Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

- **Collision detection algorithm**
- all objects are classified to small 3D cells
- all tetrahedrons are classified with respect to these cells
- discretize minimum and maximum of all AABBs
- hash table of vertices and tetrahedrons
- intersection tests for vertices and tetrahedrons

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Spatial hashing of vertices

computed in first pass

 \blacktriangleright coordinates of vertex (x, y, z) are divided by the given grid cell size \boldsymbol{l} and divided down to next integer

(i=[x/l], j=[y/l], k=[z/l])

 \Rightarrow hash function maps discretized positions (i, j, k) to 1D index h

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Spatial hashing of tetrahedrons

- discretize minimum and maximum values describing the AABB of tetrahedron
- values are divided by cell size and rounded down to integer
- hash values are computed for all cells affected by the AABB of a tetrahedron
- all vertices found at the according hash table index are tested for intersection

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Actual Intersection tests

if Vertex p and Tetrahedron t are mapped to the same hash index and p is not part of t

perform Penetration test

check p against AABB of t whether p is inside t with vertices at positions (x0,x1,x2,x3)

Barycentric-coordinate test is slightly faster than the halfspace test

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Barycentric coordinates test

• express p with new coordinates $\beta = (\beta_1, \beta_2, \beta_3)^T$

with respect to x₀ axis coincide with the edges of t adjacent to x₀
⇒ p = x₀ + Aβ
⇒ A = [x₁-x₀, x₂-x₀, x₃-x₀]
⇒ β = A⁻¹(p - x₀)
⇒ if β₁≥ 0, β₂≥ 0, β₃≥ 0 and β₁+ β₂+ β₃≤ 1
⇒ p lies inside tetrahedron t

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

two deformable objects with an overall number of 5898 vertices and 20514 tetrahedrons

Optimized Spatial Hashing for Collision Detection of Deformable Objects Teschner, Heidelberg, Muller, Pomeranets, Gross Example 2 2003 Collision detection [ms] 6 3 2 0 1000 2000 3000 Hash table size 4000 5000 10 8 Collision detection [ms] 6-100 deformable objects with an overall number of 1200 vertices and 1000 tetrahedrons 2-0

5

Cell size / average edge length

Teschner, Heidelberg, Muller, Pomeranets, Gross

Time complexity

- **Time complexity:** $O(n^2)$, goal: O(n)
 - 🟓 n is number of primitives
- \blacksquare first pass insert vertices into hash table: O(n)
- second pass O(n.p.q)
 - \mathbf{P} is the average number of cells intersected by a tetrahedron
 - \mathbf{P}_q is the average number of vertices per cell
 - choose cell size to by proportional to average tetrahedron size = p is constant

2003

no hash collisions = q is constant too

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Results of the algorithm

- Performance of the collision detection algorithm
- The performance is independent from the number of objects. It only depends on the number of object primitives.
- Average collision detection time, minimum, maximum, and standard deviation for 1000 simulation step

setup	o obje	ects tetr		tras	vertices
А		100	1	000	1200
В		8	4	000	1936
С		20	10	000	4840
D		2	20	514	5898
E	12	100	50	000	24200
setup a	ve [ms]	min [n	ns] n	nax [ms]	dev [ms]
А	4.3	2	4.1	6.5	0.24
В	12.6	11	1.3	15.0	0.59
С	30.4	28	3.9	34.4	1.25
D	70.0	68	3.5	72.1	0.86
Е	172.5	17().5	174.6	1.08

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

Defect of the algorithm

presented algorithm does not detect, whether an edge intersects with tetrahedron due to two reasons

first: the relevance of an edge test is unclear in case of densely sampled objects

second: it is rather uncommon and costly to implement collision response in case of penetrating edges

Teschner, Heidelberg, Muller, Pomeranets, Gross

2003

©Stanislav Miklóšik, 2011