Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

- collision and self-collision detection of dynamically deforming objects
\Rightarrow generated hash table using hash function
- works with tetrahedrals meshes
easily adapted to other primitives, such as triangles

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003

Usage

- Cloth modeling
- Game engines
- Surgical simulators
- other physically based environments with up to 20 k tetrahedrons in real-time

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Collision detection algorithm

- all objects are classified to small 3D cells
- all tetrahedrons are classified with respect to these cells
\Rightarrow discretize minimum and maximum of all $A A B B s$
- hash table of vertices and tetrahedrons
- intersection tests for vertices and tetrahedrons

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003

Spatial hashing of vertices

computed in first pass
coordinates of vertex (x, y, z) are divided by the given grid cell size l and divided down to next integer

$$
\Rightarrow(i=[x / l], j=[y / l], k=[z / l])
$$

hash function maps discretized positions (i,j,k) to 1D index h

- Vertex and object information is stored in hash table with indexes $h=h a s h(i, j, k)$

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

- gets three values describing vertex position
- return hash value
$\operatorname{hash}(x, y, z)=(x p 1 \boldsymbol{x o r} y p 2 \boldsymbol{x o r} z p 3) \boldsymbol{\operatorname { m o d }} n$
$\Rightarrow p 1, p 2, p 3$ are large prime numbers
- n is the hash table size
- the quality of the hash function is less important for larger hash tables

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Spatial hashing of tetrahedrons

\Rightarrow discretize minimum and maximum values describing the $A A B B$ of tetrahedron

- values are divided by cell size and rounded down to integer
hash values are computed for all cells affected by the $A A B B$ of a tetrahedron
\rightarrow all vertices found at the according hash table index are tested for intersection

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
Intersection tests

- using barycentric coordinates
- if Vertex penetrates Tetrahedron
\Rightarrow detect Collision
- if Vertex penetrates Tetrahedron and both belong to same object
\Rightarrow detect Self-Collision
- if Vertex is part of Tetrahedron
- test is omitted

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Actual Intersection tests

- if Vertex p and Tetrahedron t are mapped to the same hash index and pis not part of t
\Rightarrow perform Penetration test
\Rightarrow check P against $A A B B$ of t whether pis inside t with vertices at positions ($\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$)
- Barycentric-coordinate test is slightly faster than the halfspace test

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Barycentric coordinates test

\Rightarrow express p with new coordinates $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)^{T}$
with respect to $\boldsymbol{x}_{\boldsymbol{0}}$ axis coincide with the edges of \boldsymbol{t} adjacent to $\boldsymbol{x}_{\boldsymbol{0}}$
$\Rightarrow \mathrm{p}=\mathrm{x}_{0}+\mathrm{A} \beta$
$\Rightarrow \mathrm{A}=\left[\mathrm{x}_{1}-\mathrm{x}_{0}, \mathrm{x}_{2}-\mathrm{x}_{0}, \mathrm{x}_{3}-\mathrm{x}_{0}\right]$
$\Delta \beta=\mathbf{A}^{-1}\left(\mathbf{p}-\mathbf{x}_{0}\right)$
\Rightarrow if $\beta_{1} \geq 0, \beta_{2} \geq 0, \beta_{3} \geq 0$ and $\beta_{1}+\beta_{2}+\beta_{3} \leq 1$
plies inside tetrahedront

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Grid cell size

- larger cells increase number of primitives in hash index, slows down intersection test
- cell size should have size of the average length off all tetrahedrons
- grid cell size has a bigger effect on the performance than hash function or hash table size

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003

Hash table size

- larger table size
\Rightarrow reduce the risk of mapping different 3D positions to the same hash index
- algorithm works faster
- the performance slightly decreases
- larger hash table size than number of object primitives minimalize the hash collisions risk
- not require re-initialization in each step, using time stamps in hash table cells

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
Example 1

two deformable objects with an overall number of 5898 vertices and 20514 tetrahedrons

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003
Example 2

100 deformable objects with an overall number of 1200 vertices and 1000 tetrahedrons

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Time complexity

Time complexity: $O\left(n^{2}\right)$, goal: $O(n)$

- n is number of primitives
- first pass - insert vertices into hash table: $O(n)$
second pass-O(n.p.q)
Δp is the average number of cells intersected by a tetrahedron
$\Rightarrow q$ is the average number of vertices per cell
\rightarrow choose cell size to by proportional to average tetrahedron size $=p$ is constant
- no hash collisions = q is constant too

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross

Results of the algorithm

\Rightarrow Performance of the collision detection algorithm
\Rightarrow The performance is independent from the number of objects. It only depends on the number of object primitives.

- Average collision detection time, minimum, maximum, and standard deviation for 1000 simulation step

setup	objects	tetras	vertices			
A	100	1000	1200			
B	8	4000	1936			
C	20	10000	4840			
D	2	20514	5898			
E	100	50000	24200			
setup ave [ms]						
$\min [\mathrm{ms}]$					$\max [\mathrm{ms}]$	dev [ms]
A	4.3	4.1	6.5			
B	12.6	11.3	15.0			
C	30.4	28.9	34.4			
D	70.0	68.5	72.1			
E	172.5	170.5	174.6			

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
presented algorithm does not detect, whether an edge intersects with tetrahedron due to two reasons
\Rightarrow first: the relevance of an edge test is unclear in case of densely sampled objects
\Rightarrow second: it is rather uncommon and costly to implement collision response in case of penetrating edges

Optimized Spatial Hashing for Collision Detection of Deformable Objects

Teschner, Heidelberg, Muller, Pomeranets, Gross
2003

