}=\frac{w_{2}}{w_{1}+w_{2}}\left(\left|p_{1}-p_{2}\right|-d\right) \frac{p_{1}-p_{2}}{\left|p_{1}-p_{2}\right|}= \\
\frac{5 *(4 ;-2 ;-4)}{12}=(5 / 3 ;-5 / 6 ;-5 / 3)
\end{gathered}
$$

$$
p_{1}+\Delta p_{1}=(5 ; 3 ; 2)+(-1 / 3 ; 1 / 6 ; 1 / 3)=(14 / 3 ; 19 / 6 ; 7 / 3)
$$

$$
p_{2}+\Delta p_{2}=(1 ; 5 ; 6)+(5 / 3 ;-5 / 6 ;-5 / 3)=(8 / 3 ; 25 / 6 ; 13 / 3)
$$

Position based Dynamics

$$
\begin{aligned}
& p_{1}+\Delta p_{1}=(5 ; 3 ; 2)+(-1 / 3 ; 1 / 6 ; 1 / 3)=(14 / 3 ; 19 / 6 ; 7 / 3) \\
& p_{2}+\Delta p_{2}=(1 ; 5 ; 6)+(5 / 3 ;-5 / 6 ;-5 / 3)=(8 / 3 ; 25 / 6 ; 13 / 3)
\end{aligned}
$$

$$
C\left(p_{1}+\Delta p_{1}, p_{2}+\Delta p_{2}\right)=\left|\left(p_{1}+\Delta p_{1}\right)-\left(p_{2}+\Delta p_{2}\right)\right|-d=
$$

$$
=|(14 / 3 ; 19 / 6 ; 7 / 3)-(8 / 3 ; 25 / 6 ; 13 / 3)|-3=|(2 ;-1 ;-2)|-3=
$$

$$
\sqrt{9}-3=0
$$

