

Outline of Lesson 06

* Line clipping algorithms in the CG Pipeline
* Cohen-Sutherland
* Cyrus-Beck
* Nicholl-Lee-Nicholl

Transformations

- Scene composition
- World space
- Viewing frustrum
- Eye position, orientation

Transformation

- 3D Screen space
- Clipped to frustrum
- Distortion towards far clipping plane
- Z-buffer occlusion detection
- Projection to 2D

Where Culling \& Clipping Fit In

-Goal \#1: Reject objects as early as possible
-this will save the most work
Scene Database
-Goal \#2: Rejection test must be efficient

- we're trying to avoid work
-Generally perform culling early on
- remove objects wholly outside frustum
- avoids lighting \& transformation
-And perform clipping later on
- cut off parts outside viewport
- simplifies rasterization

View Frustum Culling

- Discard any object outside viewing volume early on
- performed by application (or application framework)
- Viewing volume is formed by 6 planes
- suppose all normals are oriented towards interior
- then the interior is set of all points such that

$$
a_{i} x+b_{i} y+c_{i} z+d_{i} \geq 0
$$

- Given a set of polygons

- test for intersection with viewing volume
- any polygon not intersecting frustum can be culled
- What's wrong with this simple algorithm?

Inefficient Per-Polygon Processing

-What if a million polygon object is entirely outside frustum?
-we certainly don't want to test every one!

Culling with Bounding Volumes

-Let's enclose our object in a convex volume
-bounding sphere

- compact representation
- may not fit object tightly
-bounding box
- axis-aligned or oriented with object
-convex polytope
- allows tightest fit
- most expensive to deal with
-Now test bounding volume first
-if outside frustum, reject object
-otherwise visit individual components

Hierarchical Bounding Volumes

-And we can do even better with a hierarchy of volumes
-Begin testing at the root node

- if outside, reject all objects
- otherwise, recursively test sub-nodes
- Of course this raises the question: how best to build this hierarchy?

Backface Culling

-Even for polygons inside frustum, some may be culled
-if we assume that our objects are closed
-Consider polygon normal

$$
N_{P}=V_{1} \times V_{2}
$$

-Oriented polygon edges V_{1}, V_{2}

-if it's pointing towards the eye, we may be able to see it

- pointing away means it's on the opposite side of the object
-Line-of-sight vector N

$$
N_{P} \cdot N
$$

> 0 : surface visible
< 0 : surface not visible
\Rightarrow Draw only visible surfaces

From Culling to Clipping

- Culling tries to reject objects wholly outside viewing volume
-typically done by application
-happens prior to lighting, transformation, ...
- Now, we want to cut off pieces outside frustum
-this is clipping
- Clipping happens just prior to rasterization
-almost always done by graphics system
-frequently implemented in hardware

Transformations \& Clipping

Clipping
Rasterization, Resolve visibility ($1,1,1$)

Why not Per-Pixel Clipping during Rasterization?

- During rasterization, we visit every pixel covered by primitive
-if any pixel is outside the viewport, reject it

- What's wrong with this?
- It can be pretty inefficient
-suppose a 1000 pixel polygon is completely outside viewport

Clipping

- After the mapping of the view volume (a frustum for perspective views; parallelepiped for orthographic views) to the canonical view volume. All vertices are in NDC.
- Primitives not within the canonical view volume are to be clipped. Clipping is more efficient and faster when carried out with NDC.

Point Clipping (Culling)

- In 3D view space
- Vertex inside canonical view frustrum ?
- OpenGL: $x, y, z[-1 \ldots 1]$
- Direct3D: $x, y[-1 \ldots 1], z[0 \ldots 1]$

The CG Pipeline Geometry Postprocessing

* During geometry postprocessing lines and triangles are clipped against the window
\rightarrow We can not write outside the frame buffer
* Clipping should be
\Rightarrow Fast for many primitives
\rightarrow Implemented on HW (GPU)

Cohen-Sutherland

* Main Purpose
\rightarrow Clipping lines against rectangular (axis aligned) 2D (3D) window
* Algorithm Principle
\rightarrow Divides a 2D (3D) space into 9 (27) regions
\Rightarrow Efficiently determine the (portions of) lines that are visible in the window
\rightarrow Clip lines against window edges

Cohen-Sutherland

* 9 codes (4bit) for each region: code $=b_{3} b_{2} b_{1} b_{0}$
* X cases
$\rightarrow \mathrm{b} 3=\left(\mathrm{x}<\mathrm{x}_{\min }\right)$? $1: 0$
$\rightarrow \mathrm{~b} 2=\left(\mathrm{x}>\mathrm{x}_{\text {max }}\right)$? $1: 0$
* Y Cases
$\rightarrow \mathrm{bl}=\left(\mathrm{y}<\mathrm{y}_{\text {min }}\right)$? $1: 0$
$\rightarrow \mathrm{bO}=\left(\mathrm{y}>\mathrm{y}_{\max }\right)$? $1: 0$

Cohen-Sutherland

* Execution example
\rightarrow Clip P_{1} against $X_{\min }$
\rightarrow Swap P_{1} and P_{2}
\rightarrow Clip P_{1} against $y_{\text {min }}$
\rightarrow Clip P_{1} against $x_{\text {max }}$
\rightarrow Done with PIP2

Cohen-Sutherland

c2 $=\operatorname{code}(x 2, y 2)$;
while (folse) \{
$\mathrm{cl}=\operatorname{code}(\mathrm{x} 1, \mathrm{y})$;
if (c1 \& c2 ! = 0) return false;
else if (c1 | c2 == 0) return true; else \{
if (c1 ==0) \{ swap(x1, x2); swap (y1, y2); swap (c1, c2); \} else if $(c 1 \in\{1,5,9\})\left\{x 1=x 1+(x 2-x 1)^{*}\left(y_{\text {max }}-y 1\right) /(y 2-y 1) ; y 1=y_{\text {max }} ;\right\}$ else if $(c 1 \in\{2,6,10\})\left\{x 1=x 1+(x 2-x 1)^{*}\left(y_{\min }-y 1\right) /(y 2-y 1) ; y 1=y_{\text {min }}\right\}$ else if $(c 1 \in\{4,5,6\})\left\{y 1=y 1+(y 2-y 1)^{*}\left(x_{\text {mox }}-x 1\right) /(x 2-x 1) ; x 1=x_{\text {mox }} ;\right\}$ else if $(c 1 \in\{8,9,10\})\left\{y 1=y 1+(y 2-y 1)^{*}\left(x_{\text {min }}-x 1\right) /(x 2-x 1) ; x 1=x_{\text {min }}\right\}$ \}

OutCode in 3D

Cyrus-Beck

* Main Purpose
\rightarrow Clipping lines against any convex polygon
* Algorithm Principle
\rightarrow Find line parameter of intersection with each edge of polygon
\rightarrow Update min and max line parameter to be inside the halfspace of each edge
\rightarrow If min < max calculate clipped line segment points

Cyrus-Beck

* Intersection of hyperplane and line segment
\Rightarrow Hyperplane (origin O, normal n)
\Rightarrow Line segment (start point PO, end point PI)
* P lies on line segment

$$
\rightarrow P=P O+t(P 1-P O) \quad \mid 0<=t<=1
$$

* P lies on hyperplane

$$
\rightarrow(P-Q) * n=0
$$

* Solve $t=(Q-P O)$ * $n /(P 1-P O)$ * n

$$
\rightarrow d q=(Q-P O) * n \mid d l=(P l-P O) * n \rightarrow t=d q / d 1
$$

Cyrus-Beck

* Instead of calculating new intersected points Cyrus-Beck operates only on line parameters t0 and t1 - this is faster
* First set t0 $=0$ and $t 1=1$ (original line segment)
* For each edge find intersection parameter t and set

$$
\begin{aligned}
& \rightarrow \text { If }(\mathrm{dl}>0) \mathrm{t} 0=\max (\mathrm{t}, \mathrm{t} 0) \text { (out-to-in case) } \\
& \rightarrow \text { If }(\mathrm{dl}<0) \mathrm{tl}=\min (\mathrm{t}, \mathrm{t}) \text { (in-to-out case) }
\end{aligned}
$$

* This will find the smallest intersection interval
* At the end find new P0 and P1 for t0 and t1

Cyrus-Beck

* Input: Convex polygon and line segment
* Output: Clipped line segment being fully inside given polygon (or nothing)
* Set clipping parameters
$\rightarrow \mathrm{t} 0=0, \mathrm{t}=1$

Cyrus-Beck

* Find intersection parameter t with edge el
* d1 = (P1-PO) * nl >0 \rightarrow clip t0 (out-to-in case)
* t0 $=\max (\mathrm{t}, \mathrm{t} 0)$
\rightarrow Since t < t0
\rightarrow No update is done

Cyrus-Beck

* Find intersection parameter t with edge e2
* d1 = (P1-PO) * n2 < $0 \rightarrow$ clip t1 (in-to-out case)

Cyrus-Beck

* Find intersection parameter t with edge e2
* d1 = (P1-PO) *n2 < $0 \rightarrow$ clip t1 (in-to-out case)
* $\mathrm{t} 1=\min (\mathrm{t}, \mathrm{t})$
\rightarrow Since t < t 1
\rightarrow We update $\mathrm{t}=\mathrm{t}$

Liang-Barsky

* Find intersection parameter t with edge e3
* d1 = (P1-PO) *n3 < $0 \rightarrow$ clip t1 (in-to-out case)
* $t 1=\min (t, t 1)$
\rightarrow Since t > t1
\rightarrow No update is done

Cyrus-Beck

* Find intersection parameter t with edge e4
* d1 = (P1-PO) *n4 < $0 \rightarrow$ clip t1 (in-to-out case)

Cyrus-Beck

* Find intersection parameter t with edge e4
* d1 = (P1-PO) *n4 < $0 \rightarrow$ clip t1 (in-to-out case)
* $t 1=\min (t, t 1)$
\rightarrow Since t < t 1
\rightarrow We update $\mathrm{t}=\mathrm{t}$

Cyrus-Beck

* Find intersection parameter t with edge e5
* $\mathrm{dl}=(\mathrm{Pl}-\mathrm{PO})$ * n5 $>0 \rightarrow$ clip t0 (out-to-in case)

Cyrus-Beck

* Find intersection parameter t with edge e5
* d1 = (P1-PO) *n5 >0 clip t0 (out-to-in case)
* $\mathrm{t} 0=\max (\mathrm{t}, \mathrm{t} 0)$
\rightarrow Since $\mathrm{t} \boldsymbol{>}$ t0
\rightarrow We update t0 $=t$

Cyrus-Beck

* No more edges to update with
* If t0 > t1 whole line segment is outside of polygon
* If t0 <= t1 clip line
\rightarrow PO' $=$ PO + t0 (P1-PO)
$\rightarrow \mathrm{Pl}^{\prime}=\mathrm{PO}+\mathrm{tl}(\mathrm{Pl}-\mathrm{PO})$

Cyrus-Beck

* $t_{0}=0 ; t_{1}=1$;
* foreach edge $e_{1}=(q, n)$ \{
$\rightarrow d_{1}=\left(\rho_{1}-\rho_{0}\right)^{*} n_{;} ; d_{q}=\left(q_{i}-\rho_{0}\right)^{*} n_{i} ;$
\rightarrow if $\left(d_{1}>0\right)\left\{t=d_{d} / d_{j} ; t_{0}=\max \left(t_{1} t_{0}\right) ;\right\}$ else
\rightarrow if $\left(d_{1}<0\right)\left\{t=d_{q} / d_{j} ; t_{1}=\min \left(t, t_{1}\right) ;\right\}$ else
\rightarrow if $\left(\left(\rho_{0}-q_{1}\right) * n_{1}<0\right)$ return false; //l line is outside of poly
* \}
* if $\left(t_{0}<t_{1}\right)$ return true; else return false;

Nicholl-Lee-Nicholl

* Main Purpose
\rightarrow Clipping lines against rectangular (axis aligned) 2D only window
* Algorithm Principle
\rightarrow Categorize first point of line segment similarly to Cohen-Sutherland
\rightarrow Virtual cast 4 rays from PO through 4 corners of window and categorize all regions between rays. In each segment we know which window edges we have to clip with
\rightarrow Clip line segment with selected edges

Nicholl-Lee-Nicholl

* Window region

Nicholl-Lee-Nicholl

* Corner region

Nicholl-Lee-Nicholl

* Edge region

Nicholl-Lee-Nicholl

* Edge region Example

Nicholl-Lee-Nicholl

procedure LeftEdgeRegionCase (ref real $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2$, y 2 ; ref boolean visible) begin
real dx, dy;
if $\mathrm{x} 2<\mathrm{xmin}$
then visible:= false else if $\mathrm{y} 2<\mathrm{ymin}$
then LeftBottom (xmin,ymin, xmax, ymax, $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$, visible)
else if $\mathrm{y} 2>\mathrm{ymax}$
then
begin
\{ Use symmetry to reduce to LeftBottom case \}
$\mathrm{y} 1:=-\mathrm{y} 1 ; \mathrm{y} 2:=-\mathrm{y} 2 ; \quad\{$ reflect about x -axis \}
LeftBottom (xmin,-ymax,xmax, -ymin, x1,y1,x2,y2,visible);
$\mathrm{y} 1:=-\mathrm{y} 1 ; \quad \mathrm{y} 2:=-\mathrm{y} 2 ; \quad\{$ reflect back \}
end
else
begin
$\mathrm{dx}:=\mathrm{x} 2-\mathrm{x} 1 ; \quad \mathrm{dy}:=\mathrm{y} 2-\mathrm{y} 1 ;$
if $\mathrm{x} 2>\mathrm{xmax}$ then begin
$y 2:=y 1+d y *(x \max -x 1) / d x ; \quad x 2:=x \max ;$ end;
$\mathrm{y} 1:=\mathrm{y} 1+\mathrm{dy} *(\mathrm{xmin}-\mathrm{x} 1) / \mathrm{dx} ; \quad \mathrm{x} 1:=\mathrm{xmin} ;$
visible := true;
end
end;

Nicholl-Lee-Nicholl

procedure LeftBottom (real xmin, ymin, xmax, ymax;
ref real $x 1, y 1, x 2$, $y 2$; ref boolean visible)

begin

real dx, dy, a, b, c;

$$
\mathrm{dx}:=\mathrm{x} 2-\mathrm{x} 1 ; \quad \mathrm{dy}:=\mathrm{y} 2-\mathrm{y} 1
$$

a $:=(x \min -x 1) * d y$;
b := $(y \min -y 1)^{*} d x$;
if $b>a$
then visible $:=$ false $\{(x 2, y 2)$ is below ray from $(x 1, y 1)$ to bottom left corner $\}$
else
begin
visible := true;
if $x 2<x \max$
then
begin $x 2:=x 1+b / d y ; \quad y 2:=y m i n ; \quad$ end
else
begin
$c:=(x \max -x 1)^{*} d y ;$
if $b>c$ then $\{(x 2, y 2)$ is between rays from $(x 1, y 1)$ to bottom left and right corner \}
begin $x 2:=x 1+b / d y ; \quad y 2:=y m i n ; \quad$ end else
begin $y 2:=y 1+c / d x ; \quad x 2:=x \max ; \quad$ end
end;
end;
$y 1:=y 1+a / d x ; x 1:=x m i n ;$
end;

Clipping Algorithms Summary

* Cohen-Sutherland
\Rightarrow Repeated clipping is expensive
\rightarrow Best when trivial accepts/rejects occur often
* Cyrus-Beck
\rightarrow Cheap intersection parameter calculation
\rightarrow Points are clipped only once at the and
\rightarrow Best when most lines have to be clipped
* Liang-Barsky - optimized Cyrus-Beck for window
* Nicholl et. al. - Fastest, not applicable in 3D

2D Polygon Clipping

-Given an initial polygon, find areas within viewport

-this will yield one or more polygons

Sutherland-Hodgman Algorithm

- How to clip a polygon against a single plane?

When the polygon is being clipped by one side of the window, traverse the polygon in a clockwise fashion

- Since each edge of the polygon is individually compared with the clipping plane, only the relationship between a single edge and a single clipping plane need be considered.
- The order in which the polygon is clipped against the various window boundaries is immaterial.

Sutherland-Hodgman

- While traversing the polygon, there are only four possibilities for each edge, namely:
- going in of the window
- two endpoints are inside the window (i.e. on visible side of clipping boundary)
- going out of the window
- two endpoints are outside the window
- output the intersection point and visible terminating vertex

in to in Save: 3

in to out Save: ${ }^{\prime}$

out to out Save: none

\perp Oriented Function

- $\mathrm{s}_{\mathrm{i}}=\mathrm{Or}_{2}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{P}, \mathrm{Q}\right)$

$O r_{2}(P, Q, R)=p_{x}\left(q_{y}-r_{y}\right)+p_{y}\left(r_{x}-q_{x}\right)+q_{x} r_{y}-q_{y} r_{x}$
$O r_{2}(P, Q, R)=\operatorname{sign}\left|\begin{array}{ccc}1 & 1 & 1 \\ p_{x} & q_{x} & r_{x} \\ p_{y} & q_{y} & r_{y}\end{array}\right|$

(a)

(c)

(b)

(d)

(e)

Polygon clipping

s_{i}	s_{i+1}	poloha hrany	do zoznarmu sa pridáva
+	+	vnútri	A_{i+1}
+	0	vnútri	A_{i+1}
+	-	vychádza	C
0	+	vchádza, A_{i} nà hranici	A_{i+1}
0	0	celá na hranici	A_{i+1} ak $s_{i+2}>0$, inak \emptyset
0	-	mimo, A_{i} na hranici	$C_{i} A_{i+1}$
-	+	vchádza	A_{i+1} ak $s_{i+2}>0$ inak \emptyset
-	0	A_{i+1} na hranici	A_{i}
-	-	mimo	

Sutherland-Hodgman

Sucessive processing sequence:

