Computational Logic First-Order Logic

Martin Baláž

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

Alphabet

An alphabet contains

- Variables x, y, z, \dots
- Constants
 c, d, e, . . .
- Function symbols f, g, h, \dots
- Predicate symbols p, q, r, \dots
- Logical connectives $\neg, \lor, \land, \Rightarrow, \Leftrightarrow, \dots$
- Quantifiers $\forall \exists$
- Punctuation symbols() .

Term and Atom

A term is

- a variable
- a constant
- an expression $f(t_1, ..., t_n)$ if f is a function symbol with arity n and $t_1, ..., t_n$ are terms

A atom is an expression $p(t_1, ..., t_n)$ where p is a predicate symbol with arity n and $t_1, ..., t_n$ are terms.

Formula

A formula is

- an atom
- ¬Φ if Φ is a formula
- $(\Phi \wedge \Psi)$ if Φ and Ψ are formulas
- $(\Phi \lor \Psi)$ if Φ and Ψ are formulas
- $(\Pi \to \Psi)$ if Φ and Ψ are formulas
- $(\Pi \leftrightarrow \Psi)$ if Φ and Ψ are formulas
- •
- $(\forall x)\Phi$ if x is a variable and Φ is a formula
- $(\exists x)\Phi$ if x is a variable and Φ is a formula

A *language* is a set \mathcal{L} of all formulas.

Structure

A domain is a set of individuals D.

A signature is a tripple $\sigma = (F, P, arity)$ where

- F is a set of function symbols
- P is a set of predicate symbols
- arity: $F \cup P \mapsto N$ is an arity function

An interpretation is a function I such that

- I(f) is a function $f^I: D^{arity(f)} \mapsto D$
- I(p) is a relation $p^I \subseteq D^{arity(p)}$

A *structure* is a tripple $\mathcal{D} = (D, \sigma, I)$ where

- D is a domain
- ullet σ is a signature
- I is an interpretation function

Example

$$(\forall x) p(c, x, x) (\forall x)(\forall y)(\forall z)(p(x, g(y), z) \Leftrightarrow p(f(x), y, z))$$

- Domain D = N
- Signature $\sigma = (\{c, f, g\}, \{p\}, \{c \mapsto 0, f \mapsto 1, g \mapsto 1, p \mapsto 3\})$
- Interpretation

$$I(c) = 0 I(f) = x \mapsto x + 1 I(g) = x \mapsto x + 1 I(p) = \{(x, y, z) \mid x + y = z\}$$

Variable Assignment

A variable assignment is a mapping $e: X \mapsto D$ where X is a set of variables and D is a domain.

If $x \in X$ is a variable and $d \in D$ is an individual, then by $e(x \mapsto d)$ we will denote a variable assignment satisfying

$$e(x \mapsto d)(y) = \begin{cases} d & \text{if } x = y \\ e(y) & \text{if } x \neq y \end{cases}$$

Valuation

Let $\mathcal D$ be a struture and e be a variable assignment.

The value of a term t (denoted by t[e]) is

- \bullet e(t) if t is a variable
- ullet $f'(t_1[e],\ldots,t_n[e])$ if $t=f(t_1,\ldots,t_n)$ is a compound term

A formula Φ is *true* w.r.t. \mathcal{D} and e (denoted by $\mathcal{D} \models \Phi[e]$) iff

- $\mathcal{D} \models p(t_1,\ldots,t_n)[e]$ iff $(t_1[e],\ldots,t_n[e]) \in p^I$
- $\mathcal{D} \models \neg \Phi[e]$ iff $\mathcal{D} \not\models \Phi[e]$
- $\mathcal{D} \models (\Phi \land \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ and $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \models (\Phi \lor \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ or $\mathcal{D} \models \Psi[e]$
- $\bullet \ \mathcal{D} \models (\Phi \to \Psi)[e] \ \text{iff} \ \mathcal{D} \not\models \Phi[e] \ \text{or} \ \mathcal{D} \models \Psi[e]$
- $\mathcal{D} \models (\Phi \leftrightarrow \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ iff $\mathcal{D} \models \Psi[e]$
- $\mathcal{D} \models (\forall x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)]$ for all $d \in D$
- $\mathcal{D} \models (\exists x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)]$ for some $d \in D$

Entailment

A formula Φ is *true* w.r.t. a structure \mathcal{D} (denoted by $\mathcal{D} \models \Phi$) iff $\mathcal{D} \models \Phi[e]$ for all variable assignments e.

A set of formulas T entails a formula Φ (denoted by $T \models \Phi$) iff for all structures \mathcal{D} holds $\mathcal{D} \models \Phi$ whenever $\mathcal{D} \models \Psi$ for all Ψ in T.

Substitution

A free occurence of a variable is not bounded with a quantifier.

A substitution $\Phi(x/t)$ means replace every occurrence of the variable x in the formula Φ with the term t.

A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after substitution.

$$\Phi = (\exists x)(y < x)
\Phi(y/x) = (\exists x)(x < x)$$

Normal Forms

A formula is in *negation normal form* iff if $\{\neg, \land, \lor\}$ are are the only allowed connectives and literals are the only negated subformulas.

A formula is in *prenex normal form* iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

A formula is in *Skolem normal form* iff it is in prenex normal form with only universal quantifiers.

A formula is in *conjunctive normal form* iff it is conjunction of disjunctive clauses, where a *disjunctive clause* is a disjunction of literals.

A formula is in *disjunctive normal form* iff it is disjunction of conjunctive clauses, where a *conjunctive clause* is a conjunction of literals.

Negation Normal Form

• Double negative law:

$$\neg\neg P/P$$

De Morgan's law:

$$\neg (P \land Q)/(\neg P \lor \neg Q)$$

$$\neg (P \lor Q)/(\neg P \land \neg Q)$$

Quantifiers:

$$\neg(\forall x)P/(\exists x)\neg P$$
$$\neg(\exists x)P/(\forall x)\neg P$$

Prenex Normal Form

Negation:

$$\neg(\exists x)P/(\forall x)\neg P$$
$$\neg(\forall x)P/(\exists x)\neg P$$

Conjunction:

$$((\forall x)P \land Q)/(\forall x)(P \land Q) \quad (Q \land (\forall x)P)/(\forall x)(Q \land P)$$

$$((\exists x)P \land Q)/(\exists x)(P \land Q) \quad (Q \land (\exists x)P)/(\exists x)(Q \land P)$$
 if x does not appear as free variable in Q

Disjunction:

$$((\forall x)P \lor Q)/(\forall x)(P \lor Q) \quad (Q \lor (\forall x)P)/(\forall x)(Q \lor P)$$

$$((\exists x)P \lor Q)/(\exists x)(P \lor Q) \quad (Q \lor (\exists x)P)/(\exists x)(Q \lor P)$$
if x does not appear as free variable in Q

Implication:

$$\begin{array}{ll} ((\forall x)P \to Q)/(\exists x)(P \to Q) & (Q \to (\forall x)P)/(\forall x)(Q \to P) \\ ((\exists x)P \to Q)/(\forall x)(P \to Q) & (Q \to (\exists x)P)/(\exists x)(Q \to P) \\ \text{if x does not appear as free variable in Q} \end{array}$$

Skolem Normal Form

Formulas P and Q are equisatisfiable if P is satisfiable if and only if Q is satisfiable.

Given a formula F:

- If F is already in Skolem normal form, we are done.
- 2 If not, then F is of the form

$$(\forall x_1) \dots (\forall x_m)(\exists y) F'(x_1, \dots, x_m, y, z_1, \dots, z_n)$$

where each z_i is a free variable and F' is in prenex normal form. Replace y with $f(x_1, \ldots, x_m, z_1, \ldots, z_n)$ where f is a new function symbol.

go to 1

Conjunctive Normal Form

- Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- ① Distributive law (\vee over \wedge): $((P \wedge Q) \vee R)/((P \vee R) \wedge (Q \vee R))$ $(P \vee (Q \wedge R))/((P \vee Q) \wedge (P \vee R))$

Disjunctive Normal Form

- Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- ① Distributive law (\wedge over \vee): $((P \lor Q) \land R)/((P \land R) \lor (Q \land R))$ $(P \land (Q \lor R))/((P \land Q) \lor (P \land R))$

Hilbert System

Axioms

- $\bullet \ (P \to (Q \to P))$
- $((P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)))$
- $\bullet \ ((\neg P \to \neg Q) \to (Q \to P))$
- $((\forall x)P \rightarrow P(x/t))$ where term t is substitutable for x in P
- $((\forall x)(P \to Q) \to (P \to (\forall x)Q))$ where x does not occur free in P

Inference Rules

Modus Ponens

$$\frac{P,(P\to Q)}{Q}$$

Generalization

$$\frac{P}{(\forall x)P}$$

Example

Prove:

$$(P(x/t) \to (\exists x)P)$$
 i.e. $(P(x/t) \to \neg(\forall x)\neg P)$

where t is substitutable for x in P.

Proof:

- ② $(((\forall x) \neg P \rightarrow \neg P(x/t)) \rightarrow (P(x/t) \rightarrow \neg(\forall x) \neg P))$ Note: $((A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A))$ is a tautology
- $(P(x/t) \to \neg(\forall x)\neg P)$

Gentzen System

Generalization

$$\begin{split} &\langle \Gamma, \phi(x/y) \Rightarrow \Delta \rangle / \langle \Gamma, (\exists x) \phi \Rightarrow \Delta \rangle \\ &\langle \Gamma \Rightarrow \Delta, \phi(x/y) \rangle / \langle \Gamma \Rightarrow \Delta, (\forall x) \phi \rangle \\ &\text{where } y \text{ is a variable substitutable for } x \text{ in } \phi \text{ and } y \text{ does not occur free in } \Gamma \cup \Delta \cup \{\phi\} \end{split}$$

Specification

$$\begin{split} &\langle \Gamma, \phi(x/t) \Rightarrow \Delta \rangle / \langle \Gamma, (\forall x) \phi \Rightarrow \Delta \rangle \\ &\langle \Gamma \Rightarrow \Delta, \phi(x/t) \rangle / \langle \Gamma \Rightarrow \Delta, (\exists x) \phi \rangle \\ &\text{where } t \text{ is a term substitutable for } x \text{ in } \phi \end{split}$$

Example

Prove:

$$((\exists y)(\forall x)p(x,y)\to(\forall x)(\exists y)p(x,y))$$

Proof:

- $(\exists y)(\forall x)p(x,y) \Rightarrow (\exists y)p(x,y)$

Properties

A calculus is *decidable* iff for given theory T, there exists an algorithm which, given an arbitrary formula ϕ , will always says if $T \vdash \phi$ or $T \nvdash \phi$.

A calculus is *semidecidable* iff for given theory T, there exists an algorithm which, given an arbitrary formula ϕ , will always give positive answer if $T \vdash \phi$, but may give either a negative answer or no answer if $T \nvdash \phi$.

Hilbert calculus for propositional logic is sound, complete, decidable, and semidecidable.

Hilbert calculus for first-order logic is sound, complete, and semidecidable, but not decidable.

Gentzen calculus for propositional logic is sound, complete, decidable, and semidecidable.

Gentzen calculus for first-order logic is sound, complete, and semidecidable, but not decidable.

Resolution

General inference rule

$$\frac{P \vee Q, \neg P \vee R}{Q \vee R} \quad \frac{Q \vee P, R \vee \neg P}{Q \vee R}$$

Inference rule for (disjunctive) clauses:

$$\frac{a_1 \vee \dots \vee a_i \vee \dots \vee a_m, b_1 \vee \dots \vee b_j \vee \dots \vee b_n}{a_1 \vee \dots \vee a_{i-1} \vee a_{i+1} \vee \dots \vee a_m \vee b_1 \vee \dots \vee b_{j-1} \vee b_{j+1} \vee \dots \vee b_n}$$

where a_i is the complement of b_j

Resolution

- **1** $T \models \phi$ iff $T \land \neg \phi$ is not satisfiable
- ② $T \land \neg \phi$ is transformed into CNF, we get a set of disjunctive clauses
- the resolution rule is applied to all possible clauses that contain complementary literals
 - all repeated literals are removed
 - all clauses with complementary literals are discarded
- ${\color{red} \bullet}$ if empty clause is derived, $T \land \neg \phi$ is not satisfiable, otherwise it is

Unification

Algorithm $UNIFY(t_1, t_2, \theta)$

Input: two terms or lists of terms t_1 and t_2 , substitution θ Output: the most general unifier of t_1 and t_2 , or failure

- lacktriangledown if $t_1=t_2$ then return heta
- ② if t_1 is a variable then return $UNIFY_VAR(t_1,t_2,\theta)$
- ullet if t_2 is a variable then return $UNIFY_VAR(t_2,t_1, heta)$
- if t_1 and t_2 are compound terms with the same function symbol then return $UNIFY(ARGS(t_1), ARGS(t_2), \theta)$
- ullet if t_1 and t_2 are non-empty lists of terms then return $UNIFY(REST(t_1), REST(t_2), UNIFY(FIRST(t_1), FIRST(t_2), heta))$
- o return failure

Unification

Algorithm $UNIFY_VAR(x,t_2,\theta)$ Input: a variable x, a term t_2 and a substitution θ Output: substitution or failure

- **1** if $\{x/t_1\} \in \theta$ then return $UNIFY(t_1, t_2, \theta)$
- ② if $\{t_2/t_1\} \in \theta$ then return $\mathit{UNIFY}(x,t_1,\theta)$
- \bullet if $OCCUR_CHECK(x, t_2)$ then return failure
- lacktriangledown return $heta\{x/t_2\}$

Example

```
Theory T:
(\forall x)(gentleman(x) \rightarrow (\forall y)(lady(y) \rightarrow (\forall z)(insults(z, y) \rightarrow
defeats(x, z))))
gentleman(jackie)
lady(peggy sue)
insults(billy boy, peggy sue)
Formula \phi:
defeats(jackie, billy boy)
Question: T \models \phi?
```

Sudoku

$$sudoku(a,b,x,y,1) \lor \cdots \lor sudoku(a,b,x,y,9)$$

$$\neg sudoku(a,b,x,y,n_1) \lor \neg sudoku(a,b,x,y,n_2), n_1 < n_2$$

$$\neg sudoku(a,b,x_1,y_1,n) \lor \neg sudoku(a,b,x_2,y_2,n), (x_1,y_1) < (x_2,y_2)$$

$$\neg sudoku(a,b_1,x,y_1,n) \lor \neg sudoku(a,b_2,x,y_2,n), (b_1,y_1) < (b_2,y_2)$$

$$\neg sudoku(a_1,b,x_1,y,n) \lor \neg sudoku(a_2,b,x_2,y,n), (a_1,x_1) < (a_2,x_2)$$