Computational Logic

First-Order Logic

Martin Balaz

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Martin Balaz Computational Logic

Alphabet

An alphabet contains
@ Variables
X, Yy Zyon.
o Constants
c,d,e,...

@ Function symbols
f,g,h,...

@ Predicate symbols
p,q,r, ...

@ Logical connectives
VA, =, e

o Quantifiers
v 3

@ Punctuation symbols

()
Martin Balaz Computational Logic

A term is
@ a variable
@ a constant

@ an expression f(t1,...,t,) if f is a function symbol with arity
nand ty,...,t, are terms

A atom is an expression p(ti,...,t,) where p is a predicate symbol
with arity n and t1,..., t, are terms.

Martin Balaz Computational Logic

Formula

A formula is
@ an atom
o —® if ¢ is a formula
o (PAV)Iif ®and V are formulas
o (PVV)if dand V¥ are formulas
o (M— W) if ® and WV are formulas
o (M« W) if ® and WV are formulas
° ...
o (Vx)® if x is a variable and ® is a formula
@ (Ix)® if x is a variable and ¢ is a formula

A language is a set L of all formulas.

Martin Balaz Computational Logic

A domain is a set of individuals D.
A signature is a tripple o = (F, P, arity) where

@ F is a set of function symbols
@ P is a set of predicate symbols
@ arity: FUP — N is an arity function
An interpretation is a function / such that
o I(f) is a function f': Dtv(f) s D
o I(p) is a relation p/ C Dtv(P)
A structure is a tripple D = (D, 0, 1) where
@ D is a domain
@ U is a signature

@ / is an interpretation function

Martin Balaz Computational Logic

(Vx)p(c, x, x)
(Vx)(Vy)(V2)(p(x, &(v), 2) < p(f(x),y,2))

@ Domain D =N

@ Signature
o={cf,g},{p},{c—0,f—>1g—1p+— 3})

@ Interpretation

I(c) =

I(f)=x—x+1

I(g) =x—>x+1
I(p):{(X,y,Z)|X—|—y:Z}

Martin Balaz Computational Logic

Variable Assignment

A variable assignment is a mapping e: X — D where X is a set of
variables and D is a domain.

If x € X is a variable and d € D is an individual, then by e(x — d)
we will denote a variable assignment satisfying

e D) ={ 4y e

Martin Balaz Computational Logic

Let D be a struture and e be a variable assignment.
The value of a term t (denoted by t[e]) is

e ¢(t) if tis a variable
o c!if tis a constant
o fl(tife],..., ta[e]) if t = F(t1,...,t) is a compound term
A formula @ is true w.r.t. D and e (denoted by D |= ®[e]) iff
D k= p(ty, ..., ta)[e] iff (ti[e], ..., tale]) € P’
D = —d[e] iff D [~ d[e]
D E (P AV)[e] iff D d[e] and D = Ve]
D E (®VV)e] iff D dle] or D | V]e]
D E (® — V)e] iff D |~ dle] or D = V]e]
D E (¢« V)e] iff D = d[e] iff D = V]e]
(
(

D = (Vx)®P[e] iff D |= ®[e(x — d)] forall d € D
D = (3x)P[e] iff D |= ®le(x — d)] for some d € D

Entailment

A formula & is true w.r.t. a structure D (denoted by D =) iff

D |= d[e] for all variable assignments e.

A set of formulas T entails a formula ® (denoted by T |= @) iff for
all structures D holds D = ¢ whenever D = WV for all W in T.

Martin Balaz Computational Logic

Substitution

A free occurence of a variable is not bounded with a quantifier.

A substitution ®(x/t) means replace every occurence of the
variable x in the formula ® with the term t.

A term t is substitutable for a variable x in a formula ¢ iff no
occurence of a variable in t becomes bounded after substitution.

o = (Ix)(y <x)
d(y/x) = (@))

Martin Balaz Computational Logic

Normal Forms

A formula is in negation normal form iff if {—=, A, V} are are the only
allowed connectives and literals are the only negated subformulas.

A formula is in prenex normal form iff it is of the form
(@ix1) ... (Qnxn)F, n >0, where Q; is a quantifier, x; is a variable
and F is quantifier-free formula.

A formula is in Skolem normal form iff it is in prenex normal form
with only universal quantifiers.

A formula is in conjunctive normal form iff it is conjunction of
disjunctive clauses, where a disjunctive clause is a disjunction of
literals.

A formula is in disjunctive normal form iff it is disjunction of
conjunctive clauses, where a conjunctive clause is a conjunction of
literals.

Martin Balaz Computational Logic

Negation Normal Form

@ Double negative law:
-=P/P

@ De Morgan’s law:
(PAQ)/(-PV-Q)
-(PV Q)/(—-PAN-Q)

@ Quantifiers:
=(Vx)P/(3x)-P
—(Ix)P/(Vx)-P

Martin Balaz Computational Logic

Prenex Normal Form

o Negation:
—(3Ix)P/(Vx)-P
=(Vx)P/(3x)-P
e Conjunction:
(V)P AQ)/(¥x)(PAQ) (QA(VX)P)/(Vx)(Q A P)
(F)PAQ)/(EF)PAQ) (QA(EX)P)/(Ix)(QAP)
if x does not appear as free variable in @
@ Disjunction:
(Vx)PV Q)/(vx)(PV Q) (QV(Vx)P)/(Vx)(QV P)
(F)PVQ)/(EF)(PVQ) (QV(FNNP)/(Ix)(QVP)
if x does not appear as free variable in @
@ Implication:
(V)P = Q)/(Fx)(P = Q) (Q — (vX)P)/(Vx)(Q — P)
(Fx)P = Q)/(¥x)(P = Q) (Q— (Ix)P)/(Ix)(Q — P)

if x does not appear as free variable in @

Martin Balaz Computational Logic

Skolem Normal Form

Formulas P and Q are equisatisfiable if P is satisfiable if and only if
Q is satisfiable.

Given a formula F:
© If F is already in Skolem normal form, we are done.
@ If not, then F is of the form

(Vx1) .. (Yxm)3y)F (X1, - o Xmy Vs 215 - -+ 5 Zn)

where each z; is a free variable and F’ is in prenex normal
form. Replace y with f(x1,...,Xm,21,...,2n) Where f is
a new function symbol.

© gotol

Martin Balaz Computational Logic

Conjunctive Normal Form

© Negation Normal Form
@ Prenex Normal Form
© Skolem Normal Form

© Distributive law (V over A):
(PAQ)VR)/(PVR)AN(QVR))
(PV(QAR)/((PVR)A(PVR))

Martin Balaz Computational Logic

Disjunctive Normal Form

© Negation Normal Form
@ Prenex Normal Form
© Skolem Normal Form

© Distributive law (A over V):
(PVQ)AR)/(PAR)V(QAR))
(PA(QRVR))/((PAR)V(PAR))

Martin Balaz Computational Logic

Hilbert System

Axioms
o (P—=(Q—P))
o (P=-(QR—=R)—=((P—=Q)—(P—R)))
o (P —=-Q)—=(Q—P))
o (("x)P — P(x/t))
where term t is substitutable for x in P
o (V)(P— Q) — (P — (Vx)Q))
where x does not occur free in P
Inference Rules

@ Modus Ponens
P,(P— Q)

Q

@ Generalization p

(Vx)P

Martin Balaz Computational Logic

Prove:
(P(x/t) = (3x)P) i.e. (P(x/t) = =(Vx)—P)
where t is substitutable for x in P.

Proof:
Q ((Vx)=P — =P(x/t))
Q@ (((Vx)=P — =P(x/t)) — (P(x/t) = —(¥Vx)=P))
Note: ((A — —B) — (B — —A)) is a tautology
Q (P(x/t) = ~(¥x)=P)

Martin Balaz Computational Logic

Gentzen System

@ Generalization
(N o(x/y) = B8)/(T,(3x)¢ = A)
(M= 4, 0(x/y /(T = A, (Vx)9)
where y is a variable substitutable for x in ¢ and y does not

occur free in TUA U {¢}

@ Specification
(M o(x/t) = 8)/ (T, (vx)¢ = A)
(M= 4,0(x/1))/(I = A, (3x)¢)

where t is a term substitutable for x in ¢

Martin Balaz Computational Logic

<
o
€
]
X

L

Prove:

(Fy)(vx)p(x,y) = (Vx)(Ty)p(x, y))

- - o~ o~

-~~~ —~ =

—_ — — — — ~—

2
0
o

=

©
c
o
=
Il
2
3
o
E
o
(9

Martin Balaz

A calculus is decidable iff for given theory T, there exists an
algorithm which, given an arbitrary formula ¢, will always says if
TE@or TFO.

A calculus is semidecidable iff for given theory T, there exists an
algorithm which, given an arbitrary formula ¢, will always give
positive answer if T F ¢, but may give either a negative answer or
no answer if T ¥ ¢.

Hilbert calculus for propositional logic is sound, complete,
decidable, and semidecidable.

Hilbert calculus for first-order logic is sound, complete, and
semidecidable, but not decidable.

Gentzen calculus for propositional logic is sound, complete,
decidable, and semidecidable.

Gentzen calculus for first-order logic is sound, complete, and
semidecidable, but not decidable.

Martin Balaz Computational Logic

Resolution

General inference rule

PVQ-PVR QVP,RV-P
QVR QVR

Inference rule for (disjunctive) clauses:

al\/---\/a,-\/--~\/am,b1v---\/bj\/-~-\/b,,
a1\/-~\/a,-,1\/a,-+1\/---\/am\/blv-‘-\/bj,l\/bjﬂ\/‘--\/b,,

where a; is the complement of b;

Martin Balaz Computational Logic

Resolution

O T E ¢iff T A—¢ is not satisfiable
@ T A —¢ is transformed into CNF, we get a set of disjunctive
clauses

© the resolution rule is applied to all possible clauses that
contain complementary literals

o all repeated literals are removed
o all clauses with complementary literals are discarded

Q if empty clause is derived, T A —¢ is not satisfiable, otherwise
it is

Martin Balaz Computational Logic

Algorithm UNIFY (t1, t2,0)
Input: two terms or lists of terms t; and t,, substitution 6
Output: the most general unifier of t; and ty, or failure
@ if t; = t» then return 0
@ if t; is a variable then return UNIFY _VAR(t1, t2,0)
© if tp is a variable then return UNIFY _VAR(to, t1,0)
0

if # and t, are compound terms with the same function
symbol then return UNIFY(ARGS(t1), ARGS(t2),0)

if t; and t, are non-empty lists of terms then return
UNIFY (REST (t,), REST (t2), UNIFY (FIRST (t1), FIRST (t5), 6))

Q return failure

o)

Martin Balaz Computational Logic

Algorithm UNIFY _VAR(x, t2,0)
Input: a variable x, a term t, and a substitution 6
Output: substitution or failure
Q if {x/t1} € 0 then return UNIFY (t1, t»,0)
Q if {t2/t1} € 6 then return UNIFY (x, t1,0)
@ if OCCUR _CHECK(x, t) then return failure
Q return 0{x/tr}

Martin Balaz Computational Logic

Theory T:

(Vx)(gentleman(x) — (Yy)(lady(y) — (Vz)(insults(z,y) —
defeats(x, z))))

gentleman(jackie)

lady(peggy _sue)

insults(billy _boy, peggy sue)
Formula ¢:

defeats(jackie, billy _boy)

Question: T | ¢?

Martin Balaz Computational Logic

sudoku(a, b, x,y,1) V - -V sudoku(a, b, x,y,9)
—sudoku(a, b, x,y, m) V —sudoku(a, b, x,y, n2), n1 < ny
—sudoku(a, b, x1, y1, n) V —sudoku(a, b, x2, y2, n), (x1,y1) < (x2, y2)
—sudoku(a, b1, x, y1, n) V —sudoku(a, by, x, y2, n), (b1, y1) < (b2, y2)

—sudoku(ay, b, x1,y, n)V ~sudoku(az, b, x2,y, n), (a1, x1) < (a2, x2)

Martin Balaz Computational Logic

